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A Liouville function is an analytic function H : C → C with a Taylor series ∞ n=1 x n /a n such the a n 's form a "very fast growing" sequence of integers. In this paper we exhibit the complete first-order theory of the complex field expanded with H.

Introduction

In [START_REF] Wilkie | Liouville functions[END_REF] Wilkie calls "Liouville function" a function H : C → C with a Taylor series of the form

H(x) = ∞ i=1
x i /a i where the a i are non-zero integers satisfying the condition: for every l ≥ 1, |a i+1 | > |a i | i l for all sufficiently large i.

(

A fragment of the first-order theory of the complex field expanded with H is described in [START_REF] Wilkie | Liouville functions[END_REF]. In this paper we exhibit the complete first-order theory. It turns out that this theory is the "limit theory of generic polynomials" recently studied in [START_REF] Koiran | The limit theory of generic polynomials[END_REF] (this answers a question of Zilber [START_REF] Zilber | Analytic and pseudo-analytic structures[END_REF]). We recall the axiomatization of the theory in section 2, where we also present another equivalent axiomatization which is closer in spirit to [START_REF] Wilkie | Liouville functions[END_REF]. In section 3 we give a short overview of the proof of our main result and present two of the main tools: continuity of the roots of polynomial systems and effective quantifier elimination. The last two sections are devoted to the proof of the main result.

A model of our theory can be constructed by a Hrushovski-style amalgamation method [START_REF] Koiran | The limit theory of generic polynomials[END_REF][START_REF] Zilber | A theory of generic functions with derivatives[END_REF]. It is therefore natural to ask whether analytic models exist for other theories constructed by this method. The limit theory of generic curves [START_REF] Chapuis | La limite des théories de courbes génériques[END_REF] and the theory of generic functions with derivatives [START_REF] Zilber | A theory of generic functions with derivatives[END_REF] are two natural candidates. Additional examples and further discussion can be found in the surveys [START_REF] Poizat | Amalgames de Hrushovski: une tentative de classification[END_REF][START_REF] Zilber | Analytic and pseudo-analytic structures[END_REF].

Axiomatization

In this section only we work within an arbitrary algebraically closed field K of characteristic 0. In the remainder of the paper we set K = C. We do not work in the language of "curved fields" (the language of fields expanded with a binary predicate) as in [START_REF] Koiran | The limit theory of generic polynomials[END_REF] but in the language of fields expanded with a unary function symbol H. We call this language L. Given a tuple x of elements of K, H(x) denotes the tuple obtained by applying H componentwise. This notation will be used freely throughout the paper, for H as well as for other unary functions.

The Limit Theory of Generic Polynomials

A generic polynomial of degree d is of the form g d (x) = d i=1 α i x i where the coefficients α i are algebraically independent over Q. Let F be a sentence of L. We have shown in [START_REF] Koiran | The limit theory of generic polynomials[END_REF] that F is either true for all generic polynomials of sufficiently high degree, or false for all generic polynomials of sufficiently high degree. The set T of sentences which are ultimately true therefore forms a complete theory. We recall that this theory is defined by the following axioms.

1. The axioms of algebraically closed fields of characteristic 0.

2. H(0) = 0.

3. The universal axioms. Let φ(x 1 , . . . , x n , y 1 , . . . , y n ) be a conjunction of polynomial equations with coefficients in Q. If the subset of K 2n defined by φ is of dimension < n, we add the axiom ∀x 1 , . . . , x n i

x i = 0 ∧ i =j
x i = x j → ¬φ(x, H(x)).

(2)

4. The inductive axioms. Let φ(x 1 , y 1 , . . . , x n , y n , z) be a conjunction of polynomial equations with rational coefficients. For any fixed value of the parameter z, φ defines an algebraic subset V z of K 2n . Let ξ(z) be a formula of the language of fields which states that V z is irreducible, has dimension n and is not contained in a subspace of the form x i = x j for some i = j, or of the form x i = c for some element c in the model.

Let be a function which chooses one variable u i ∈ {x i , y i } for every i ∈ {1, . . . , n}. For each value of the parameter z, the formula ∃u 1 , . . . , u n φ(x, y, z) defines a constructible set C z ⊆ K n . As pointed out in [START_REF] Chapuis | La limite des théories de courbes génériques[END_REF], there is a formula ψ (z) of the language of fields which states that C z is dense in K n . Let ψ(z) be the disjunction of the 2 n formulas ψ (z). Let θ be the conjunction of ξ and ψ. We add the following axiom:

∀z ∃x 1 , . . . , x n θ(z) → φ(x, H(x), z). ( 3 
)
In fact these inductive axioms are slightly different from those of [START_REF] Koiran | The limit theory of generic polynomials[END_REF]. Indeed, there was not requirement that dim V z = n in that paper. An inspection of the completeness proof in [START_REF] Koiran | The limit theory of generic polynomials[END_REF] reveals that the inductive axioms are used only in the case dim V z = n. The corresponding theories are therefore identical.

We have shown in [START_REF] Koiran | The limit theory of generic polynomials[END_REF] that a universal axiom is satisfied by a generic polynomial g d of degree d as soon as d ≥ n and that an inductive axiom is satisfied as soon as d ≥ n(nr + n + r + 1). More precisely, we have obtained the following result.

Theorem 1 Let φ(x 1 , . . . , x n , y 1 , . . . , y n , z) be a conjunction of polynomial equations with coefficients in Q. Given a tuple z of parameters we denote by V z the algebraic subset of C 2n defined by φ.

Fix a tuple z which satisfies the associated condition θ(z) from ( 3). Let r be the transcendence degree of

Q(z) over Q. For any k ≥ 0, if d ≥ n(nr +n+r +1) there exists x ∈ C n such that (x, g d (x)) is a generic point of V z (i.e., a point of transcendence degree n over Q(z)).

Axiomatization à la Wilkie

Given I ⊆ {1, . . . , n}, say I = {i 1 , . . . , i k } (in increasing order), and a ntuple x = (x 1 , . . . , x n ) of elements or variables, we denote by x I the k-tuple

(x i 1 , . . . , x i k ).
Consider n polynomials f i (x 1 , . . . , x n , y 1 , . . . , y n , z 1 , . . . , z r ) with integer coefficients. For each value of the parameter z we obtain a polynomial map

F z : K n × K n → K n . Recall that a zero (a, b) of F z is said to be regular if the Jacobian matrix of F z at (a, b) has rank n, or in other words if det ∂F z ∂(x I , y J ) (a, b) = 0 (4) 
for some I, J ⊆ {1, . . . , n} such that |I| + |J| = n. Let V (F z ) be the set of zeros of F z . A regular zero lies on a unique irreducible component of V (F z ) and this component is of dimension n. Following Wilkie, we say that (a, b) is a balanced zero1 of F z if a 1 , . . . , a n are all non-zero and pairwise distinct, and if one can choose I and J so that I ∪ J = {1, . . . , n} (or equivalently, so that I ∩ J = ∅).

In a geometric language, condition (4) means that the tangent space to V (F z ) at (a, b) has dimension n. If this tangent space is not included in a subspace of the form x i = c for some i ∈ {, . . . , n} and some constant c ∈ K and if additionally (a, b) is a balanced zero of F z , we say that (a, b) is a well balanced zero.

In this axiomatization we keep the axioms 1,2 and 3 from section 2.1 but we replace the inductive axioms by: 4'. Let θ (z) be a formula of the language of fields which expresses that F z has a well balanced zero. We add the following axiom.

∀z 1 , . . . , z r ∃x 1 , . . . , x n θ (z) → F (x, H(x), z) = 0. ( 5 
)
The following lemma is standard.

Lemma 1 Let (a, b) be a regular zero of F z . For any neighbourhood V of (a, b) in C 2n there exists a neighbourhood U of z such that for any ζ ∈ U , F ζ has a regular zero in V .

Proof. Let I and J be such that condition (4) is satisfied. There exist n affine functions l 1 , . . . , l n such that (a, b) is an isolated solution of the system f 1 = 0, . . . , f n = 0, l 1 = 0, . . . , l n = 0. Since we now have as many equations as unknowns (namely, 2n) we can apply Proposition 3: there exists a neighbourhood U of z such that for any ζ ∈ U , the system

F ζ = 0, l 1 = 0, . . . , l n = 0 has a zero (α, β) ∈ V . Since det ∂F ζ ∂(x I ,y J ) (α, β
) is a continuous function of ζ, α and β we can choose U so small that det

∂F ζ ∂(x I ,y J ) (α, β) = 0. 2
The point of working with this second axiomatization is that we have the following proposition.

Proposition 1

The set of parameters z such that F z has a balanced zero is an open subset of C r . The same is true of the set of parameters z such that F z has a well balanced zero.

Proof. Note that in the proof of Lemma 1, the subsets I, J ⊆ {1, . . . , n} which witness the fact that F ζ has a regular zero are the same for all ζ ∈ U . This implies immediately the first part of the proposition. The second part follows from a similar continuity argument. 2

Equivalence of these axiomatizations

We first show that any model of the limit theory of generic curves is also a model of the theory defined in section 2.2.

Let (K, H) be a model of the limit theory of generic polynomials. Let F : K n × K n × K r → K n be a polynomial map with integer coefficients. Fix a tuple z such that F z has a well-balanced zero (x, y). This well balanced zero lies on an irreducible component V of V (F z ) defined by a conjunction φ(x, y, ζ) of polynomial equations where the parameters ζ lie in the algebraic closure of Q(z). We claim that ζ satisfies the associated condition θ(ζ) from the inductive axioms. Indeed, it follows from the implicit function theorem that K |= ψ(ζ). Moreover, V is not included in a subspace of the form x i = x j for some i = j since the components of x are pairwise distinct. Finally, V is not included in a subspace of the form x i = c for some constant c due to the condition on the tangent space at (x, y). We can therefore apply the inductive axioms: there exists x ∈ C n such that φ(x, H(x), z). In particular we have F (x, H(x), z) = 0.

Next we show that any model of the theory defined in section 2.2 is a model of the limit theory of generic polynomials. Consider therefore a model (K, H) of the theory defined in section 2.2. We assume without loss of generality that K is of infinite transcendence degree over Q.

Lemma 2 Let S ⊆ K m be a constructible set defined by a boolean combination of polynomial equations with coefficients in a subfield k of K. Assume that the projection of S on the first d variables is dense in

K d .
There exists a polynomial map F = (f 1 , . . . , f m-d ) : K m → K m-d which satisfies the following properties:

(i) f i depends only on the first d + i variables and its coefficients are in k

(i.e., f i ∈ k[X 1 , . . . , X d+i ]). (ii) The algebraic set V (F ) = {x ∈ K m ; F (x) = 0}

has a dense projection on the first d variables.

(iii) There exists a nonzero polynomial P ∈ k[X 1 , . . . , X d ] such that for any x ∈ V (F ), P (x 1 , . . . , x d ) = 0 implies that x ∈ S and that x is a regular zero of F (more precisely, the matrix of partial derivatives of

f i , i = 1, . . . , m -d with respect to X j , j = d + 1, . . . , m has rank m -d at x).
Note that property (iii) implies (ii) by the implicit function theorem. We will use this lemma only in the case where S is an algebraic set.

Proof of Lemma 2. We assume without loss of generality that k is of finite transcendence degree over Q. Since the projection of S on the first d variables is dense, there exists a point (α 1 , . . . , α d ) of transcendence d over k which is in the projection. In fact, there exists α ∈ S such that α 1 , . . . , α d is a transcendence basis of α over k. Let f i be the minimal polynomial of α d+i over k(α 1 , . . . , α d+i-1 ). Condition (i) is satisfied by definition, and condition (ii) is also satisfied since α ∈ V (F ). Let (x d+1 , . . . , x m ) be such that (α 1 , . . . , α d , x d+1 , . . . , x m ) ∈ V (F ) and let φ(X 1 , . . . , X m ) be a a boolean combination of polynomial equations with coefficients in k which is satisfied by α 1 , . . . , α m . This formula is also satisfied by (α 1 , . . . , α d , x d+1 , . . . , x m ) since the fields k(α 1 , . . . , α d , x d+1 , . . . , x m ) and k(α 1 , . . . , α m ) are isomorphic. In other words, (α 1 , . . . , α d ) satisfies formula Φ (x 1 , . . . , x d ) below:

∀x d+1 , . . . , x m F (x 1 , . . . , x m ) = 0 ⇒ Φ(x 1 , . . . , x m ).
Since α 1 , . . . , α d are algebraically independent over k, Φ defines a Zariski dense subset of K d . This is exactly the first part of condition (iii), if we take for Φ the formula defining S. To obtain the second part of this condition, we apply the same observation to a different Φ. Namely, we apply it to the formula

Φ(x 1 , . . . , x m ) ≡ m-d i=1 ∂f i ∂X d+i (x 1 , . . . , x d+i ) = 0. This formula is satisfied by α since f i is the minimal polynomial of α d+i over k(α 1 , . . . , α d+i-1 ). Our observa- tion now implies that exists a nonzero polynomial R ∈ k[X 1 , . . . , X d ] such that for any point x ∈ V (F ) with R(x 1 , . . . , x d ) = 0, the m -d partial derivatives ∂f i
∂X d+i do not vanish at x. Since the jacobian matrix of F contains a triangular matrix with these partial derivatives on the diagonal, it has maximum rank md at x and this point is by definition a regular zero of F . 2

There is of course nothing special about the first d variables in this lemma: we may project on any tuple of variables as long as the projection is dense. This is just what we shall do now. Let φ(x 1 , y 1 , . . . , x n , y n , z) be a conjunction of polynomial equations with rational coefficients. Fix z such that the associated formula θ in (3) is satisfied. Since K |= θ(z) there exists I, J ⊆ {1, . . . , n} such that |I| + |J| = n, I ∩ J = ∅ and the projection of V z on the variables x I ˆyJ is dense in K n . Let us apply Lemma 2 to S = V z . We obtain a polynomial map F : K n × K n → K n and a polynomial P in n variables with coefficients in k = Q(z) such that for any point x ˆy ∈ V (F ), P (x I , y J ) = 0 implies that x ˆy ∈ V z and that x ˆy is a regular zero of F . Since dimV z = n and V z is irreducible, this variety is an irreducible component of V (F ). Now we consider the polynomial map G : K 2(n+1) → K n+1 which sends (x 1 , . . . , x n , x n+1 , y 1 , . . . , y n , y n+1 ) to F (x 1 , . . . , x n , y 1 , . . . , y n )ˆf n+1 (x 1 , . . . , x n , x n+1 , y 1 , . . . , y n , y n+1 ). Here x n+1 and y n+1 are two additional variables, and f n+1 = P (x I , y J )y n+1 -1. We claim that G has a well balanced zero. To obtain such a zero, pick a generic point a ˆb of V z . Since K |= θ(z), the components a 1 , . . . , a n are all nonzero and distinct from each other. Moreover we can set b n+1 = 1/P (a I , b J ) since a I ˆbJ has transcendence degree n over k. Pick an arbitrary a n+1 different from 0 and from a 1 , . . . , a n . The matrix of partial derivatives of f 1 , . . . , f n+1 at (a 1 , . . . , a n+1 , b 1 , . . . , b n+1 ) with respect to the variables x i (i ∈ J) and y i (i ∈ I ∪ {n + 1}) has the block form

B = A 0 0 P (a I , b J )
where A is the matrix of partial derivatives of f 1 , . . . , f n with respect to the variables x i (i ∈ J) and y i (i ∈ I). We know from Lemma 2 that A has rank n. Hence B has rank n + 1 and (a 1 , . . . , a n+1 , b 1 , . . . , b n+1 ) is a balanced zero of G. In order to show that this zero is well balanced, we have to check the condition on the tangent space. This condition is indeed satisfied due to Lemma 3 below and to the fact x n+1 does not appear in f 1 , . . . , f n+1 .

Lemma 3

The tangent space to V (F ) at a ˆb is not included in a subspace of the form x i = c for some constant c ∈ K.

Proof. Assume the opposite. We have seen that V z is an irreducible component of V (F ). Since a ˆb is a generic point of V z this variety would be included in the subspace x i = c. This is in contradiction with the hypothesis K |= θ(z). 2

We can therefore apply the modified inductive axioms [START_REF] Koiran | Back-and-forth systems for generic curves and a decision algorithm for the limit theory[END_REF] to G: there exists x 1 , . . . , x n+1 such that F (x 1 , . . . , x n , H(x 1 ), . . . , H(x n ), z) = 0 and P (x I , y J )y n+1 -1 = 0. Since P (x I , y J ) = 0, (x 1 , . . . , x n , H(x 1 ), . . . , H(x n )) ∈ V z by property (iii): we have proved that the inductive axioms (3) are satisfied.

Structure of the Proof

Wilkie has shown in [START_REF] Wilkie | Liouville functions[END_REF] that Liouville functions satisfy the universal axioms. In order to show that the theory of Liouville functions is the limit theory of generic polynomials, it remains to show that the inductive axioms are also satisfied. Using the axiomatization of section 2.2, we need the following result.

Theorem 2 (Main Theorem) Let

G : C n × C n → C n be a polynomial map.
If G has a well balanced zero, there exists a ∈ C n such that G(a, H(a)) = 0. The proof will be given at the end of section 5. A special case of this theorem (which we will not use here) was obtained in [START_REF] Wilkie | Liouville functions[END_REF]: let G : C n × C n → C n be a polynomial map with integer coefficients. If G has a balanced zero then there exists a ∈ C n such that G(a, H(a)) = 0. Wilkie's proof of this result relies in particular on Newton's method. 2 By contrast the proof of Theorem 2 is based on a method which is reminiscent of homotopy methods for solving systems of polynomial equations. Let H d (x) be the partial sum d i=1 x i /a i . In section 4 we show that the system G(x, H d (x)) = 0 has an isolated solution x d ∈ C n for all sufficiently large d. Then we track x d as d goes to infinity. It turns out that these roots remain in a compact subset of C n . Theorem 2 then follows immediately from a standard uniform convergence argument.

As in [START_REF] Wilkie | Liouville functions[END_REF] effective quantifier elimination also plays an important role. Here there is an additional complication due to the presence of arbitrary complex parameters in G. Our solution to this problem is to work not for a single value of the parameters (i.e. for a single G), but simultaneously for all parameters in a compact set. This is made possible in particular by Proposition 1. We will use the following version of quantifier elimination (note that we need to work over the real numbers).

Proposition 2 Let Φ(x 1 , . . . , x n ) be a formula of the language of ordered rings. The k polynomials occuring in Φ have integer coefficients. Let h ≥ 2 be an upper bound on their absolute values. Let d ≥ 2 be an upper bound on the degrees of these polynomials, and let m be the number of occurrences of quantifiers in F .

In the theory of real-closed fields, φ is equivalent to a quantifier-free formula Ψ(x 1 , . . . , x n ) in which all polynomials are of degree at most d c , and have integer coefficients of absolute value bounded by h d c . The constant c depends only on n, m and k.

Almost any reasonable quantifier elimination method will yield the above result. Much more precise bounds are known, see for instance [START_REF] Basu | On the combinatorial and algebraic complexity of quantifier elimination[END_REF][START_REF] Renegar | On the computational complexity and geometry of the first-order theory of the reals. parts I, II, III[END_REF]. We will not need them here since the parameters n, m and k can be treated as constants for our purposes.

In the remainder of this section we present another important tool: continuity of the roots of polynomial systems. For z = (z 1 , . . . , z n ) ∈ C n we set ||z|| = n i=1 |z i | 2 (this is just the Euclidean norm on R 2n ).

Proposition 3 (Continuity of roots)

The following property holds for any polynomial map F : C n × C r → C n and any z ∈ C r . Let x be an isolated root of the map F z : x → F (x, z). For any sufficiently small neighbourhood U of x there exists a neighbourhood V of z such that for all ζ ∈ V , the number of roots of F ζ in U is positive and finite.

This follows for instance from the "extended geometric version" of Bézout's theorem [START_REF] Blum | Complexity and Real Computation[END_REF].

Corollary 1 Let F : C n × C r → C n be a polynomial map. The map N F : C → R ∪ {+∞} z → min{||x||; x is an isolated root of F (x, z) = 0}
is upper semi-continuous (we set N F (z) = +∞ if the system F (x, z) = 0 has no isolated roots).

Proof. Fix z ∈ C r such that N F (z) < +∞. We have to show that for every > 0 there is a neighbourhood U of z such that N F (z) ≥ N F (ζ)for every ζ ∈ U . let x be an isolated root of the system F (x, z) = 0 such that N F (z) = ||x||. By Proposition 3.(i) there is a neighbourhood U of z such that for every ζ ∈ U the system F (x, z) = 0 has an isolated root in the ball B(x, ).

Hence N F (ζ) ≤ ||x|| + = N F (z) + . 2
One can show that if z is such that F z has finitely many roots then N F is continuous in z. The example of the polynomial F (x, z) = zx 2 -2x + 1 shows that no such continuity property holds for the map z → max{||x||; x is an isolated root of F (x, z) = 0}.

Indeed, F has a single root for z = 0; for z ∈{0, 1} it has a second root which goes to infinity as z goes to 0.

A Starting Point for the Homotopy

We denote

H d, (x) = d i=1 x i /a i + x d+1 and H d = H d,0 . Let g d be a generic polynomial of degree d. The modified partial sum µ k,d is the polynomial function x → H k (x) + x k g d (x).

Finiteness for modified partial sums

We temporarily revert to the language of curved fields to cite a simple combinatorial result (Lemma 7 from [START_REF] Koiran | Back-and-forth systems for generic curves and a decision algorithm for the limit theory[END_REF]).

Lemma 4

Let k be a p-sufficient substructure of a curved field (K, C) and z = (z 1 , . . . , z r ) a tuple of r elements of K\k. Set q = p-r r+1 . Let j be the smallest integer such that there exists an extension of k(z) satisfying tr.deg( /k) ≤ pq(j + 1) and δ( : k) ≤ j (note that j always exists and is upper bounded by r). Then is q-sufficient. Some explanations are in order. In this lemma K is an arbitrary field and the "curve" C is an arbitrary subset of K 2 . The symbol δ( : k) is defined by the formula δ( : k) = tr.deg( :

k) -Card(C ∩ 2 -C ∩ k 2 ).
A subfield k of K is said to be p-sufficient if δ( : k) ≥ 0 for any subfield of K which contains k, and is of transcendence degree at most p over k. For instance, we have seen is section 2.1 that the universal axiom ( 2 

x i = 0 i =j x i = x j ∧ i C d (x i , y i ) ∧ φ(x, y, z) ( 6 )
has at most finitely many solutions in C 2n .

Proof. Since Q is d-sufficient, by choice of d and Lemma 4 there exists a nsufficient extension of Q(z) of transcendence degree at most dn over Q.

There are at most dn nonzero points on C d with both coordinates in 2 . Moreover, outside 2n any solution of the system i =j

x i = x j ∧ i C d (x i , y i )
must be of transcendence degree at least n over (by choice of ). We conclude that up to a finite set, all solutions of (6) are of transcendence degree at least n over Q(z). This implies that the subset S of D z defined by ( 6) is finite. Indeed, if S is infinite this (constructible) subset of D z must contain infinitely many nongeneric points of D z (i.e., points of transcendence degree over Q(z) smaller than dim D z ). 2

We have the same property for modified partial sums.

Corollary 2 Let φ(x 1 , . . . , x n , y 1 , . . . , y n , z 1 , . . . , z r ) be a boolean combination of polynomial equations with coefficients in Q. Fix a tuple z such that the algebraic subset D z of C 2n defined by φ(., ., z) has dimension at most n. If d ≥ n(r + 1) + r the system

i x i = 0 ∧ i =j x i = x j ∧ φ(x, µ k,d (x), z)
has at most finitely many solutions in C 2n .

Proof. Let x be a solution of the system. Note that (x, g d (x)) lies in the constructible subset of C 2n (call it C z ):

i x i = 0 ∧ φ(x 1 , . . . , x n , H k (x 1 ) + x k 1 y 1 , . . . , H k (x n ) + x k n y n ).
Let P : C 2n → C 2n be the polynomial map

(x 1 , . . . , x n , y 1 , . . . , y n ) → (x 1 , . . . , x n , H k (x 1 ) + x k 1 y 1 , H k (x n ) + x k n y n ).
Since P (C z ) ⊆ D z and every point in D z has finitely many preimages in C z we have dim C z ≤ dim D z ≤ n. By Theorem 3 (applied to C z ) we conclude that our system has finitely many solutions. 2

Existence for Modified Partial Sums

The only property of the coefficients of Liouville functions that will be used in the next proposition is that they are rational numbers.

Proposition 4 Let φ(x 1 , . . . , x n , y 1 , . . . , y n , z) be a conjunction of polynomial equations with coefficients in Q. Given a tuple z of parameters we denote by V z the algebraic subset of C 2n defined by φ. Fix a tuple z which satisfies the associated condition θ(z) from ( 3). Let r be the transcendence degree of

Q(z) over Q. For any k ≥ 0, if d ≥ n(nr +n+r +1) there exists x ∈ C n such that (x, µ k,d (x)) is a generic point over Q(z) of V z (
note that this genericity condition implies in particular that the components of x are nonzero and pairwise distinct).

Proof. We argue as in Corollary 2. One would like to find a point (x, g d (x)) on the algebraic subset W z of C 2n defined by the formula

φ(x 1 , . . . , x n , H k (x 1 ) + x k 1 y 1 , . . . , H k (x n ) + x k n y n ). Pick a generic point (α, β) of V z . Then (α, γ) ∈ W z where γ i = (β i -H k (α i ))/α k i .
Note that α 1 , . . . , α n are pairwise distinct and do not belong to the algebraic closure K of Q(z). Moreover there exists I, J ⊆ {1, . . . , n} such that |I| + |J| = n, I ∩ J = ∅ and α I ˆβJ is of transcendence degree n over K. The tuple α I ˆγJ is also of transcendence degree n over K since K(α I , β J ) = K(α I , γ J ). We can therefore apply the inductive axioms to the irreducible component of W z which contains (α, γ). More precisely, by Theorem 1 there exists a point (x, g d (x)) ∈ W z of transcendence degree n over K. We conclude that (x, µ k,d (x)) is a point of V z of transcendence degree n over K. 2

Isolated Solutions

The results of sections 4.1 and 4.2 can be summarized as follows.

Theorem 4 Let

F : C n × C n × C r → C n
be a polynomial map with integer coefficients. For any k ≥ 0, any d ≥ n(nr + n + r + 1) and any z such that F z has a well balanced zero, the system F (x, µ k,d (x), z) = 0 has an isolated solution.

Proof. Fix k ≥ 0, d ≥ n(nr + n + r + 1) and z such that F z has a well balanced zero. This well balanced zero lies on an irreducible component V of V (F z ) of dimension n and V satisfies the inductive axioms. More precisely, we have seen at the beginning of section 2.3 that V is defined by a conjunction φ(x, y, ζ) of polynomial equations where the parameters ζ lie in the algebraic closure of Q(z) and satisfy the associated condition θ(ζ). By Proposition 4 there exists x ∈ C n with nonzero, pairwise distinct coordinates such that (x, µ k,d (x)) is in V . Since dim V = n, by Corollary 3 there are only finitely many such x. To make sure that x is an isolated solution of the system F (x, µ k,d (x), z) = 0 it is therefore sufficient to satisfy the following requirement: (x, µ k,d (x)) should lie on no other irreducible component of V (F z ) but V (indeed, other components might be of dimension > n). This is possible thanks to the genericity condition in the conclusion of Proposition 4. 2 Any inductive axiom is eventually satisfied by H d if d is sufficiently large. More precisely:

Theorem 5 Let F : C n ×C n ×C r → C n be a polynomial map. If d is sufficiently large and | | ≤ 1/|a d+1 |
the following property holds: for any z such that F z has a well balanced zero, the system F (x, H d, (x), z) = 0 has an isolated solution.

Note that we do not rule out the the possibility that non-isolated solutions might also exist.

Proof of Theorem 5. Set d 0 = n(nr + n + r + 1). For any d ≥ 1 and α ∈ R d 0 , let

ν k,α (x) = H k (x) + x k d 0 j=1 α j x j .
One can easily write down a formula φ(α) of the language of ordered fields which expresses the fact for any z such that F z has a well balanced zero, the system F (x, ν k,α (x), z) = 0 has an isolated solution in C n (of course this involves the separation of the real and imaginary parts of variables such as x 1 , . . . , x n , which range over the complex numbers). It follows from Theorem 4 that R |= φ(α) if α 1 , . . . , α d 0 are algebraically independent. By Proposition 2, φ(α) is equivalent to a quantifier-free formula ψ(α) involving polynomials of degree k O (1) with integer coefficients of absolute value |a k | k O (1) (the implied constants may depend on F but not on k). Any α which is not a root of any of these polynomials will satisfy φ. If k is sufficiently large and | | ≤ 1/|a k+d 0 |, it is indeed the case that (1/a k+1 , . . . , 1/a k+d 0 -1 , ) is not a root of any of these polynomials. This follows from the growth rate condition [START_REF] Basu | On the combinatorial and algebraic complexity of quantifier elimination[END_REF]. We conclude that for any z such that F z has a well balanced zero, the system F (x, H k+d 0 -1, (x), z) = 0 has an isolated solution. 2 Instead of φ(α), one could (less easily) write down a formula φ (α) of the language of fields such that C |= φ (α) iff the system F (x, ν k,α (x), z) = 0 has an isolated solution for any z such that F z has a well balanced zero. Allowing the order relation just makes it easier to express the fact that there is an isolated solution. By contrast order plays an essential role in the proof of the next result.

Corollary 3 Let

F : C n × C n × C r → C n
be a polynomial map and let K be a rational ball of C r such that F z has a well balanced zero for all z ∈ K. There is a constant c > 0 such that the following property holds if d is sufficiently large: for any z ∈ K, the system F ( 

N F : K → C which sends x to N F (x) = inf{||x||; F (x, H d (x), z) = 0}
. By Corollary 1 this function is upper semi-continuous on K. Since K is compact, N F reaches its (finite) supremum R(d) on K. Translating the definition of R(d) in first-order logic immediately yields a formula φ(u) in the language of ordered rings such that R |= ∀u (φ(u) ↔ u = R(d)). Note that φ has only rational parameters since K is a rational ball. By elimination of quantifiers from φ we conclude that R(d) is a root of a polynomial of degree d O (1) with integer coefficients bounded in absolute value by |a d | d O (1) (the implied constants may depend on K and F but not on d). We conclude that R

(d) ≤ |a d | d α for some constant α, so that R(d) ≤ |a d | d α+1 -1/d if d is sufficiently large. 2
This property is not only valid for K a rational ball: one could generalize to arbitrary compact sets (see Corollary 4). One may wonder why we insist on a bound of the form |a d | d c -1/d in Corollary 3 instead of e.g. |a d | d c . The reason will become apparent in the next section.

The Path Following Method

In the preceding section we have proved the existence of isolated roots for systems of the form F (x, H d (x), z) = 0. In this section we show that some of the roots stay inside a fixed compact ball as d goes to infinity. The main theorem then follows easily. Let C = B(0, R -1/(d + 1)). We can apply Lemma 5 to G(x, z, ) = F (x, H d, (x), z): there exists δ > 0 such that for any z ∈ K, the system F (x, H d, (x), z) = 0 has an isolated root x in C if | | ≤ δ. The same quantifier elimination argument as in Corollary 3 shows that one may take 1/δ = |a d | d O (1) (the implied constant depends only on K, F and c). One may therefore take

Lemma 5 Let

G : C n × C r × C → C n be a polynomial map. We denote by G z, the map x → G(x, z, ). Let K be a compact subset of C
δ = 1/|a d+1 | if d is sufficiently large. 2 Theorem 6 Fix a polynomial map F : C n × C n × C r → C n
with integer coefficients and a rational ball K ⊆ C r such that F z has a well-balanced zero for all z ∈ K. There exists R > 0 such that the following property holds for all sufficiently large d: for any z ∈ K the system F (x, H d (x), z) = 0 has an isolated root in the closed ball B(0, R). Although this is not really needed for the proof of our main result we note that the same property does not hold only for rational balls, but for all compact subsets of C r . Corollary 4 Fix a polynomial map F : C n × C n × C r → C n with integer coefficients and a compact K ⊆ C r such that F z has a well-balanced zero for all z ∈ K. There exists R > 0 such that the following property holds if d is sufficiently large: for any z ∈ K the system F (x, H d (x), z) = 0 has an isolated root in the closed ball B(0, R).

Proof. By compactness of K and Proposition 1, K can be covered by a finite set {K 1 , . . . , K p } of rational balls such that F ζ has a well balanced zero for any i ∈ {1, . . . , p} and any ζ ∈ K i . By Theorem 6 there exist R 1 , . . . , R p such that the following property holds for all sufficiently large d: for any i ∈ {1, . . . , p} and any z ∈ K i , the system F (x, H d (x), z) = 0 has an isolated root in the closed ball B(0, R i ). Now set R = max(R 1 , . . . , R p ). 2 Proof of the main theorem. We can write G = F z where F : C n × C n × C r → C n is a polynomial map with integer coefficients and z ∈ C r is a tuple of parameters. By Proposition 1 there exists a rational ball K ⊆ C r containing z such that F ζ has a well balanced zero for all ζ in K. By Theorem 6 there exists an increasing sequence (d i ) i≥0 of integers and a sequence (x i ) i≥0 of points of C n such that F (x i , H d i (x i ), z) = 0. Moreover the sequence (x i ) i≥0 remains inside a fixed compact ball B(0, R). Extracting a subsequence if necessary, we may therefore assume that x i converges to a limit point a ∈ C n as i goes to infinity. We conclude that F (a, H(a), z) = 0 since lim d→+∞ F (x, H d (x), z) = F (x, H(x), z) uniformly with respect to x ∈ B(0, R). 2

Remark 1

We have only defined the notion of well balanced zero for a polynomial map G : C n × C n → C n , but this notion clearly makes sense if G is an arbitrary analytic function. The main theorem is no longer true in this more general context. Indeed, set G(x, y) = y -H(x) + 1. This function has well balanced zeros, but there does not exist a such that G(a, H(a)) = 0.

  x, H d (x), z) = 0 has an isolated solution which satisfies ||x|| ≤ |a d | d c -1/d. By rational ball of C r we mean a closed ball B(z, R) = {ζ ∈ C r ; ||ζ -z|| ≤ R} such that the radius R is a rational number and the real and imaginary parts of ζ 1 , . . . , ζ r are also rational. Proof of Corollary 3. By Theorem 5, if d is sufficiently large (say, d ≥ d 0 ) the system F (x, H d (x), z) = 0 has isolated solutions for all z ∈ K. Pick any d ≥ d 0 and consider the map

2 Proposition 5

 25 r and C a compact subset of C n such that for any z ∈ K, G z,0 has isolated roots in the interior of C. There exists δ > 0 such that G z, has isolated roots in C if | | ≤ δ and z ∈ K. Proof. By Proposition 3, for any ζ ∈ K there exists δ(ζ) > 0 such that G z, has isolated roots in C if | | ≤ δ(ζ) and z belongs to the open ball B(ζ, δ(ζ)). Since K is covered by the open balls B(ζ, δ(ζ)), by compactness there exists a finite cover of the form B(ζ 1 , δ(ζ 1 )), . . . , B(ζ k , δ(ζ k )). Set δ = min(δ(ζ 1 ), . . . , δ(ζ k )). Now fix any z ∈ K and such that | | ≤ δ. Since z ∈ B(ζ i , δ) for some i, G z, has isolated roots in C by choice of δ. Fix a polynomial map F : C n × C n × C r → C n with integer coefficients and a rational ball K ⊆ C r such that F z has a well-balanced zero for all z ∈ K. For any c > 0 the following property holds if d is sufficiently large. Suppose that R ≤ |a d | d c is an integer such that for all z ∈ K the system F (x, H d (x), z) = 0 has an isolated solution in the closed ball B(0, R -1/d). If | | ≤ 1/|a d+1 |, for any z ∈ K the system F (x, H d, (x), z) = 0 has an isolated solution in the closed ball B(0, R -1/(d + 1)). Proof. By Theorem 5 if d is sufficiently large (say, d ≥ d 0 ) for any z ∈ K the system F (x, H d, (x), z) = 0 has isolated solutions. Pick any d ≥ d 0 and let R ≤ |a d | d c be an integer such that for all z ∈ K the system F (x, H d (x), z) = 0 has an isolated solution in the closed ball B(0, R -1/d).

Proof.

  By Corollary 3 there is a constant c > 0 such that if d is sufficiently large (say, d ≥ d 0 ) then for any z ∈ K, the system F (x, H d (x), z) = 0 has an isolated solution which satisfies ||x|| ≤ |a d | d c -1/d. Let us choose d 0 so large that Proposition 5 also applies for d ≥ d 0 . The proof will be complete if we can show that the following claim is true: for d ≥ d 0 and any z ∈ K, the system F (x, H d (x), z) = 0 has an isolated solution in the closed ball B(0, R -1/d) where R = |a d 0 | d c 0 . The proof of this claim is a straightforward induction on d. Indeed, the claim is true for d 0 by choice of d 0 , and one can go from d to d + 1 by Proposition 5. 2

  ) is satisfied by a generic polynomial of degree d as soon as d ≥ n. This implies that Q is d-sufficient if we interpret C by the graph of a generic polynomial g : C → C of degree d. Let φ(x 1 , . . . , x n , y 1 , . . . , y n , z 1 , . . . , z r ) be a boolean combination of polynomial equations with coefficients in Q. Fix a tuple z such that the constructible subset D z of C 2n defined by φ(., ., z) has dimension at most n. Let C

	Theorem 3

d be the graph of a generic polynomial of degree d. If d ≥ n(r + 1) + r the system i

Wilkie uses the terminology "balanced, non-singular zero". We just write "balanced zero" for short.

In fact he even shows that the map x → G(x, H(x)) has a non-singular zero with pairwise distinct, nonzero coordinates.