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The Theory of Liouville Functions

Pascal Koiran

March 2002

Abstract

A Liouville function is an analytic function H : C → C with a Taylor
series

∑∞
n=1 x

n/an such the an’s form a “very fast growing” sequence of
integers. In this paper we exhibit the complete first-order theory of the
complex field expanded with H.

Keywords: model theory, amalgamation, complex variable,
analytic functions

Résumé

Une fonction de Liouville est une fonction analytique H : C → C avec
une série de Taylor

∑∞
n=1 x

n/an telle que les an forment une suite d’en-
tiers à croissance “très rapide”. Dans cet article nous exhibons la thorie
du premier ordre de la structure obtenue en enrichissant le corps des
nombres complexes d’une telle fonction.

Mots-clés: théorie des modèles, amalgames, variable complexe,
fonctions analytiques
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Pascal Koiran
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Abstract

A Liouville function is an analytic function H : C → C with a Taylor
series

∑∞
n=1 x

n/an such the an’s form a “very fast growing” sequence of
integers. In this paper we exhibit the complete first-order theory of the
complex field expanded with H .

Keywords: model theory, amalgamation, complex variable, analytic
functions

1 Introduction

In [8] Wilkie calls “Liouville function” a function H : C → C with a Taylor
series of the form

H(x) =
∞∑
i=1

xi/ai

where the ai are non-zero integers satisfying the condition:

for every l ≥ 1, |ai+1| > |ai|il for all sufficiently large i. (1)

A fragment of the first-order theory of the complex field expanded with H is de-
scribed in [8]. In this paper we exhibit the complete first-order theory. It turns
out that this theory is the “limit theory of generic polynomials” recently studied
in [4] (this answers a question of Zilber [9]). We recall the axiomatization of the
theory in section 2, where we also present another equivalent axiomatization
which is closer in spirit to [8]. In section 3 we give a short overview of the proof
of our main result and present two of the main tools: continuity of the roots of
polynomial systems and effective quantifier elimination. The last two sections
are devoted to the proof of the main result.

A model of our theory can be constructed by a Hrushovski-style amalga-
mation method [4, 10]. It is therefore natural to ask whether analytic models
exist for other theories constructed by this method. The limit theory of generic
curves [3] and the theory of generic functions with derivatives [10] are two nat-
ural candidates. Additional examples and further discussion can be found in
the surveys [6, 9].
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2 Axiomatization

In this section only we work within an arbitrary algebraically closed field K of
characteristic 0. In the remainder of the paper we set K = C. We do not work
in the language of “curved fields” (the language of fields expanded with a binary
predicate) as in [4] but in the language of fields expanded with a unary function
symbol H. We call this language L. Given a tuple x of elements of K, H(x)
denotes the tuple obtained by applying H componentwise. This notation will
be used freely throughout the paper, for H as well as for other unary functions.

2.1 The Limit Theory of Generic Polynomials

A generic polynomial of degree d is of the form gd(x) =
∑d

i=1 αix
i where the co-

efficients αi are algebraically independent over Q. Let F be a sentence of L. We
have shown in [4] that F is either true for all generic polynomials of sufficiently
high degree, or false for all generic polynomials of sufficiently high degree. The
set T of sentences which are ultimately true therefore forms a complete theory.
We recall that this theory is defined by the following axioms.

1. The axioms of algebraically closed fields of characteristic 0.

2. H(0) = 0.

3. The universal axioms. Let φ(x1, . . . , xn, y1, . . . , yn) be a conjunction of
polynomial equations with coefficients in Q. If the subset of K2n defined
by φ is of dimension < n, we add the axiom

∀x1, . . . , xn

∧
i

xi �= 0 ∧
∧
i�=j

xi �= xj → ¬φ(x,H(x)). (2)

4. The inductive axioms. Let φ(x1, y1, . . . , xn, yn, z) be a conjunction of
polynomial equations with rational coefficients. For any fixed value of
the parameter z, φ defines an algebraic subset Vz of K2n. Let ξ(z) be a
formula of the language of fields which states that Vz is irreducible, has
dimension n and is not contained in a subspace of the form xi = xj for
some i �= j, or of the form xi = c for some element c in the model.

Let ε be a function which chooses one variable uε
i ∈ {xi, yi} for ev-

ery i ∈ {1, . . . , n}. For each value of the parameter z, the formula
∃uε

1, . . . , u
ε
nφ(x, y, z) defines a constructible set Cε

z ⊆ Kn. As pointed
out in [3], there is a formula ψε(z) of the language of fields which states
that Cε

z is dense in Kn. Let ψ(z) be the disjunction of the 2n formulas
ψε(z). Let θ be the conjunction of ξ and ψ. We add the following axiom:

∀z ∃x1, . . . , xn θ(z) → φ(x,H(x), z). (3)

In fact these inductive axioms are slightly different from those of [4]. Indeed,
there was not requirement that dimVz = n in that paper. An inspection of the
completeness proof in [4] reveals that the inductive axioms are used only in the
case dimVz = n. The corresponding theories are therefore identical.
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We have shown in [4] that a universal axiom is satisfied by a generic poly-
nomial gd of degree d as soon as d ≥ n and that an inductive axiom is satisfied
as soon as d ≥ n(nr+n+r+1). More precisely, we have obtained the following
result.

Theorem 1 Let φ(x1, . . . , xn, y1, . . . , yn, z) be a conjunction of polynomial
equations with coefficients in Q. Given a tuple z of parameters we denote by Vz

the algebraic subset of C2n defined by φ.
Fix a tuple z which satisfies the associated condition θ(z) from (3). Let r be

the transcendence degree of Q(z) over Q. For any k ≥ 0, if d ≥ n(nr+n+r+1)
there exists x ∈ Cn such that (x, gd(x)) is a generic point of Vz (i.e., a point of
transcendence degree n over Q(z)).

2.2 Axiomatization à la Wilkie

Given I ⊆ {1, . . . , n}, say I = {i1, . . . , ik} (in increasing order), and a n-
tuple x = (x1, . . . , xn) of elements or variables, we denote by xI the k-tuple
(xi1 , . . . , xik).

Consider n polynomials fi(x1, . . . , xn, y1, . . . , yn, z1, . . . , zr) with integer co-
efficients. For each value of the parameter z we obtain a polynomial map
Fz : Kn ×Kn → Kn. Recall that a zero (a, b) of Fz is said to be regular if the
Jacobian matrix of Fz at (a, b) has rank n, or in other words if

det
(

∂Fz

∂(xI , yJ)
(a, b)

)
�= 0 (4)

for some I, J ⊆ {1, . . . , n} such that |I|+ |J | = n. Let V (Fz) be the set of zeros
of Fz . A regular zero lies on a unique irreducible component of V (Fz) and this
component is of dimension n. Following Wilkie, we say that (a, b) is a balanced
zero1 of Fz if a1, . . . , an are all non-zero and pairwise distinct, and if one can
choose I and J so that I ∪ J = {1, . . . , n} (or equivalently, so that I ∩ J = ∅).

In a geometric language, condition (4) means that the tangent space to
V (Fz) at (a, b) has dimension n. If this tangent space is not included in a
subspace of the form xi = c for some i ∈ {, . . . , n} and some constant c ∈ K
and if additionally (a, b) is a balanced zero of Fz, we say that (a, b) is a well
balanced zero.

In this axiomatization we keep the axioms 1,2 and 3 from section 2.1 but
we replace the inductive axioms by:

4’. Let θ′(z) be a formula of the language of fields which expresses that Fz

has a well balanced zero. We add the following axiom.

∀z1, . . . , zr ∃x1, . . . , xn θ
′(z) → F (x,H(x), z) = 0. (5)

The following lemma is standard.
1Wilkie uses the terminology “balanced, non-singular zero”. We just write “balanced zero”

for short.
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Lemma 1 Let (a, b) be a regular zero of Fz. For any neighbourhood V of (a, b)
in C2n there exists a neighbourhood U of z such that for any ζ ∈ U , Fζ has a
regular zero in V .

Proof. Let I and J be such that condition (4) is satisfied. There exist n
affine functions l1, . . . , ln such that (a, b) is an isolated solution of the system
f1 = 0, . . . , fn = 0, l1 = 0, . . . , ln = 0. Since we now have as many equations as
unknowns (namely, 2n) we can apply Proposition 3: there exists a neighbour-
hood U of z such that for any ζ ∈ U , the system Fζ = 0, l1 = 0, . . . , ln = 0 has

a zero (α, β) ∈ V . Since det
(

∂Fζ

∂(xI ,yJ )(α, β)
)

is a continuous function of ζ, α

and β we can choose U so small that det
(

∂Fζ

∂(xI ,yJ )(α, β)
)
�= 0. �

The point of working with this second axiomatization is that we have the fol-
lowing proposition.

Proposition 1 The set of parameters z such that Fz has a balanced zero is an
open subset of Cr. The same is true of the set of parameters z such that Fz has
a well balanced zero.

Proof. Note that in the proof of Lemma 1, the subsets I, J ⊆ {1, . . . , n} which
witness the fact that Fζ has a regular zero are the same for all ζ ∈ U . This
implies immediately the first part of the proposition. The second part follows
from a similar continuity argument. �

2.3 Equivalence of these axiomatizations

We first show that any model of the limit theory of generic curves is also a
model of the theory defined in section 2.2.

Let (K,H) be a model of the limit theory of generic polynomials. Let
F : Kn ×Kn ×Kr → Kn be a polynomial map with integer coefficients. Fix
a tuple z such that Fz has a well-balanced zero (x, y). This well balanced zero
lies on an irreducible component V of V (Fz) defined by a conjunction φ(x, y, ζ)
of polynomial equations where the parameters ζ lie in the algebraic closure of
Q(z). We claim that ζ satisfies the associated condition θ(ζ) from the inductive
axioms. Indeed, it follows from the implicit function theorem that K |= ψ(ζ).
Moreover, V is not included in a subspace of the form xi = xj for some i �= j
since the components of x are pairwise distinct. Finally, V is not included in
a subspace of the form xi = c for some constant c due to the condition on the
tangent space at (x, y). We can therefore apply the inductive axioms: there
exists x ∈ Cn such that φ(x,H(x), z). In particular we have F (x,H(x), z) = 0.

Next we show that any model of the theory defined in section 2.2 is a model
of the limit theory of generic polynomials. Consider therefore a model (K,H)
of the theory defined in section 2.2. We assume without loss of generality that
K is of infinite transcendence degree over Q.
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Lemma 2 Let S ⊆ Km be a constructible set defined by a boolean combination
of polynomial equations with coefficients in a subfield k of K. Assume that the
projection of S on the first d variables is dense in Kd.

There exists a polynomial map F = (f1, . . . , fm−d) : Km → Km−d which
satisfies the following properties:

(i) fi depends only on the first d + i variables and its coefficients are in k
(i.e., fi ∈ k[X1, . . . ,Xd+i]).

(ii) The algebraic set V (F ) = {x ∈ Km; F (x) = 0} has a dense projection on
the first d variables.

(iii) There exists a nonzero polynomial P ∈ k[X1, . . . ,Xd] such that for any
x ∈ V (F ), P (x1, . . . , xd) �= 0 implies that x ∈ S and that x is a regular
zero of F (more precisely, the matrix of partial derivatives of fi, i =
1, . . . ,m− d with respect to Xj , j = d+ 1, . . . ,m has rank m− d at x).

Note that property (iii) implies (ii) by the implicit function theorem. We will
use this lemma only in the case where S is an algebraic set.

Proof of Lemma 2. We assume without loss of generality that k is of finite
transcendence degree over Q. Since the projection of S on the first d variables
is dense, there exists a point (α1, . . . , αd) of transcendence d over k which is
in the projection. In fact, there exists α ∈ S such that α1, . . . , αd is a tran-
scendence basis of α over k. Let fi be the minimal polynomial of αd+i over
k(α1, . . . , αd+i−1). Condition (i) is satisfied by definition, and condition (ii) is
also satisfied since α ∈ V (F ).

Let (xd+1, . . . , xm) be such that (α1, . . . , αd, xd+1, . . . , xm) ∈ V (F ) and let
φ(X1, . . . ,Xm) be a a boolean combination of polynomial equations with co-
efficients in k which is satisfied by α1, . . . , αm. This formula is also satisfied
by (α1, . . . , αd, xd+1, . . . , xm) since the fields k(α1, . . . , αd, xd+1, . . . , xm) and
k(α1, . . . , αm) are isomorphic. In other words, (α1, . . . , αd) satisfies formula
Φ′(x1, . . . , xd) below:

∀xd+1, . . . , xmF (x1, . . . , xm) = 0 ⇒ Φ(x1, . . . , xm).

Since α1, . . . , αd are algebraically independent over k, Φ′ defines a Zariski dense
subset of Kd. This is exactly the first part of condition (iii), if we take for Φ
the formula defining S. To obtain the second part of this condition, we apply
the same observation to a different Φ. Namely, we apply it to the formula

Φ(x1, . . . , xm) ≡
m−d∧
i=1

∂fi

∂Xd+i
(x1, . . . , xd+i) �= 0. This formula is satisfied by α

since fi is the minimal polynomial of αd+i over k(α1, . . . , αd+i−1). Our observa-
tion now implies that exists a nonzero polynomial R ∈ k[X1, . . . ,Xd] such that
for any point x ∈ V (F ) with R(x1, . . . , xd) �= 0, the m − d partial derivatives

∂fi
∂Xd+i

do not vanish at x. Since the jacobian matrix of F contains a triangular
matrix with these partial derivatives on the diagonal, it has maximum rank
m− d at x and this point is by definition a regular zero of F . �
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There is of course nothing special about the first d variables in this lemma: we
may project on any tuple of variables as long as the projection is dense. This
is just what we shall do now.

Let φ(x1, y1, . . . , xn, yn, z) be a conjunction of polynomial equations with
rational coefficients. Fix z such that the associated formula θ in (3) is satisfied.
Since K |= θ(z) there exists I, J ⊆ {1, . . . , n} such that |I|+ |J | = n, I ∩ J = ∅
and the projection of Vz on the variables xI ˆ yJ is dense in Kn. Let us ap-
ply Lemma 2 to S = Vz. We obtain a polynomial map F : Kn × Kn → Kn

and a polynomial P in n variables with coefficients in k = Q(z) such that
for any point x ˆ y ∈ V (F ), P (xI , yJ) �= 0 implies that x ˆ y ∈ Vz and that
x ˆ y is a regular zero of F . Since dimVz = n and Vz is irreducible, this
variety is an irreducible component of V (F ). Now we consider the polyno-
mial map G : K2(n+1) → Kn+1 which sends (x1, . . . , xn, xn+1, y1, . . . , yn, yn+1)
to F (x1, . . . , xn, y1, . . . , yn)ˆfn+1(x1, . . . , xn, xn+1, y1, . . . , yn, yn+1). Here xn+1

and yn+1 are two additional variables, and fn+1 = P (xI , yJ)yn+1 − 1. We
claim that G has a well balanced zero. To obtain such a zero, pick a generic
point aˆ b of Vz. Since K |= θ(z), the components a1, . . . , an are all nonzero
and distinct from each other. Moreover we can set bn+1 = 1/P (aI , bJ) since
aI ˆ bJ has transcendence degree n over k. Pick an arbitrary an+1 different
from 0 and from a1, . . . , an. The matrix of partial derivatives of f1, . . . , fn+1

at (a1, . . . , an+1, b1, . . . , bn+1) with respect to the variables xi (i ∈ J) and yi

(i ∈ I ∪ {n+ 1}) has the block form

B =
(
A 0
0 P (aI , bJ)

)

where A is the matrix of partial derivatives of f1, . . . , fn with respect to the
variables xi (i ∈ J) and yi (i ∈ I). We know from Lemma 2 that A has rank n.
Hence B has rank n+1 and (a1, . . . , an+1, b1, . . . , bn+1) is a balanced zero of G.
In order to show that this zero is well balanced, we have to check the condition
on the tangent space. This condition is indeed satisfied due to Lemma 3 below
and to the fact xn+1 does not appear in f1, . . . , fn+1.

Lemma 3 The tangent space to V (F ) at aˆb is not included in a subspace of
the form xi = c for some constant c ∈ K.

Proof. Assume the opposite. We have seen that Vz is an irreducible component
of V (F ). Since aˆb is a generic point of Vz this variety would be included in
the subspace xi = c. This is in contradiction with the hypothesis K |= θ(z). �

We can therefore apply the modified inductive axioms (5) to G: there
exists x1, . . . , xn+1 such that F (x1, . . . , xn,H(x1), . . . ,H(xn), z) = 0 and
P (xI , yJ)yn+1−1 = 0. Since P (xI , yJ) �= 0, (x1, . . . , xn,H(x1), . . . ,H(xn)) ∈ Vz

by property (iii): we have proved that the inductive axioms (3) are satisfied.
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3 Structure of the Proof

Wilkie has shown in [8] that Liouville functions satisfy the universal axioms.
In order to show that the theory of Liouville functions is the limit theory of
generic polynomials, it remains to show that the inductive axioms are also
satisfied. Using the axiomatization of section 2.2, we need the following result.

Theorem 2 (Main Theorem) Let G : Cn × Cn → Cn be a polynomial map.
If G has a well balanced zero, there exists a ∈ Cn such that G(a,H(a)) = 0.

The proof will be given at the end of section 5. A special case of this theorem
(which we will not use here) was obtained in [8]: let G : Cn × Cn → Cn be a
polynomial map with integer coefficients. If G has a balanced zero then there
exists a ∈ Cn such that G(a,H(a)) = 0. Wilkie’s proof of this result relies in
particular on Newton’s method.2 By contrast the proof of Theorem 2 is based
on a method which is reminiscent of homotopy methods for solving systems of
polynomial equations. Let Hd(x) be the partial sum

∑d
i=1 x

i/ai. In section 4
we show that the system G(x,Hd(x)) = 0 has an isolated solution xd ∈ Cn for
all sufficiently large d. Then we track xd as d goes to infinity. It turns out
that these roots remain in a compact subset of Cn. Theorem 2 then follows
immediately from a standard uniform convergence argument.

As in [8] effective quantifier elimination also plays an important role. Here
there is an additional complication due to the presence of arbitrary complex
parameters in G. Our solution to this problem is to work not for a single value
of the parameters (i.e. for a single G), but simultaneously for all parameters in
a compact set. This is made possible in particular by Proposition 1. We will
use the following version of quantifier elimination (note that we need to work
over the real numbers).

Proposition 2 Let Φ(x1, . . . , xn) be a formula of the language of ordered rings.
The k polynomials occuring in Φ have integer coefficients. Let h ≥ 2 be an upper
bound on their absolute values. Let d ≥ 2 be an upper bound on the degrees of
these polynomials, and let m be the number of occurrences of quantifiers in F .

In the theory of real-closed fields, φ is equivalent to a quantifier-free formula
Ψ(x1, . . . , xn) in which all polynomials are of degree at most dc, and have integer
coefficients of absolute value bounded by hdc

. The constant c depends only on
n, m and k.

Almost any reasonable quantifier elimination method will yield the above result.
Much more precise bounds are known, see for instance [1, 7]. We will not need
them here since the parameters n, m and k can be treated as constants for our
purposes.

In the remainder of this section we present another important tool: con-
tinuity of the roots of polynomial systems. For z = (z1, . . . , zn) ∈ Cn we set
||z|| =

∑n
i=1 |zi|2 (this is just the Euclidean norm on R2n).

2In fact he even shows that the map x �→ G(x, H(x)) has a non-singular zero with pairwise
distinct, nonzero coordinates.
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Proposition 3 (Continuity of roots) The following property holds for any
polynomial map F : Cn × Cr → Cn and any z ∈ Cr.

Let x be an isolated root of the map Fz : x �→ F (x, z). For any sufficiently
small neighbourhood U of x there exists a neighbourhood V of z such that for
all ζ ∈ V , the number of roots of Fζ in U is positive and finite.

This follows for instance from the “extended geometric version” of Bézout’s
theorem [2].

Corollary 1 Let F : Cn × Cr → Cn be a polynomial map. The map

NF : C → R ∪ {+∞}
z �→ min{||x||; x is an isolated root of F (x, z) = 0}

is upper semi-continuous (we set NF (z) = +∞ if the system F (x, z) = 0 has
no isolated roots).

Proof. Fix z ∈ Cr such that NF (z) < +∞. We have to show that for every
ε > 0 there is a neighbourhood U of z such that NF (z) ≥ NF (ζ) − ε for
every ζ ∈ U . let x be an isolated root of the system F (x, z) = 0 such that
NF (z) = ||x||. By Proposition 3.(i) there is a neighbourhood U of z such that
for every ζ ∈ U the system F (x, z) = 0 has an isolated root in the ball B(x, ε).
Hence NF (ζ) ≤ ||x|| + ε = NF (z) + ε. �

One can show that if z is such that Fz has finitely many roots then NF is
continuous in z. The example of the polynomial F (x, z) = zx2 − 2x+ 1 shows
that no such continuity property holds for the map

z �→ max{||x||; x is an isolated root of F (x, z) = 0}.

Indeed, F has a single root for z = 0; for z �∈{0, 1} it has a second root which
goes to infinity as z goes to 0.

4 A Starting Point for the Homotopy

We denote Hd,ε(x) =
∑d

i=1 x
i/ai + εxd+1 and Hd = Hd,0. Let gd be a generic

polynomial of degree d. The modified partial sum µk,d is the polynomial function
x �→ Hk(x) + xkgd(x).

4.1 Finiteness for modified partial sums

We temporarily revert to the language of curved fields to cite a simple combi-
natorial result (Lemma 7 from [5]).

Lemma 4 Let k be a p-sufficient substructure of a curved field (K,C) and z =
(z1, . . . , zr) a tuple of r elements of K\k. Set q = �p−r

r+1�. Let j be the smallest
integer such that there exists an extension 
 of k(z) satisfying tr.deg(
/k) ≤
p − q(j + 1) and δ(
 : k) ≤ j (note that j always exists and is upper bounded
by r). Then 
 is q-sufficient.
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Some explanations are in order. In this lemma K is an arbitrary field and the
“curve” C is an arbitrary subset of K2. The symbol δ(
 : k) is defined by the
formula

δ(
 : k) = tr.deg(
 : k) − Card(C ∩ 
2 − C ∩ k2).

A subfield k of K is said to be p-sufficient if δ(
 : k) ≥ 0 for any subfield 
 of K
which contains k, and is of transcendence degree at most p over k. For instance,
we have seen is section 2.1 that the universal axiom (2) is satisfied by a generic
polynomial of degree d as soon as d ≥ n. This implies that Q is d-sufficient if
we interpret C by the graph of a generic polynomial g : C → C of degree d.

Theorem 3 Let φ(x1, . . . , xn, y1, . . . , yn, z1, . . . , zr) be a boolean combination
of polynomial equations with coefficients in Q. Fix a tuple z such that the
constructible subset Dz of C2n defined by φ(., ., z) has dimension at most n. Let
Cd be the graph of a generic polynomial of degree d. If d ≥ n(r + 1) + r the
system ∧

i

xi �= 0
∧
i�=j

xi �= xj ∧
∧
i

Cd(xi, yi) ∧ φ(x, y, z) (6)

has at most finitely many solutions in C2n.

Proof. Since Q is d-sufficient, by choice of d and Lemma 4 there exists a n-
sufficient extension 
 of Q(z) of transcendence degree at most d − n over Q.
There are at most d − n nonzero points on Cd with both coordinates in 
2.
Moreover, outside 
2n any solution of the system

∧
i�=j

xi �= xj ∧
∧
i

Cd(xi, yi)

must be of transcendence degree at least n over 
 (by choice of 
). We conclude
that up to a finite set, all solutions of (6) are of transcendence degree at least
n over Q(z).

This implies that the subset S of Dz defined by (6) is finite. Indeed, if S
is infinite this (constructible) subset of Dz must contain infinitely many non-
generic points of Dz (i.e., points of transcendence degree over Q(z) smaller than
dimDz). �

We have the same property for modified partial sums.

Corollary 2 Let φ(x1, . . . , xn, y1, . . . , yn, z1, . . . , zr) be a boolean combination
of polynomial equations with coefficients in Q. Fix a tuple z such that the
algebraic subset Dz of C2n defined by φ(., ., z) has dimension at most n. If
d ≥ n(r + 1) + r the system

∧
i

xi �= 0 ∧
∧
i�=j

xi �= xj ∧ φ(x, µk,d(x), z)

has at most finitely many solutions in C2n.
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Proof. Let x be a solution of the system. Note that (x, gd(x)) lies in the
constructible subset of C2n (call it Cz):∧

i

xi �= 0 ∧ φ(x1, . . . , xn,Hk(x1) + xk
1y1, . . . ,Hk(xn) + xk

nyn).

Let P : C2n → C2n be the polynomial map

(x1, . . . , xn, y1, . . . , yn) �→ (x1, . . . , xn,Hk(x1) + xk
1y1,Hk(xn) + xk

nyn).

Since P (Cz) ⊆ Dz and every point in Dz has finitely many preimages in Cz we
have dimCz ≤ dimDz ≤ n. By Theorem 3 (applied to Cz) we conclude that
our system has finitely many solutions. �

4.2 Existence for Modified Partial Sums

The only property of the coefficients of Liouville functions that will be used in
the next proposition is that they are rational numbers.

Proposition 4 Let φ(x1, . . . , xn, y1, . . . , yn, z) be a conjunction of polynomial
equations with coefficients in Q. Given a tuple z of parameters we denote by Vz

the algebraic subset of C2n defined by φ.
Fix a tuple z which satisfies the associated condition θ(z) from (3). Let r be

the transcendence degree of Q(z) over Q. For any k ≥ 0, if d ≥ n(nr+n+r+1)
there exists x ∈ Cn such that (x, µk,d(x)) is a generic point over Q(z) of Vz (note
that this genericity condition implies in particular that the components of x are
nonzero and pairwise distinct).

Proof. We argue as in Corollary 2. One would like to find a point (x, gd(x)) on
the algebraic subset Wz of C2n defined by the formula

φ(x1, . . . , xn,Hk(x1) + xk
1y1, . . . ,Hk(xn) + xk

nyn).

Pick a generic point (α, β) of Vz. Then (α, γ) ∈Wz where γi = (βi−Hk(αi))/αk
i .

Note that α1, . . . , αn are pairwise distinct and do not belong to the algebraic
closure K of Q(z). Moreover there exists I, J ⊆ {1, . . . , n} such that |I|+ |J | =
n, I ∩ J = ∅ and αI ˆ βJ is of transcendence degree n over K. The tuple
αI ˆγJ is also of transcendence degree n over K since K(αI , βJ) = K(αI , γJ).
We can therefore apply the inductive axioms to the irreducible component of
Wz which contains (α, γ). More precisely, by Theorem 1 there exists a point
(x, gd(x)) ∈Wz of transcendence degree n over K. We conclude that (x, µk,d(x))
is a point of Vz of transcendence degree n over K. �

4.3 Isolated Solutions

The results of sections 4.1 and 4.2 can be summarized as follows.

Theorem 4 Let F : Cn × Cn × Cr → Cn be a polynomial map with integer
coefficients. For any k ≥ 0, any d ≥ n(nr + n + r + 1) and any z such that
Fz has a well balanced zero, the system F (x, µk,d(x), z) = 0 has an isolated
solution.
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Proof. Fix k ≥ 0, d ≥ n(nr+n+ r+ 1) and z such that Fz has a well balanced
zero. This well balanced zero lies on an irreducible component V of V (Fz) of
dimension n and V satisfies the inductive axioms. More precisely, we have seen
at the beginning of section 2.3 that V is defined by a conjunction φ(x, y, ζ)
of polynomial equations where the parameters ζ lie in the algebraic closure of
Q(z) and satisfy the associated condition θ(ζ). By Proposition 4 there exists
x ∈ Cn with nonzero, pairwise distinct coordinates such that (x, µk,d(x)) is
in V . Since dimV = n, by Corollary 3 there are only finitely many such x. To
make sure that x is an isolated solution of the system F (x, µk,d(x), z) = 0 it is
therefore sufficient to satisfy the following requirement: (x, µk,d(x)) should lie
on no other irreducible component of V (Fz) but V (indeed, other components
might be of dimension > n). This is possible thanks to the genericity condition
in the conclusion of Proposition 4. �

Any inductive axiom is eventually satisfied by Hd if d is sufficiently large.
More precisely:

Theorem 5 Let F : Cn×Cn×Cr → Cn be a polynomial map. If d is sufficiently
large and |ε| ≤ 1/|ad+1| the following property holds: for any z such that Fz has
a well balanced zero, the system F (x,Hd,ε(x), z) = 0 has an isolated solution.

Note that we do not rule out the the possibility that non-isolated solutions
might also exist.

Proof of Theorem 5. Set d0 = n(nr+n+ r+1). For any d ≥ 1 and α ∈ Rd0, let

νk,α(x) = Hk(x) + xk
d0∑

j=1

αjx
j.

One can easily write down a formula φ(α) of the language of ordered fields which
expresses the fact for any z such that Fz has a well balanced zero, the system
F (x, νk,α(x), z) = 0 has an isolated solution in Cn (of course this involves the
separation of the real and imaginary parts of variables such as x1, . . . , xn, which
range over the complex numbers). It follows from Theorem 4 that R |= φ(α) if
α1, . . . , αd0 are algebraically independent. By Proposition 2, φ(α) is equivalent
to a quantifier-free formula ψ(α) involving polynomials of degree kO(1) with
integer coefficients of absolute value |ak|kO(1)

(the implied constants may depend
on F but not on k). Any α which is not a root of any of these polynomials
will satisfy φ. If k is sufficiently large and |ε| ≤ 1/|ak+d0 |, it is indeed the case
that (1/ak+1, . . . , 1/ak+d0−1, ε) is not a root of any of these polynomials. This
follows from the growth rate condition (1). We conclude that for any z such
that Fz has a well balanced zero, the system F (x,Hk+d0−1,ε(x), z) = 0 has an
isolated solution. �

Instead of φ(α), one could (less easily) write down a formula φ′(α) of the lan-
guage of fields such that C |= φ′(α) iff the system F (x, νk,α(x), z) = 0 has an
isolated solution for any z such that Fz has a well balanced zero. Allowing the
order relation just makes it easier to express the fact that there is an isolated
solution. By contrast order plays an essential role in the proof of the next result.
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Corollary 3 Let F : Cn × Cn × Cr → Cn be a polynomial map and let K be a
rational ball of Cr such that Fz has a well balanced zero for all z ∈ K. There is
a constant c > 0 such that the following property holds if d is sufficiently large:
for any z ∈ K, the system F (x,Hd(x), z) = 0 has an isolated solution which
satisfies ||x|| ≤ |ad|dc − 1/d.

By rational ball of Cr we mean a closed ball B(z,R) = {ζ ∈ Cr; ||ζ − z|| ≤ R}
such that the radius R is a rational number and the real and imaginary parts
of ζ1, . . . , ζr are also rational.

Proof of Corollary 3. By Theorem 5, if d is sufficiently large (say, d ≥
d0) the system F (x,Hd(x), z) = 0 has isolated solutions for all z ∈ K.
Pick any d ≥ d0 and consider the map NF : K → C which sends x to
NF (x) = inf{||x||; F (x,Hd(x), z) = 0}. By Corollary 1 this function is up-
per semi-continuous on K. Since K is compact, NF reaches its (finite) supre-
mum R(d) on K. Translating the definition of R(d) in first-order logic im-
mediately yields a formula φ(u) in the language of ordered rings such that
R |= ∀u (φ(u) ↔ u = R(d)). Note that φ has only rational parameters since
K is a rational ball. By elimination of quantifiers from φ we conclude that
R(d) is a root of a polynomial of degree dO(1) with integer coefficients bounded
in absolute value by |ad|dO(1)

(the implied constants may depend on K and F
but not on d). We conclude that R(d) ≤ |ad|dα

for some constant α, so that
R(d) ≤ |ad|dα+1 − 1/d if d is sufficiently large. �

This property is not only valid for K a rational ball: one could generalize to
arbitrary compact sets (see Corollary 4). One may wonder why we insist on a
bound of the form |ad|dc − 1/d in Corollary 3 instead of e.g. |ad|dc

. The reason
will become apparent in the next section.

5 The Path Following Method

In the preceding section we have proved the existence of isolated roots for
systems of the form F (x,Hd(x), z) = 0. In this section we show that some
of the roots stay inside a fixed compact ball as d goes to infinity. The main
theorem then follows easily.

Lemma 5 Let G : Cn × Cr × C → Cn be a polynomial map. We denote by
Gz,ε the map x �→ G(x, z, ε). Let K be a compact subset of Cr and C a compact
subset of Cn such that for any z ∈ K, Gz,0 has isolated roots in the interior
of C. There exists δ > 0 such that Gz,ε has isolated roots in C if |ε| ≤ δ and
z ∈ K.

Proof. By Proposition 3, for any ζ ∈ K there exists δ(ζ) > 0 such that Gz,ε has
isolated roots in C if |ε| ≤ δ(ζ) and z belongs to the open ball B(ζ, δ(ζ)). Since
K is covered by the open balls B(ζ, δ(ζ)), by compactness there exists a finite
cover of the form B(ζ1, δ(ζ1)), . . . , B(ζk, δ(ζk)). Set δ = min(δ(ζ1), . . . , δ(ζk)).
Now fix any z ∈ K and ε such that |ε| ≤ δ. Since z ∈ B(ζi, δ) for some i, Gz,ε

has isolated roots in C by choice of δ. �
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Proposition 5 Fix a polynomial map F : Cn × Cn × Cr → Cn with integer
coefficients and a rational ball K ⊆ Cr such that Fz has a well-balanced zero for
all z ∈ K. For any c > 0 the following property holds if d is sufficiently large.

Suppose that R ≤ |ad|dc
is an integer such that for all z ∈ K the system

F (x,Hd(x), z) = 0 has an isolated solution in the closed ball B(0, R − 1/d). If
|ε| ≤ 1/|ad+1|, for any z ∈ K the system F (x,Hd,ε(x), z) = 0 has an isolated
solution in the closed ball B(0, R − 1/(d + 1)).

Proof. By Theorem 5 if d is sufficiently large (say, d ≥ d0) for any z ∈ K the
system F (x,Hd,ε(x), z) = 0 has isolated solutions. Pick any d ≥ d0 and let
R ≤ |ad|dc

be an integer such that for all z ∈ K the system F (x,Hd(x), z) = 0
has an isolated solution in the closed ball B(0, R − 1/d).

Let C = B(0, R − 1/(d + 1)). We can apply Lemma 5 to G(x, z, ε) =
F (x,Hd,ε(x), z): there exists δ > 0 such that for any z ∈ K, the system
F (x,Hd,ε(x), z) = 0 has an isolated root x in C if |ε| ≤ δ. The same quantifier
elimination argument as in Corollary 3 shows that one may take 1/δ = |ad|dO(1)

(the implied constant depends only on K, F and c). One may therefore take
δ = 1/|ad+1| if d is sufficiently large. �

Theorem 6 Fix a polynomial map F : Cn × Cn × Cr → Cn with integer co-
efficients and a rational ball K ⊆ Cr such that Fz has a well-balanced zero for
all z ∈ K. There exists R > 0 such that the following property holds for all
sufficiently large d: for any z ∈ K the system F (x,Hd(x), z) = 0 has an isolated
root in the closed ball B(0, R).

Proof. By Corollary 3 there is a constant c > 0 such that if d is sufficiently
large (say, d ≥ d0) then for any z ∈ K, the system F (x,Hd(x), z) = 0 has an
isolated solution which satisfies ||x|| ≤ |ad|dc − 1/d. Let us choose d0 so large
that Proposition 5 also applies for d ≥ d0. The proof will be complete if we can
show that the following claim is true: for d ≥ d0 and any z ∈ K, the system
F (x,Hd(x), z) = 0 has an isolated solution in the closed ball B(0, R − 1/d)
where R = |ad0 |d

c
0 . The proof of this claim is a straightforward induction on d.

Indeed, the claim is true for d0 by choice of d0, and one can go from d to d+ 1
by Proposition 5. �

Although this is not really needed for the proof of our main result we note that
the same property does not hold only for rational balls, but for all compact
subsets of Cr.

Corollary 4 Fix a polynomial map F : Cn × Cn × Cr → Cn with integer
coefficients and a compact K ⊆ Cr such that Fz has a well-balanced zero for
all z ∈ K. There exists R > 0 such that the following property holds if d is
sufficiently large: for any z ∈ K the system F (x,Hd(x), z) = 0 has an isolated
root in the closed ball B(0, R).

Proof. By compactness of K and Proposition 1, K can be covered by a finite
set {K1, . . . ,Kp} of rational balls such that Fζ has a well balanced zero for any
i ∈ {1, . . . , p} and any ζ ∈ Ki. By Theorem 6 there exist R1, . . . , Rp such that
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the following property holds for all sufficiently large d: for any i ∈ {1, . . . , p}
and any z ∈ Ki, the system F (x,Hd(x), z) = 0 has an isolated root in the closed
ball B(0, Ri). Now set R = max(R1, . . . , Rp). �

Proof of the main theorem. We can write G = Fz where F : Cn×Cn×Cr → Cn

is a polynomial map with integer coefficients and z ∈ Cr is a tuple of parameters.
By Proposition 1 there exists a rational ball K ⊆ Cr containing z such that Fζ

has a well balanced zero for all ζ in K. By Theorem 6 there exists an increasing
sequence (di)i≥0 of integers and a sequence (xi)i≥0 of points of Cn such that
F (xi,Hdi

(xi), z) = 0. Moreover the sequence (xi)i≥0 remains inside a fixed
compact ball B(0, R). Extracting a subsequence if necessary, we may therefore
assume that xi converges to a limit point a ∈ Cn as i goes to infinity. We
conclude that F (a,H(a), z) = 0 since limd→+∞ F (x,Hd(x), z) = F (x,H(x), z)
uniformly with respect to x ∈ B(0, R). �

Remark 1 We have only defined the notion of well balanced zero for a poly-
nomial map G : Cn × Cn → Cn, but this notion clearly makes sense if G is an
arbitrary analytic function. The main theorem is no longer true in this more
general context. Indeed, set G(x, y) = y − H(x) + 1. This function has well
balanced zeros, but there does not exist a such that G(a,H(a)) = 0.
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