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Abstract

We study the link between the complexity of polynomial matrix multiplication
and the complexity of solving other basic linear algebra problems on polyno-
mial matrices. By polynomial matrices we mean n × n matrices of degree d
over K[x] where K is a commutative field. Under the straight-line program
model we show that multiplication is reducible to the problem of computing
the coefficient of degree d of the determinant. Conversely, we propose algo-
rithms for minimal approximant computation and column reduction that are
based on polynomial matrix multiplication; for the determinant, the straight-
line program we give also relies on matrix product over K[x] and provides an
alternative to the determinant algorithm of [16]. We further show that all these
problems can be solved in particular in O (̃nωd) operations in K. Here the soft
“O” notation indicates some missing log(nd) factors and ω is the exponent of
matrix multiplication over K.

Keywords: Matrix polynomial, minimal basis, column reduced form, matrix gcd, determinant,
polynomial matrix multiplication.

Résumé

On étudie le lien entre la complexité du produit de matrices polynomiales et
celle d’autres opérations élémentaires de l’algèbre linéaire des matrices polyno-
miales. Par matrices polynomiales on entend des matrices n×n de degré d sur
K[x], K étant un corps commutatif. Avec le modèle “straight-line” nous mon-
trons que le produit se réduit au calcul du coefficient de degré d du déterminant.
Réciproquement, on propose pour certains approximants matriciels minimaux
et la forme colonne réduite des algorithmes basés sur le produit de matrices;
pour le déterminant, on donne un programme “straight-line” également à base
de produit matriciel, qui fournit une alternative à l’algorithme de [16]. On
montre de plus que tous ces problèmes peuvent être résolus en particulier en
O (̃nωd) opérations sur K. La notation O˜ contient des facteurs log(nd) et ω est
l’exposant du produit de matrices sur K.

Mots-clés: Matrice polynomiale, base minimale, forme colonne réduite, pgcd matriciel,
déterminant, produit de matrices polynomiales.



1 Introduction

The link between matrix multiplication and other basic linear algebra problems is well known
under the algebraic complexity model. For K a commutative field, we will assume that the product
of two n × n matrices over K can be computed in O(nω) operations in K. Under the model of
computation trees over K, we know that ω is also the exponent of the problems of computing the
determinant, the matrix inverse, the rank, the characteristic polynomial (we refer to the survey
in [5, Chap.16]) or the Frobenius normal form [8, 15]. On an algebraic Ram, all these problems
can be solved with O (̃nω) operations in K, hence the corresponding algorihms are optimal up
to logarithmic terms. Here and in the rest of the paper, for any exponent e1, O (̃ne1 ) denotes
O(ne1 loge2 n) for any exponent e2.

Much less is known for polynomial matrices and even less for integer matrices under the bit-
complexity model. Difficulties come from the size of the data (and from carry propagation in the
case of integer arithmetic) which make reductions between problems hard to obtain. In this paper
we investigate the case of matrices of degree d in K[x]n×n. This is motivated both by the interest
in studying more concrete domains than abstract fields and by the two results [16] and [10, 21].
Storjohann has established and algorithm of cost O (̃nωd) for the determinant and the Smith
normal form. We have shown that the matrix inverse can be computed by a straight-line program
of length O (̃n3d) (which is almost the size of the output). Besides, the latter estimate gives an
alternative for the determinant in O (̃nωd) (see §4).

These two results first ask the following question: are problems on polynomial matrices – and
especially the determinant problem – harder than polynomial matrix multiplication? By slightly
extending the result of Baur & Strassen [1, Cor. 5] for matrices over a field, we answer positively
for the determinant. We show in section 4 that if there is a straight-line program of length D(n, d)
over K which computes the coefficient of degree d of the determinant, then there is a straight-line
program of length no more than 8D(n, d) which multiplies two n × n matrices of degree d.

Conversely, the second question is to know which polynomial matrix problems can be solved
with roughly the same number of arithmetic operations than polynomial matrix multiplication. As
seen above we already know that this is the case of the determinant problem [16] on an algebraic
Ram using O (̃nωd) as an estimation of the complexity of matrix multiplication [6]. We will
show in §4 that a different approach, which we have developed independently [10, 21], gives a
straight-line program of length O (̃nωd) for the same problem.

Before studying the determinant, we first give analogous cost estimates with Ram programs
for two other problems: we show in section 2 how to compute minimal bases and order d matrix
approximants in O (̃nωd) operations in K; we show in section 3 that an invertible matrix can be
column reduced in time O (̃nωd) as well. Note that here column reduction is roughly lattice basis
reduction for K[x]-modules.

We further study the complexities of each of the above problems in terms of general cost
functions involving polynomial matrix multiplication. To do so, we denote by MM(n, d) the cost
of multiplying two matrices of degree d in K[x]n×n (with MM(n) = MM(n, 0)) and assume without
loss of generality that n and d are powers of two. As we shall see in section 2.2 our minimal basis
algorithm works recursively on the degree and leads us to define the function

MM′(n, d) =
log d∑
i=0

2iMM(n, 2−id).

This will be used in sections 2 and 3 for expressing the costs of matrix approximation and column
reduction. In the same way, the determinant algorithms of section 4 work recursively on the
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dimension and we give their complexities in terms of the function

MM′′(n, d) =
log n∑
i=0

2iMM(2−in, 2id).

For MM(n, d) = Θ(nωd log d log log d) [6] these two functions further simplify. We have MM′(n, d) =
O(MM(n, d) log d) for any value of ω and MM′′(n, d) = O(MM(n, d) log n) if ω = 2 and MM′′(n, d) =
O(MM(n, d)) if ω > 2. Therefore

MM′(m, d) = O (̃MM(n, d)), MM′′(m, d) = O (̃MM(n, d))

when taking MM(n, d) = Θ̃ (nωd).

2 Minimal basis computation

Many problems on matrix polynomials reduce to computing minimal approximant bases (or σ-
bases) [2]. Given a matrix power series G ∈ K[[x]]m×n and an approximation order d ∈ N, these
bases are nonsingular m × m polynomial matrices M such that

MG = O(xd). (1)

Minimality is made precise in Definition 2.1 below. It essentially expresses the fact that M has
the smallest possible row degrees.

Minimal basis computations are motivated by the following two applications, which we shall
develop later in the paper: in section 3 we will use the fact that the problem of column reducing
a matrix can be solved by computing a Padé approximant and thus a minimal approximant basis;
in section 4 we further use such approximants for recovering the polynomial matrix kernels that
lead to the determinant. Note that a third application is the computation of minimal matrix
polynomials of linearly generated matrix sequences as proposed in [23] and [20].

Our purpose in this section is to introduce polynomial matrix multiplication into the existing
approximation algorithms. We achieve this by first adapting in §2.1 the σ-basis algorithm of
Beckermann and Labahn [2] to exploit fast matrix mutiplication over K. Roughly, the algorithm
of [2] works iteratively and computes a σ-basis from a (σ − n)-basis via n Gaussian elimination
steps on vectors of Km. How to replace these n steps on m × 1 vectors with a single step on
an m × n matrix was unclear. We solve this problem by resorting to the blocking approach
of Coppersmith [7, 13] and using the matrix product-based LSP factorization algorithm of [9].
Polynomial matrix product then arises in §2.2 with a divide-and-conquer version of the method
of §2.1 that generalizes the previous studies in [2, 19].

This divide-and-conquer version yields the cost of O (̃nωd) which improves upon the cost of
O (̃n3d) in [2, Theorem 6.2].

To define the type of approximants we compute, we consider as in [2] the formal power series
vector

f(x) = G(xn)[1, x, . . . , xn−1]
T ∈ K[[x]]m;

we further call (approximation) order of vT ∈ K[x]m and denote by ord v the integer

ord v = sup{τ ∈ N : v(xn)f(x) = O(xτ )}.

For σ ∈ N we then define σ-bases with respect to the rows of G as follows.
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Definition 2.1 A σ-basis of G is a matrix polynomial M in K[x]m×m verifying:

i) ordM (i,∗) ≥ σ for 1 ≤ i ≤ m;

ii) every v ∈ K[x]m such that ord v ≥ σ admits a unique decomposition vT =
∑m

i=1 c(i)M (i,∗)

where, for 1 ≤ i ≤ m, c(i) ∈ K[x] and deg c(i) + deg M (i,∗) ≤ deg v (minimality of the
approximant).

This definition coincides with [2, Definition 3.2, p.809] when the m components of the multiindex
in [2] are the same. Also, since i) yields M(xn)G(xn)[1, x, . . . , xn−1]T = O(xσ), it suffices to take
σ = nd to get approximant M(x) in (1).

2.1 Via matrix multiplication

To introduce matrix multiplication into σ-basis computations of [2], we use the so-called LSP
factorization [3, p. 103]: every matrix A ∈ Km×m of rank r can be written as A = LSP where
L ∈ Km×m is lower triangular with ones on the diagonal, S ∈ Km×m has m − r zero rows and
P ∈ Km×m is a permutation matrix; additionally, the nonzero rows of S form an r × m upper
triangular matrix with nonzero diagonal entries. Let

1 ≤ i1 < i2 < · · · < ir ≤ m

be the indices of the nonzero rows of S. Each ij is then uniquely defined as the smallest index
such that the first ij rows of A have rank j.

In Algorithm SigmaBasis below, we assume we compute LSP factorizations with the algo-
rithm of [9] as described in [3, p. 103]: L, S, P are computed in O(MM(m)) operations in K;
furthermore, L, S are such that if the ith row of S is identically zero then the ith column of L is
the ith unit vector. (See Appendix A.)

Algorithm SigmaBasis(G, d)
Input: G ∈ K[[x]]m×n with m ≥ n and d ∈ N.
Output: a σ-basis M ∈ K[x]m×m with σ = nd.

M := Im;
δ := 0 ∈ N

m;
for k from 1 to d do

δ := πδ where π ∈ Km×m sorts δ in decreasing order;
∆ := x−(k−1)πMG mod x;
∆ := ∆ augmented with m − n zero columns;
Compute the LSP factorization of ∆;
D := diag(d1, . . . , dm) where di = x if i ∈ {i1, . . . , ir}

and di = 1 otherwise;
M := DL−1πM ;
δ := δ + [d1(0) − 1, . . . , dm(0) − 1]T ;

od;
return M ;

Lemma 2.2 Algorithm BlockSigmaBasis is correct. Its cost is O(MM(m)d2) or O(nωd2) oper-
ations in K.

Proof. Let M0 = Im and, for 1 ≤ k ≤ d, write Mk(x) for the matrix M computed by step
k. We see that the degree of Mk in x is no more than k and, assuming the algorithm is correct,
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that MkG = O(xk). The computation of ∆ at step k thus costs O(MM(m)k) field operations.
This dominates the cost of step k, for both LSP factorization and the update of M require only
O(MM(m)) operations in K. The overall complexity then follows.

To prove the algorithm is correct, note first that M0 is a 0-basis of G(x). Then, assuming for k ∈
{1, . . . , m} that Mk−1(x) is an n(k−1)-basis of G(x), we verify that Mk(x) = D(x)L−1πMk−1(x)
is an nk-basis of G(x).

Let Nk−1(x) = πMk−1(x) and recall that P is the permutation matrix in the LSP factorization
at step k. It follows that Nk−1(x) is an n(k−1)-basis of G(x)P−1. Algorithm FPHPS of [2, p. 810]
with input parameters m, n,

F (x) = Nk−1(xn)G(xn)P−1[1, x, . . . , xn−1]
T

and (0, . . . , 0) ∈ N
m then returns an nk-basis of G(x)P−1 after n steps. We denote this basis by

Nk(x). (Uniqueness of the output of FPHPS is explained in [2, p. 818].) As shown below, the two
bases are related as

Nk(x) = D(x)L−1Nk−1(x) (2)

and hence Mk = Nk is an nk-basis of GP−1 and G as well.
We now prove identity (2). Let Λ = ∆P−1 and let Λj be the jth column of Λ. Then

x−(k−1)nF (x) ≡ Λ1 + xΛ2 + · · · + xn−1Λn mod xn.

Since the rows of Nk−1 have been sorted by permutation π, the first step of FPHPS simply consists
in picking the first nonzero entry of Λ1 – say, λ1 with row index h1 – and zeroing the lower entries
of Λ1 by using pivot λ1. The h1st row is then multiplied by x. In other words, Nk−1(x) is
transformed into E1(x)T1Nk−1(x) where we define E1(x) = diag(Ih1−1, x, Im−h1) and

T1 =


 Ih1−1

1
t1 Im−h1


 with t1 ∈ Km−h1 . (3)

Recalling that i1 is the index of the first nonzero row of S in factorization Λ = LS, we verify first
that h1 = i1: it follows from Appendix A that L and S can be partitioned as

Λ = LS =


 Ii1−1

1
l1 L′




 λ1 sT

1

S′


 , λ1 ∈ K\{0}.

Here L′ ∈ K(m−i1)×(m−i1), S′ ∈ K(m−i1)×(n−1) and λ1 is indeed the first nonzero entry of Λ1.
Hence h1 = i1. Second, comparing the first column in both members of T1Λ = T1LS yields
t1 = −l1 and the i1st column of T−1

1 is thus equal to the i1st column of L. The first step of
FPHPS yields eventually

x−(k−1)nE1(xn)T1F (x) ≡ xΛ′
2 + · · · + xn−1Λ′

n mod xn

where

[0|Λ′
2| · · · |Λ′

n] = E1(0)T1Λ =
[

0 0
0 L′S′

]
∈ Km×n. (4)

Let h2 be the pivot index at step 2 and let T2 and E2(x) be the associated transformation matrices.
It follows from (4) that h2 > i1. Hence T2 has the form T2 = diag(Ii1 , T

′
2) and E1(x) commutes

with T2. Then, noticing that the ordering imposed by π is still the same, one can iterate by
replacing T1, LS and i1 < · · · < ir with respectively T ′

2, L′S′ and i2 − i1 < · · · < ir − i1. We
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eventually get hj = ij for 1 ≤ j ≤ r. Therefore, defining for 1 ≤ j ≤ r matrices Ej(x) and Tj has
done in (3) for j = 1, we have

Nk(x) = Er(x) · · ·E2(x)E1(x)Tr · · ·T2T1Nk−1(x). (5)

It follows that Er(x) · · ·E2(x)E1(x) = D(x) and that the ijth column of T−1
j equals the ijth

column of L. Noticing further that because of the structure of Tj the ijth column of T−1 equals
the ijth column of T−1

j , we have T−1 = L and (2) follows from (5). �

2.2 Via polynomial matrix multiplication

To use polynomial matrix multiplication, we now give a divide-and-conquer version of Algorithm
SigmaBasis. This version is based on the following “transitivity lemma”, which may be seen as
the counterpart of Theorem 6.1 in [2] and can be shown in the same way.

Lemma 2.3 If M, M ′, M ′′ are the output of Algorithm SigmaBasis for input (G, d), (G, d/2),
(x−d/2M ′G, d/2) respectively then M = M ′′M ′.

Algorithm BlockSigmaBasis(G, d)
Input: G ∈ K[[x]]m×n with m ≥ n and d ∈ N.
Output: a σ-basis M ∈ K[x]m×m with σ = nd.
Condition: d = 0 or log d ∈ N.

if d = 0 then M := Im;
else if d = 1 then M := SigmaBasis(G,d);
else if d ≥ 2 then

M ′ := BlockSigmaBasis(G, d/2);
M ′′ := BlockSigmaBasis(x−d/2M ′G mod xd/2, d/2);
M := M ′′M ′;

fi;
return M ;

Theorem 2.4 Algorithm BlockSigmaBasis is correct. Its cost is 1.5MM′(m, d) + O(dMM(m))
or O (̃mωd) operations in K.

Proof. For correctness it suffices to show that the algorithm with input (G, d) uses only the
first d coefficients of series G: when d = 1 this is true because of Algorithm SigmaBasis; if we
assume this is true for a given d/2 then this is still true for d since x−d/2M ′G mod xd/2 depends
only on G mod xd. Correctness then follows immediately from Lemma 2.3.

Now about complexity. First, it follows from Algorithm SigmaBasis that deg M ≤ d. Hence
the product M ′′M ′ costs MM(m, d/2). Second, since deg M ′ ≤ d/2, the coefficient in xi of
x−d/2M ′G mod xd/2 is the coefficient in xi+d/2 of M ′(G mod xd). This product costs MM(m, d).
The cost C(m, n, d) of Algorithm BlockSigmaBasis thus satisfies C(m, n, 1) = O(MM(m)) and,
for d ≥ 2,

C(m, n, d) ≤ 2C(m, n, d/2) + MM(m, d/2) + MM(m, d).

This gives the bound 1.5MM′(m, d) + O(dMM(m)). �
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3 Column reduction

For A ∈ K[x]n×n we consider the problem of computing C ∈ K[x]n×n such that C = AU is column
reduced, U being a unimodular matrix over K[x]. Column reduction is essentially lattice basis
reduction for K[x]-modules. To define the reduction, let dj denote the degree of the jth column
of C. The corresponding coefficient vector of xdj is the jth leading vector of C. We let [C]l be
the matrix of these leading vectors.

Definition 3.1 A matrix C is column reduced if its leading coefficient matrix satisfies rank [C]l =
rank C.

We refer to [14, 22] and the references therein for discussions on previous reduction algorithms
and applications of the form especially in linear algebra and in linear control theory. If r is the
rank of A, the best previously known cost for reducing A was O(n2rd2) operations in K [14].
Thus in particular O(n3d2) for a nonsingular matrix. Here we propose a different approach which
takes advantage of fast polynomial matrix multiplication and gives in particular the complexity
estimate O (̃nωd).

We assume that A of degree d is nonsingular in K[x]n×n. The general case would require further
developments. We compute a column reduced form of A by combining our techniques in [22] to
the high-order lifting and the integrality certificate in [16, §9]. The main idea is to reduce the
problem to the computation of a matrix Padé approximant whose side-effect is to normalize the
involved matrices [22]. Let us first recall the definition of right matrix greatest common divisors.

Definition 3.2 A right matrix gcd of P ∈ K[x]m×n and A ∈ K[x]n×n is any full row rank matrix
G such that

U

[
P
A

]
=

[
G
0

]
with U unimodular.

Right gcd’s are not unique, but if [PT AT ]T has full column rank —here this is true by
assumption— then, for given matrices P and A, all the gcd’s are nonsingular and left equivalent
(up to multiplication by a unimodular matrix on the left) in K[x]n×n. This also leads to the notion
of an irreducible matrix fraction description. (See for example [11] for a detailed study of matrix
gcd’s and fractions.)

Definition 3.3 If a right gcd of P and A is unimodular then we say that P and A are relatively
prime and that PA−1 is an irreducible right matrix fraction description.

The whole algorithm for column reduction will be given in §3.3. The first step, detailed in §3.1,
is to compute from A a strictly proper and irreducible right fraction description

H = RA−1 ∈ K(x)n×n, R ∈ K[x]n×n. (6)

We recall that strictly proper means that H tends to zero when x tends to infinity. This implies
that the degree of the jth column of R must be strictly lower than the degree of the jth column of
A. Since the degrees of R and A are bounded by d, the second step of the method, studied in §3.2,
is to compute from the first 2d + 1 terms of the expansion of H a right matrix Padé approximant

H = TC−1

of H . Such an approximant, obtained from the results of §2 and [2], will have the additional
property that C is column reduced. We will see that by the equivalence of irreducible fractions,
C will be a column reduced form of A.
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Like the algorithms in [16], our column reduction algorithm is randomized Las Vegas since the
first step requires that detA(0) �= 0. Without loss of generality this may be assumed by choosing
a random element x0 in K and by computing a column reduced form C of A(x + x0). Indeed, a
column reduced form of A is then recovered as C(x − x0).

3.1 A strictly proper and irreducible fraction

For a given A, its inverse A−1 may not be a strictly proper rational function, a case where R = I
is not a suitable choice in (6). We show that the integrality certificate of [16, §9] can be used here
to find a target strictly proper function.

Lemma 3.4 Let A ∈ K[x]n×n of degree d be such that detA(0) �= 0. For h > (n − 1)d define
R ∈ K[x]m×n by

I =
(
A−1 mod xh

)
A + xhR. (7)

The fraction RA−1 is strictly proper and irreducible. If h is the closest power of 2 greater than
(n − 1)d + 1, the 2d + 1 first terms of the expansion of RA−1 may be computed at the cost of
O(MM(n, d) log n) + O (̃n2d) operations in K.

Proof. Identity (7) is identity (12) in [16] with B = I and T = A. This is a Euclidean matrix
division with coefficients in reverse order. The fraction RA−1 is strictly proper because

RA−1 = x−hA−1 − x−h
(
A−1 mod xh

)
(8)

and h > (n − 1)d ≥ deg A∗ where A∗ is the adjoint matrix of A. On the other hand, there is a
unimodular U such that[

xhR
A

]
=

[
I −(A−1 mod xh)
0 I

][
I
A

]
= U

[
I
0

]
.

Hence matrices xhR and A are relatively prime (see Definition 3.2) and the same is true for R
and A.

For h as in the statement, the 2d + 1 terms of the expansion of RA−1 may be computed by
high-order xd-lifting [16, §8] with input parameters A, I, h and 2d + 1. The corresponding cost
in [16, Proposition 13] is O (̃nωd). It can be seen from [16] that the algorithm actually runs at a
cost of O(MM(n, d) log n) + O (̃n2d) operations in K. �

3.2 Padé approximation and reduction

The key observation is that the descriptions TC−1 of H with C a column reduced form of A are
those whose numerator and denominator matrices have minimal degrees (see Corollary 3.6 below).
By definition they satisfy [

H −I
][ C

T

]
= 0 mod x2d+1

and, as we shall see, their minimality implies that they must appear in any σ-basis of G = [H −I]
for σ = n(2d + 1). (Here we consider σ-bases with respect to the columns rather than the rows.
Hence we transpose the matrices of section 2.)

To describe the set of all matrices T and C we use the notion of minimal basis of a module.
For M ∈ K[x]n×m, m > n, with rank n, let N ∈ K[x]m×(m−n) with columns forming a basis of the
K[x]-submodule kerM . We denote by d1, d2, . . . , dm−n the column degrees of N and assume they
are ordered as d1 ≤ d2 ≤ · · · ≤ dm−n. Then we have the following theorem and consequence.
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Theorem 3.5 [11, §6.5.4]. If N is column reduced then the column degrees d′1 ≤ d′2 ≤ · · · ≤ d′m−n

of any other basis of kerM satisfy d′j ≥ dj for 1 ≤ j ≤ m − n. We say that the columns of N
form a minimal basis of kerM .

Corollary 3.6 A basis [CT T T ]T of kerG = ker[H − I] is minimal if and only if C is a column
reduced form of A.

Proof. If [CT T T ]T is a minimal basis then H = TC−1 must be irreducible, otherwise the
simplification of (T, C) by a right matrix gcd would lead to a basis with smaller degrees. The
latter would contradicts Theorem 3.5. In addition since [CT T T ]T is column reduced then C is
column reduced. Indeed, H being strictly proper implies that T has column degrees strictly lower
that those of C which thus dominate. By [11, Theorem 6.5-4] we further know that two irreducible
descriptions TC−1 and RA−1 of the same function H have equivalent denominators. This means
that there exists a unimodular U such that C = AU . Hence C is a column reduced form of A.
Conversely, if C in a basis [CT T T ]T is a column reduced form of A then by Theorem 6.5-4 cited
above, TC−1 is an irreducible description of H . Since C is column reduced, the non-minimality
of [CT T T ]T as a basis of kerG would then contradict its irreducibility. �

We now show that, for σ large enough, a σ-basis with respect to the columns of [H − I] leads
to a minimal basis [CT T T ]T as in the corollary, and hence to a column reduced form of A. We
follow here the techniques in [10] for computing a minimal basis of the kernel of a polynomial
matrix.

Lemma 3.7 Let N ∈ K[x]2n×2n be a σ-basis with respect to the columns of G = [H − I]. If
σ ≥ n(2d + 1), then the n columns of N of degree at most d define an irreducible description
TC−1 of H with C a column reduced form of A.

Proof. We first show that there may be at most one set of n columns of N of degree at most d.
Then the minimality of the σ-basis will imply its existence and the fact that it leads to a fraction
description of the form TC−1.

If [QT PT ]T is a set of n columns of N of degrees bounded by d then

HQ − P ≡ 0 mod x2d+1.

If A−1S is a left description of H , defined in the same way as RA−1 in Lemma 3.4, we get

SQ − AP ≡ 0 mod x2d+1.

Since every matrix in the latter identity has degree at most d we deduce that

SQ − AP = 0. (9)

It follows from the columns of a σ-basis N being linearly independent over K(x) [2] that [QT PT ]T

has full column rank. Since (9) implies that[
I 0
S −A

][
Q
P

]
=

[
Q
0

]
,

we see that Q is invertible and satisfies

PQ−1 = A−1S = H. (10)

Another choice [QT
1 PT

1 ]T of n such columns would give H = PQ−1 = P1Q
−1
1 . By [11, Theo-

rem 6.5-4] the two descriptions would verify[
Q
P

]
P2 =

[
Q1

P1

]
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and this would contradict the nonsingularity of the σ-basis. Hence the choice [QT PT ]T must be
unique as announced.

Let d1, . . . , dn be the minimal degrees given by the columns of a minimal description [CT T T ]T

and let v1, . . . , vn be the corresponding columns. From ii) in Definition 2.1, v1 can be written as

v1 =
2n∑

j=1

c
(j)
1 Nj, with deg c

(j)
1 + deg Nj ≤ d1

where Nj is the jth column of the σ-basis N . Thus one column of N has degree bounded by
d1. Now assume that N has k − 1 columns of degrees d1, . . . , dk−1 with vk not belonging to the
corresponding submodule. As for k = 1, there exists a column of N , linearly independent with
respect to the first k − 1 chosen ones, of degree bounded by dk. Therefore N contains n distinct
columns of degrees bounded by d1, . . . dn and, by (10), in the kernel of [H − I]. Lemma 3.7 shows
in conclusion that these n columns give C, a column reduced form of A, in their first n rows. �

We may notice that the result of the lemma would be true as soon as σ > 2nd for the
computation of an approximant of type (d − 1, d) as defined in [2].

3.3 Cost of the reduction

Our column reduction algorithm can be stated as follows.

Algorithm ColumnReduction(A)
Input: A ∈ K[x]n×n of degree d.
Output: C = AU a column reduced form of A.
Condition: A is nonsingular.

Choice of a random x0 in K;
if detA(x0) = 0 then fail; /*A is probably singular */
B := A(x + x0);

h := (n − 1)d + 1;
H :=

(
B−1 − (B−1 mod xh)

)
/xh mod x2d+1;

TC−1 := a Padé approximant of H mod x2d+1;
return C(x − x0);

Its complexity follows from Lemma 3.4 concerning the computation of the first terms of H , and
from Theorem 2.4 concerning the computation of the n(2d + 1)-basis of Lemma 3.7.

Theorem 3.8 A column reduced form of a nonsingular matrix A of degree d in K[x]n×n can
be computed by a Las Vegas (certified) algorithm in O(MM′(n, d) + MM(n, d) log n) +O (̃n2d) or
O (̃nωd) operations in K.

4 Matrix product & determinant

The link between matrix multiplication and determinant computation over a the field K is well
known. We may refer to [5, Chap.16] for a survey of the question. If we have an algorithm for
multiplying to matrices with MM(n) operations in K then we have an algorithm (algebraic Ram)
for computing the determinant with O(MM(n)) operations in K [4]. Conversely, the exponents
(computation trees) of matrix multiplication and of determinant computation coincide [18, 1].
Furthermore, if we have a randomized Monte Carlo algorithm which computes the determinant

9



with D(n) operations in K then we have a Monte Carlo algorithm for multiplying two matrices
with O(D(n)) operations in K [8, Theorem 1.3].

In this section we show that similar results hold for polynomial matrices of degree d. In §4.1,
using a slight extension of Baur & Strassen’s idea [1, Cor. 5], we propose a reduction of polynomial
matrix multiplication to determinant computation. Then in §4.2, based on the techniques in [16,
21, 10], we investigate the reverse reduction.

We use two models of computation, algebraic straight-line programs or algorithms on an alge-
braic Ram.

4.1 Polynomial matrix multiplication

Baur & Strassen [1, Cor. 5] in conjunction with [18, 4] have shown that a straight-line program
of length D(n) for computing the determinant of a matrix A in Kn×n can be transformed into
a program of length bounded by O(D(n)) for matrix multiplication. Indeed, the problem of
multiplying two matrices can be reduced to matrix inversion [18, 4]. Then matrix inversion is
reduced to the problem of computing the determinant by differentiation of the program of length
D(n) [12, 1].

The complexity estimate O(D(n)) for matrix multiplication relies on the computation of the
partial derivatives of the determinant as a function in K[a1,1, . . . , ai,j , . . . , an,n]. The ai,j ’s are
indeterminates standing for the entries of the input matrix. It was not clear how to extend the
result to polynomial matrices. The output of a program of length D(n, d) over K which computes
the determinant of a polynomial matrix is a function in K[x, a1,1, . . . , ai,j , . . . , an,n], that is, a set
of functions in K[a1,1, . . . , ai,j , . . . , an,n]. A straightforward idea could be to differentiate at least
d such functions, but it is not known how to do it without increasing the complexity estimate
O(D(n, d)).

Here we remark that having only one particular coefficient of the polynomial matrix determi-
nant is sufficient for recovering the first d + 1 coefficients of the polynomial entries of the adjoint
matrix A∗ = (detA)A−1 ∈ K[x]n×n. Hence we first compute A∗ modulo xd+1 and from there, the
multiplication of two matrices of degree d is easily deduced.

Let A ∈ K[x]n×n have degree d and denote its (i, j) entry by ai,j =
∑d

k=0 ai,j,kxk. Let further
a∗

i,j =
∑nd−d

k=0 a∗
i,j,kxk be the (i, j) entry of the adjoint matrix A∗ of A and let ∆ =

∑nd
l=0 ∆lx

l be
the determinant of A. We have the following relation between the partial derivatives of coefficient
∆l and some of the a∗

i,j,k’s.

Lemma 4.1 The partial derivatives of the coefficients of the determinant and the coefficients of
the adjoint matrix satisfy

a∗
j,i,l−k =

∂∆l

∂ai,j,k
, 0 ≤ l ≤ nd, 0 ≤ k ≤ d.

where, by convention, a∗
j,i,k = 0 if k < 0 or k > nd − d.

Proof. By Cramer’s rule and since ∂ai,j/∂ai,j,k = xk, we have ∂∆/∂ai,j,k = xka∗
j,i. On the

other hand, for 1 ≤ k ≤ d the coefficients ∆0, . . . , ∆k−1 do not depend on variable ai,j,k and thus
∂∆/∂ai,j,k =

∑nd
l=k ∂∆l/∂ai,j,kxl. Therefore

nd−d∑
l=0

a∗
j,i,lx

k+l =
nd−k∑
l=0

∂∆k+l

∂ai,j,k
xk+l

and the result follows by identifying the coefficients. �
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The theorem below is given for a programs over K which compute the particular coefficient
∆d. It thus remains valid for programs over K which compute the whole determinant in K[x].

Theorem 4.2 If there is a straight-line program of length D(n, d) over K which computes the
(d + 1)st coefficient of the determinant of an n×n matrix of degree d, then there is a straight-line
program of length no more than 8D(n, d) which multiplies two n × n matrices of degree d.

Proof. It follows from Lemma 4.1 with l = d that the first d+1 coefficients of a∗
j,i are given by

a∗
j,i,d−k =

∂∆d

∂ai,j,k
, 0 ≤ k ≤ d.

By computing the partial derivatives [12, 1] of the given program for the determinant coefficient
∆d we thus have a program of length bounded by 4D(n, d) for computing A∗ mod xd+1. We
conclude by applying this result twice to the well known 3n × 3n matrix

A =


 In A1

In A2

In


 with A1, A2 ∈ K[x]n×n of degree d.

The associated adjoint matrix is the matrix of degree 2d

A∗ =


 In −A1 A1A2

In −A2

In


 .

One can thus recover A1A2 mod xd+1 from A∗ mod xd+1. To get higher order terms, notice that if
A1A2 = xdH +L then H = A1A2 mod xd+1 where M =

∑d
i=0 Md−ix

i is the “mirror” polynomial
matrix of M =

∑d
i=0 Mix

i. Therefore H and thus H can be recovered from A
∗

mod xd+1. �
Following Giesbrecht [8, Theorem 1.3] we may state an analogous result for algorithms on an

algebraic Ram: if we have a randomized Monte Carlo algorithm which computes ∆d with D(n, d)
operations in K then we have a Monte Carlo algorithm for multiplying two matrices of degree d
with O(D(n, d)) operations in K.

4.2 Polynomial matrix determinant

Over K, algorithms for reducing determinant computation to matrix multiplication work recur-
sively in O(log n) steps. Roughly, step i involves n/2i products of 2i × 2i matrices. (See for
example [17, 4].) When looking for the determinant of a polynomial matrix, both Storjohann’s
algorithm [16] and the straight-line program we derive below from our previous studies in [21, 10]
also work in O(log n) steps. They involve polynomial matrices of dimensions 2i × 2i and degree
nd/2i (this accounts for the definition of function MM′′(n, d) in introduction).

In this section we study the costs of two different methods for computing the determinant of
an n × n polynomial matrix of degree d. These costs are functions of MM′′(n, d) and MM′(n, d)
and reduce both to O (̃nωd) when taking MM(n, d) = Θ(nωd log d log log d).

The first method is Storjohann’s high order lifting on an algebraic Ram [16]. We recall it
briefly in §4.2.1 below for the sake of completeness. We then present in §4.2.2 an alternative
approach for straight-line programs, which has been developed independently [21, 10].
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4.2.1 Lifting determinant algorithms

Storjohann has given in [16, Proposition 24] a Las Vegas algorithm for computing the determinant
of a polynomial matrix in O (̃nωd) operations. Without going into details since there is no change
of the method, we point out that Storjohann’s result actually gives the following.

Theorem 4.3 [16] The determinant of an n × n polynomial matrix of degree d can be computed
by a Las Vegas algorithm in O(MM′′(n, d) + MM(n, d) log2 n) + O (̃n2d) or O (̃nωd) operations in
K.

This complexity estimate may be deduced from the lines of [16]. The term in O(MM′′(n, d))
comes from the integrality certificate and the Smith form computations of [16, Propositions 17 &
22]. The term in O(MM(n, d) log2 n) comes from the high-order lifting of [16, Prop. 13] performed
at each step of the O(log n) steps of the main iteration [16, §13].

4.2.2 Straight-line determinant

Given A ∈ K[x]n×n of degree d and sufficiently generic, the straight-line approach presented
in [21, 10] computes the inverse of A as A−1 = B−1U where U ∈ K[x]n×n and B ∈ K[x]n×n

is diagonal of degree nd. One can further recover the determinant of A from B alone as we
explain now. By definition of the inverse, U = (detA)−1

BA∗ where A∗ is the adjoint matrix
of A. Generically, deg detA = deg B = nd and detA is coprime with each entry a∗

i,j of A∗. It
follows that the diagonal entries bi,i of B are nonzero constant multiples of detA. Since detA(0)
is generically nonzero, the determinant of a generic A is thus equal to (det A(0))bi,i/bi,i(0) for
1 ≤ i ≤ n.

To compute B in Algorithm Determinant below, we proceed as for Algorithm Inverse in [10]:
we diagonalize the input matrix in log n steps, starting with

A → UA =
[

U
U

][
AL AR

]
=

[
UAL

UAR

]
(11)

where AL, AR ∈ K[x]n×n/2 and where U, U ∈ K[x]n/2×n are minimal bases of the left kernels of
AR, AL respectively. These minimal bases are as in Theorem 3.5, for left kernels.

Algorithm Determinant(A)
Input: A ∈ K[x]n×n of degree d.
Output: detA.
Condition: detA(0) �= 0, gcd(a∗

i,j , det A) = 1, log n ∈ N.

B := copy(A);
for i from 1 to log n do

/* B is block-diagonal with 2i−1 blocks B
(j)
i */

for j from 1 to 2i−1 do
U

(j)
i := a minimal basis of kerB

(j)
i,L;

U
(j)

i := a minimal basis of kerB
(j)
i,R;

od;
Ui := diag(

[
U

(1)
i

U
(1)
i

]
, . . . ,

[
U

(2i−1)
i

U
(2i−1)
i

]
);

B := UiB;
od;
return (det A(0))b1,1/b1,1(0);
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The analysis of this algorithm is similar to the one of the inversion algorithm in [10] and we
simply recall the key point for complexity: although the minimal bases in (11) can have degrees
as large as nd, they generically have degrees equal to d – a property which carries over the next
step – and can then be recovered from the rows of any σ-bases of AL, AR with σ ≥ n(2d + 1) [10,
Properties 1 & 2]. Generically, matrices B

(j)
i,L and B

(j)
i,R thus have dimensions 21−in × 2−in and

degree 2i−1d; it then follows from Theorem 2.4 that minimal kernel bases U
(j)
i and U

(j)

i can be
computed in O(MM′(2−in, 2id)) operations in K. On the other hand, the cost of matrix update
B := UiB is O(2iMM(2p−i, 2id)) where MM(n, d) ≤ MM′(n, d). Hence the result below, recalling
that the cost of computing detA(0) is bounded by O(MM(n)).

Theorem 4.4 The determinant of an n× n polynomial matrix of degree d can be computed by a
straight-line program over K of length O(

∑log n
i=1 2iMM′(2−in, 2id)) or O (̃nωd).

5 Conclusion

In this paper we reduced polynomial matrix multiplication to determinant computation and con-
versely, under the straight-line model. Under the algebraic Ram model, we reduced the tasks
of computing a σ-basis and column reduced form to the one of multiplying square polynomial
matrices; as we have seen, similar reductions follow from [16] for the problems of computing the
determinant and the Smith normal form.

However, in K[x]n×n it is still unclear whether
- Hermite and Frobenius normal forms,
- associated transformation matrices (even for the column reduced form),
- the characteristic polynomial,

can be computed in O (̃MM(n, d)) or O (̃nωd) operations in K as well. Another related question
is to know whether the straight-line approach of section 4.2.2 yields a O (̃n3d) algorithm for
computing the inverse of a polynomial matrix.
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A Computed LSP factorization

In Section 2 we assumed we use the LSP algorithm of [9] as described in [3, p. 103]. In general,
LSP factorization is not unique: for example[

0 0
0 1

]
=

[
1
∗ 1

] [
0 0
1 0

] [
1

1

]
. (12)

However, with this choice of algorithm, some columns of L are prescribed as follows.

Property A.1 If the ith row of S is identically zero then the ith column of L is equal to the ith
unit vector.

In (12) the computed factor L is thus the one with ∗ = 0.
Proof. We use the notation of the solution to Problem 2.7c in [3, p. 103] and we assume

without loss of generality that m is a power of two. The result is clear for m = 1 since we take
L = P =

[
1

]
. For m ≥ 2, assume that the result holds for m/2 and recall that in [3, p. 103]

factors L, S are computed as

L =
[

L1

G L2

]
and S =

[
S′

1 BP−1
2

S2

]
(13)

where L1, S1 = [S′
1, B] and L2, S2, P2 stem from LSP factorizations of respective dimensions

m/2 × m and m/2 × (m − r) where r ≤ m/2 is the rank of S1. (We shall describe G later.) We
consider two cases, depending on whether i > m/2 or i ≤ m/2. If i > m/2 then the (i − m/2)th
row of S2 is zero. By assumption, the (i−m/2)th column of L2 is therefore equal to the (i−m/2)th
unity vector and the result follows from the shape of L in (13). If i ≤ m/2 then the ith row of S1

is zero, for S1 = [S′
1, B] and P2 is a permutation matrix. Hence, by assumption, the ith column of

L1 is the ith unity vector. To prove that the ith column of G is zero, recall first how G is defined
in [3, p. 103]: G = FS

(−1)
1 where F is a matrix of order m/2 whose last m/2− r columns are zero;

additionally S
(−1)
1 is a matrix of order m/2 that transforms S1 into

S
(−1)
1 S1 =

[
Ir ∗
O O

]
∈ Km/2×m.

In particular S
(−1)
1 contains a row permutation such that the ith row of S1 corresponds to a row

of index greater than r in S
(−1)
1 S1. The same permutation acts on the columns of F through

transformation G = FS
(−1)
1 and the ith column of G is therefore set to zero by definition of F . �
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