N

N
N

HAL

open science

Using Ambients to Control Resources
D. Teller, P. Zimmer, Daniel Hirschkoff

» To cite this version:

D. Teller, P. Zimmer, Daniel Hirschkoff. Using Ambients to Control Resources. [Research Report]

LIP RR-2002-16, Laboratoire de I'informatique du parallélisme. 2002, 24+28p. hal-02101869

HAL Id: hal-02101869
https://hal-lara.archives-ouvertes.fr /hal-02101869
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101869
https://hal.archives-ouvertes.fr

Laboratoire de I'Informatique du

Parallélisme
o) Ecole Normale Supérieure de Lyon
i Unité Mixte de Recherche CNRS-INRIA-ENS LYON % CENTRE NATIONAL
n° 5668 STENTHQUE

Using Ambients to Control Resources

David Teller!, Pascal Zimmer?, and

Daniel Hirschkopf!
April 2002

L LIP - ENS Lyon, France
2 INRIA Sophia Antipolis, France

Research Report N° 2002-16

Ecole Normale Supérieure de
Lyon

il 46 Allee ' Itdlie, 6936% Lyon Cedex 07, France ?‘I INRIA

Télephone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ipQ@ens-lyon. fr

Using Ambients to Control Resources
David Teller!, Pascal Zimmer?, and Daniel Hirschkopf*

L LIP - ENS Lyon, France
2 INRIA Sophia Antipolis, France

April 2002

Abstract

Current software and hardware systems, being parallel and reconfigurable, raise
new safety and fiability problems, and the resolution of these problems requires
new methods. Numerous proposals attempt at reducing the threat of bugs and
preventing several kinds of attacks. In this paper, we develop an extension of
the calculus of Mobile Ambients, named Controlled Ambients, that is suited
for expressing such issues, specifically Denial of Service attacks. We present a
type system for Controlled Ambients, which makes resource control possible in
our setting.

Keywords: Distributed and mobile systems, resource control, process
algebra, type system, Mobile Ambients

Résumé

Les systemes logiciels et matériels actuels, qui sont reconfigurables et paralléles,
sont aussi plus fragiles et sensibles aux pannes et aux malveillances. De nom-
breuses approches tentent de réduire les risques de bugs ou de protéger contre
certaines formes d’attaques, comme les Denial of Service. Dans ce document,
nous étendons le calcul des Mobile Ambients en un formalisme, les Ambients
Controlés, approprié pour la modélisation et ’étude de problemes de ressources.
Pour ce langage, nous définissons également un systéeme de types qui permet
de garantir de maniere statique une propriété de controle des ressources.

Mots-clés: Systeémes distribués et mobiles, controle de ressources, algeébre de
processus, systeme de types, Ambients mobiles

Introduction

The latest generation of computer software and hardware makes use of nu-
merous new technologies in order to enhance flexibility or performances. Most
current systems may be dynamically reconfigured or extended, allow parallelism
or use it, and can communicate with other systems. This flexibility, however,
induces the multiplication of subsystems and protocols. In turn, this multipli-
cation greatly increases the possibility of bugs, the feasibility of attacks and the
sensitivity to possible breakdown of individual subsystems.

Active networks, for instance, attempt to introduce some form of sophis-
tication within routing, by making networks programmable. However, until a
control on used resources is developped, possibly using PCC frameworks, such
systems will remain very sensitive to Denial of Service-like attacks or bugs.

In this paper, we present a formalism for resource control in parallel, dis-
tributed, mobile systems. By resource, we mean an entity, such as RAM, which
may at will be acquired, used, then released. We present a method based
on Ambient Calculi [2], and extending Safe Ambients [14]; we introduce these
Controlled Ambients, and equip this language with a type system for resource
control.

In the first section, we present our point of view on the problem of resource
control. We provide motivations for using ambient calculi to represent the notion
of resource, and show that a specific calculus should be designed for the purpose
of guaranteeing some control on the use of resources. In Section 2, we introduce
our calculus of Controlled Ambients and explain why it fits to our purposes.
We then develop in Section 3 a type system which uses the specifics of this
language to make resource control possible; we prove its correctness (i.e. that it
does control the acquisition and release of resources), and use it to treat several
examples. After this, we discuss some refinements of our type system, and, in
the last section, we present possible extensions of this study as well as related
works.

1 Resource control

To be general, let us define a resource as an entity which may at will be acquired,
used, then released. Thus, this notion encompasses ports, CPUs, computers or
RAM, but not time, or (presumably) money. A resource-controlled system is
a system in which no subsystem will ever require more resources than may be
available.

In order to prevent problems such as Denial of Service attacks, we need a
formalism making resource control possible. This formalism should in particular
provide means to describe systems in terms of resource availability and resource
requirement, and should also support the description of concurrent and mobile
computations. Lastly, the model should provide some kind of entity that can
be regarded as a resource. Ambient calculi can be used for these purposes.

Ambient Calculi. Ambient Calculi are based on locality: each ambient is
a site. In turn, any ambient may contain subambients, as well as processes,
controlling its behaviour through the use of capabilities. Capabilities make the

Message emitted by client client at site from to call a cab

call from client 2 call[out client.out from.in cab.in from.
loading[out cab.in client]]

Instructions given by client client going from site from to site to

trip from to c = triplout client.out from.in to.unloading[in c||

The client itself, willing to go from from to to

client from to = (ve)c[call from c | open loading.in cab.trip from to c
| open unloading.out cab.bye[out c.in cab.out to]]

The cab

cab 2 cablrec X .open call.open trip.open bye.X]|
The city

city = city[cab | cab | cab | --- |

sitey[client siteysite; | client sitey siteg | - -]
| e | sitei[...]]

Figure 1: Cab protocol - first attempt

structure of ambients evolve: in m and out m let an ambient move (resp. en-
tering ambient m or leaving ambient m), while open m opens ambient m and
sets its contents free. To draw some analogies with real systems, in and out
can represent the movement of data in a computer or in a network, while open
could be used for cleaning memory, for reading data or for loading programs
into memory. As for ambients, they could stand for computers, programs, data,
components ...

This set of correspondences opens a way for a natural model of resource
control: each site may have a finite (or infinite) quantity of resources of a given
category. These resources will be used for data, programs, ... In other words,
each ambient has a given capacity and each subambient uses a part of this
capacity. Basically, controlling resources means checking the number of direct
subambients (according to the amount of resources these are using) which may
be present in one ambient at any time.

Do note that we could have chosen dual points of view and decided to count
all subambients at all depths, or possibly only “leaf” ambients. Although these
approaches seems equally valid, we have decided not to undertake them, since
they did not seem more powerful, only slightly more complicated.

An example. Let us consider a cab protocol, as shown in Figure 1, which we
will use as our main running example. The system consists of one city, n sites,
and many cabs and clients. Cabs may be either “anywhere in the city” or in a
precise site. Each client may be either in a given site or in a cab. Any client
may call a cab. If a cab is available, one (and only one) cab must come fetch

the client and bring her to her destination. If we consider the unique passenger
seat of a cab as a resource, the system will be resource-controlled if each cab
contains at most one client at any time.

Figure 1 presents the cab protocol as written in the original calculus of
Mobile Ambients!. The city itself is an ambient, which may contain sites and
cabs. Each site s is in turn an ambient, which may contain clients. In order for
this protocol to work, there must be at least one cab and each “client from to”
declaration must be coherent, i.e. from must be the name of the site which
hosts the client and to must be the name of some site.

In order to call a cab, the client sends a call ambient. This ambient then
enters a cab, where it gets opened. Opening ambient call unleashes process

in from.loading|out cab.in client].

Therefore, after opening, the cab goes in from, to meet its client, and releases
ambient loading. Once loading has been released, it enters client. As soon
as the client opens loading, she knows that the cab is present, and therefore
that she may enter it. Consequently, the client enters the cab and releases
ambient trip, which the cab, in turn, receives and opens. Once again, a process
is unleashed: out from.in to.unloading[in ¢]. This process moves the cab to
its destination and releases another synchronization ambient, unloading, to tell
the client she may get out. When the client receives this ambient, she opens it,
leaves, and sends the last synchronization ambient bye to the cab, to tell it it
may leave.

Limitations. Several aspects of this implementation may lead to unwanted
behaviors. The most visible flaw is the sending of ambient bye: if, for any
reason, there are several cabs in the site, nothing guarantees that bye will reach
the right cab. And if it does not, it may completely break the system by making
one cab wait forever for its client to exit, although it already has left, while
making the other cab leave its destination site with its unwilling client. In turn,
the client may then get out of the cab about anywhere.

Although this problem is partly due to the way this implementation has been
designed, its roots are deeply nested within the calculus of Mobile Ambients
itself. One may notice that any malicious ambient may, at any time, enter the
cab: in the calculus of Mobile Ambients, there is no such thing as a filtering of
entries/exits. This lack of filtering and accounting is a security threat as well
as an obstacle for resource control: for security, since it prevents modeling a
system which could check and refuse entry to unwanted mobile code, and for
control, since one cannot maintain any information about who is using which
resources in a given ambient.

Towards a better control. Difficulties with security and control are due, for
the greatest part, to the nature of capabilities in, out and open. Actually, the
way these capabilities are used seems too simple: in any real system, arrival or
departure of data cannot happen without the consent of the acting subsystem,
much less go unnoticed, not to mention the opening of a program. In practice, if
a program wishes to receive network information, it must first “listen” on some

1As a matter of fact, we are not exactly using the original MA calculus, since we have
introduced the rec operator, for more readability.

communication port. If a binary file is to be loaded and executed, it must have
some executable structure and some given entry point.

A calculus derived from Mobile Ambients is presented in [14]; in this calculus
of Safe Ambients, three cocapabilities are introduced, which we will note SAin,
SAout and SAopen. When executed in m, capability SAin m allows an ambient
to enter m (when executing capability in m). Similarly, SAout m allows an
ambient to leave m using out m, while SAopen m allows m’s parent to open m
using open m. These cocapabilities make synchronizations more explicit and
considerably decrease the risk of security breaches. Thinking of the example
above, a rewritten cab may thus easily refuse entry right to parasites as long
as it is not in any site, or while it contains a client. Moreover, a form of
resource control is indeed possible, since a full ambient may refuse entrance of
new subambients.

However, in this model, ambients are not always warned when they receive
or lose subambients by some kind of side effect: in h[m[n[out m] | SAout m]],
h receives n from m but is not made aware of this. Moreover, while SAin m
serves as a warning for m that it will receive a new subambient, m does not
know which one. Since a subambient representing static data and another one
modeling some internal message will not occupy the same amount of resources,
this model is probably not sufficient for our purposes.

The system presented in [10] offers an alternative to these cocapabilities,
in order to further enhance systems’ robustness: in this formalism, in m does
not allow entering m but rather m to enter. This approach solves one of our
problems: identifying incoming data. The formalism we present in Section 2
may be considered as a development of [10] towards even more robustness as well
as resource control. Let us also mention [15], where a different mechanism for
the SAout cocapability w.r.t. [14] is introduced. Our proposal actually subsumes
the solutions of [15] and [14].

Types. Several studies of ambients, such as [3], introduce type systems, possi-
bly linked to modifications in Mobile Ambients, such as [14], in order to control
interactions. For example, this may be useful in the cab protocol to prevent a
malicious exited from modifying the structure of the system. In Section 3, we
propose a type system associated to our formalism, to perform resource control.
Basically, the type of an ambient carries two informations:

e its capacity - how many resources the ambient offers to its subambients;

e its weight - how many resources it requires from its parent ambients.

The goal of the type system is to statically divide the available resources between
parallel processes, and check that they will not be affected by movements and
openings of ambients.

2 The Language of Controlled Ambients

In order to be able to control resources, we must ensure a form of movement
control, to be able to find out which entities are using which resources at a
given site. In this section, we present the language of Controlled Ambients
(CA), which has been designed for these purposes.

2.1 Syntax and Semantics

In CA, each movement is subject to a 3-way synchronization between the mov-
ing ambient, the ambient welcoming a new subambient and the ambient letting
a subambient go. As for the opening of an ambient, it is subject to some
synchronization between the opener and the ambient being opened. These syn-
chronizations are handled using cocapabilities: int, outy, in|, out, and open.

E m the up coentry, allows m to enter the current ambient by exiting some
subambient;

E m the down coentry, allows m to enter the current ambient from its parent
ambient;

out; m the up coerit, allows m to leave the current ambient by exiting it;

out; m the down coezit, allows m to leave the current ambient by entering one
of its subambients;

open {m,h} the coopening, allows the parent ambient h to open the current
ambient m.

Just like the corresponding capabilities, cocapabilities are consumed when exe-
cuted.

Do note that 1 and | are not necessary for resource control. We added them
since we found they ease the task of specification in mobile ambients. We will
return on the use of these annotations in Section 2.3.

The syntax of Controlled Ambients is presented in Figure 2. We suppose we
have two infinite sets of term variables, ranged over with capital letters (X,Y),
and of names, ranged over with small letters (m,n,h,z,...). Name binders
(input and restriction) are decorated with some type information, that shall be
made explicit in the next section. While several proposals for Mobile Ambient
calculi use replication, infinite behaviour is represented using recursion in CA.
This is mostly due to the fact that recursion allows for an easier specification
of loops, especially in the context of resource consumption. Note also that,
compared to the original calculus of Mobile Ambients, we restrict ourselves to
communication of ambient names only, and we do not handle communicated
capabilities.

The null process 0 does nothing. Process M.P is ready to execute M, then
to proceed with P. P|Q is the parallel composition of P and Q. m[P] is the
definition of an ambient with name m and contents P. The process (vn : A)P
creates a new, private name n, then behaves as P. The recursive construct
rec X.P behaves like P in which occurences of X have been replaced by rec X.P.
Process (n : A)Q is ready to accept a message, then to proceed with @ with
the actual message replacing the formal parameter n. (m) is the asynchronous
emission of a message m. In most cases, we omit the terminal 0 process. We
say that a process is prefized if it is of the form M.P, rec X.P or (z : A)P.

The operational semantics is defined in two steps: structural congruence,
written =, is the least congruence relation statisfying the laws of Figure 3;
reduction, written —, is then introduced in Figure 4. We let —* stand for
the reflexive transitive closure of —.

P,Q,R == 0 null process
| M.Q adding a capability to a process
| m[Q] formation of ambient m
| QIR parallel composition of processes
| (vn:A)Q generation of a fresh name n with type annotation A
| rec X.Q recursive construction
| X process variable
| (n:A)Q abstraction (message reception) with type annotation
| (m) message emission
M = inm enter m
| outm leave m
| openm,h open m
| ingm m may climb in upwards
| ingm m may climb in downwards
| outym m may climb out upwards
| out, m m may climb out downwards
|

open {m,h} h may open m

Figure 2: Controlled Ambients - syntax

P=P|0 S - parnil (vn:A)0=0 S — resnil
P|Q =Q|P S — parcomm P|(Q|R) = (P|Q)|R S — parass
(vn: A)(PIQ) = ((vn: A)P)|Q ifn ¢ fn(Q) S — respar
(vn: A)(vm : B)P = (vm: B)(vn: A)P S — resc

(vn: A)ym[P] =m|[(vn: A)P]lifn#m S — resamb

Figure 3: Controlled Ambients - Structural Congruence

2.2 Examples

We now provide a few examples to illustrate the use of Controlled Ambients.
We omit for the moment type annotations in restrictions; these will be made
explicit in the next section.

Renaming. Since movements in Controlled Ambients require some knowledge
about the name of moving ambients (also in cocapabilites, which is not the case
in Safe Ambients), renaming may be useful in order to comply with some pro-
tocols. One may write the renaming of ambient a to b as follows:

abebP £ blout a.in| a.open a] | outs b.in b.open {a,b}.P.
We then have iny b.out| a | ala be b.P] —* b[P]. This important example is
also characteristic of Controlled Ambients, since iny b.out a illustrates a partic-
ular programming discipline: a’s parent ambient must accept the replacement

of a by b. This means that, at any time, the father ambient knows its own
contents, that is both the number of subambients and their names.

mlin n.P | Q] | nlingy m.R | S| |outy mT — n[m[P | Q]| R|S]|T (R —in)
n[mlout n.P | Q] | outy m.R | S] | int mT — m[P | Q] |n[R|S]|T (R— out)
hlopen m.P | Q | m[open {m,h}.R | S]] — hR[P |Q | R | S] (R — open)
(n) | (z: A)P — P{z + n} (R — msg)
rec X.P — P{X < rec X.P} (R — rec)
P—Q Q — R
(vn: A)P — (vn: A)Q (R — res) P|Q — P|R (R — par)
P—Q P=Q Q@Q—R R=S
n[P] — n[Q] (R — amb) P—S (R— =)

Figure 4: Controlled Ambients - Reduction

Safe Ambients Cocapabilities. As mentioned earlier, Safe Ambients [14]
introduce another kind of cocapabilities, similar to ours, though weaker. We
concentrate here on the SAin cocapability (the case of SAout being symmetri-
cal). Its semantics is defined by

alinb.P | Q] | b[SAinb.R|S] — bR|S|a[P]|Q].
By carrying on the idea behind renaming, we can approximate the working of
this cocapability in CA. In other words,

alin b.P | Q] | b[SAin b.R | S]

may be written

(vm,n) (a[outy m.in b.(P | n[out a.0pen {n,b}] | outy n) | Q
| m[out a.in b.open {m,b}.in| al|
| bin; m.open m.ins n.open n.R | S] | iny m.out; m.out; a)

As specified, this expression reduces to b[R | S | a[P | Q]]. Again, just
as was the case for renaming, the father must accept the transaction with
int m.out; m.out; a. Hence, in order to accept this transaction, the father
ambient must know the existence of a. This is coherent with the spirit of CA:
cocapabilities allow each ambient to know its children at any time.

Firewall. We revisit the firewall example of [2], and consider a system f, pro-
tected by a firewall. Only agents aware of the password g are allowed in f. This
may be modeled as:

Agent P Q
System

agentin g.in| entered.open entered.P | Q]
(vf)flrec X .(glout f.in, agent.in f.open {g, f}]

| outy g.in| g.open g.(entered[in agent.open {entered, agent}]
| outy entered.X))]

| rec Y.iny g.out| agent.out g.Y’

> 1>

This system implements two authentifications: in the first place, the Agent
must be named agent - it will not enter f by accident. In the second place, it
must know the password. Note that this is not the Firewall described in the
original paper on Mobile Ambients [2], which relied on the secrecy of three keys.

This version uses only one key and takes advantage of the synchronization mech-
anism to execute correctly. The basic ideas are the following: System receives
agent and then recovers its original structure thanks to rec . The structure of
g guarantees that, at any time, g may only contain one agent. On the other
hand, System may contain any number of agents.

Method calls. The semantics of cocapabilities in and out allows us to draw
some analogies: a process of the form m[in| a.P | in| b.Q)] accepts only incoming
ambients named a or b, and may react immediately - and differently - upon
arrival of these ambients. This may be used to represent a system with two
ports or a program with two entry points a and b.

This mechanism is also somehow reminiscent of method calls in (concurrent)
object-oriented languages: an ambient may be seen as an object offering several
methods, say myq, ..., mg, which can be triggered upon entrance of an ambient
having name m; for ¢ € [1...k] (corresopnding to the execution of cocapability
in m;). A logo-like turtle object would be implemented as follows:

turtle[in turn left.P; | in turn right.P; | in step_forward.Ps | ...]
Of course, this observation just suggests an analogy; a real study of the encod-
ing of object-orientation in Controlled Ambients goes beyond the scope of this

paper.

Cab. As shown in Figure 5, the cab protocol may be rewritten so as to take
advantage of Controlled Ambients. We do not present the new version of the
city itself or of the sites, which only need to contain all authorizations to move
in or out, in addition to clients and cabs.

Thanks to the cocapabilities, synchronizations in CA are both easier than
those of Mobile Ambients and atomic. Additionally, the system is not subject
to the interferences we have presented: only clients may enter the cab, not just
any “parasite” ambient which happens to contain capability in cab. Similarly,
sites only welcome clients, cabs and calls.

Note that in this version, all clients must be named client in order to en-
ter a cab. In order to relax this constraint, one could use renaming or the
approximation of SAin (see above).

Additionally, as was planned, Controlled Ambients permit the control of re-
sources such as available space in cabs. As opposed to the Mobile Ambients
version, we may easily check that the cab may contain at most only one pas-
senger and possibly an auxiliary ambient call, trip, arrived or end. This will
be expressed formally using our type system in Section 3.

2.3 Benefits

We now make a few more comments on the definition of Controlled Ambients,
stressing some aspects we have seen on the previous examples.

The formalism of Controlled Ambients is more reasonable than Mobile Am-
bients or Safe Ambients. More reasonable insofar as the implementation of
movements in ambient calculi suggests this kind of three-way synchronization.
Let us consider the following transition in Mobile Ambients:

h[mlin n] | n[0]] — h[n[m[0]]].

Message emitted by client

call from 2 call[out client.out from.
in cab.open {call, cab}.in from.in| client]
Instructions given by client
trip from to 2 trip[out client.open {trip, cab}.out from.
in to.arrived[open {arrived,cab}.
end[open {end, cab}.out to]]]
The client

client from to 2 client[call from | outy call.in cab.trip from to
| outy trip.out cab
The cab

cab

cablrec X.in| call.open call.in; trip.open trip.
open arrived.out; client.open end.X|

Figure 5: Cab protocol — CA-style

As shown in [8, 18], a practical implementation of this rule requires that h
must be aware of the presence of n, no matter how n may have entered h. More
generally, the execution of this rule will need a synchronization between n (who
is present), m (who looks for n) and h (who knows about m and n). Similarly,
the opening of ambient m by ambient h requires some complex synchronization
between m and h in order to recover all processes and subambients of m in h
and update presence registers of h.

Controlled Ambients are also more realistic as modeling tools. When a sys-
tem receives informations, it must be by some action of his: the operating system
“listens” on a device, the configuration server waits for a request by “listening”
on some given TCP/IP port ... Unfortunately, this listening aspect is not ren-
dered at all by Mobile Ambients and only in half of the cases by Safe Ambients.
Similarly, a system must be able to wait for several kinds of informations and
to sort them according to their origin: the OS is able to differentiate data read
on a disk from data read on the network or on the keyboard, while software
may listen on several communication ports, for example. As opposed to these
two formalisms, and as shown above, Controlled Ambients may naturally render
this port listening aspect, as well some form of method invocation, or of pat-
tern matching. Of course, through renaming and infinite loops of cocapacities,
we may also model situations where some part of the system (i.e. the network
connexion itself) accepts data without listening for it.

3 Typing Controlled Ambients

This section is devoted to the presentation of a basic type system for resource
control in Controlled Ambients. We first describe the system and its properties,
and then show the kind of information it is liable to capture on some examples.

3.1 The Type System

Types and Type Judgments. The grammar for types is given in Figure 6,
and includes entries for the types of ambients, processes and messages (we let
N stand for NU {o0}).

A == CAAwmB(s,e)[T] s€N,ec N ambients

U == CAProc(t)[T] teN processes

T == Ssh messages
| tA teN

Figure 6: Types

The typing judgments are defined using environments, ranged over with T,
which are lists of associations of the form z : A (for ambient names) or X : U
(for process variables). We write I'(z) = A (resp. I'(X) = U) to represent the
fact that environment I' associates A (resp. U) to z (resp. X). I',z : A stands
for the extension of I with the association x : A, possibly hiding some previous
binding for z (and similarly for T', X : U).

The typing judgment for ambient names is of the form

I' - n: CAAwMB(s,€)[T],
and expresses the fact that under assumptions I', n is the name of an ambient
of capacity s, weight e, and within which messages carrying information of type
T may be exchanged. The capacity s represents the number of resource units
(resources for short) that are available within n, while e is the number of re-
sources this ambient is using in its surrounding ambient. Note that while an
ambient may have an infinite capacity (s = 00), it cannot manipulate infinitely
many resources (e < 00). The type T for messages captures the kind of names
being exchanged within n, similarly to Cardelli and Gordon’s topics of conver-
sation [3], augmented with an information ¢ which represents a higher bound on
the effect of exchanging messages within n (we shall come back to this below).
The typing judgment for processes is written
' - P:CAProc(t)[T],
meaning that according to I', P is a process that may use up to ¢ resources, and
take part in conversations (that is, emit and receive messages) having type T

Typing Rules. The only typing rule for ambient names is straightforward:

I'(n) = CAAMB(s,e)[T]

I'Fn:CAAMB(s,e)[T| CA —name

Let us now examine the typing rules for terms. Typing cocapabilities just
amounts to express the meaning of types, as introduced above:
' P:CAProc(t)[T] T+ m:CAAMB(s,e)[T']
I+ ing m.P : CAPROC(t + €)[T]
' P:CAProc(t)[T] TFm:CAAMB(s,e)[T'] CA — coout
T'F outs m.P : CAPROC(t — €)[T] t>e

CA — coin

10

Here § ranges over a direction tag, which can be 1 or |. Exercing a in m ca-
pability has the effect of acquiring an amount of resources equal to m’s weight
in the current ambient. Similarly, letting ambient m leave releases some re-
sources. Note however that the number ¢ of resources allocated to the process
must remain positive after decreasing. This is made possible by the subtyping
property of the system (Lemma 1). In particular, the typing rule for 0 allows
one to allocate any number of resources for the inactive process:

Tr0: CAProo()r] ¢4~ ™

Thus, to type a term whose action is just to let ambients exit the current am-
bient (using out capabilities), we have to allocate enough resources for the
occurrences of the terminal O process. In this sense, information ¢ in the type of
a process P is not really in this case a measure of the effect of P from the point
of view of resource usage, but rather represents some kind of resource allocation
for P.

Exercing movement capabilities does not change anything in the current am-
bient from the point of view of resource usage:

' P : CAPRrocC(t)[T]
T'Fin m.P: CAProc(¢)[T]
'+ P: CAPRrOC(¢)[T]
'k out m.P : CAPRrROC(?)[T]
When opening an ambient, we release the resources it had acquired (e), but

at the same time we have to provide at least as many resources as its original
capacity (s):

CA—in

CA — out

I'm:CAAMB(s,e)[T] T+ P:CAProc(t)[T] CA— open
T - open m.P : CAPROC(t — e + 5)[T t—e+s>0

The open capability plays no role from the point of view of resource control,
as illustrated by the rule below (note, still, that message types in the opening
ambient and in the type of R are unified using this rule). We shall present in
Section 4 more refined systems where a more precise typing of opening permits
a better control.

I'-m: CAAMB(s,e)[T] T+ R:CAPRroc(t)[T]
I'+open {m,h}.R: CAPROC(t)[T]

C A — coopen

When forming an ambient, we must check that the resource allocation for
the contents is compatible with the ambient’s capacity (condition a < s):

F'Fm:CAAwMB(s,e)[T] T+ P:CAProc(a)[T] CA — amb
'+ m[P]: CAProc(¢)[T"] a<se<t
Here we allocate at least e resources for m[P] (condition e < t): the ability to
“waste resources” this way is of no harm, and is needed in order to guarantee a
subtyping property (Lemma 1). A similar mechanism will be used in the typing
rules for recursion and communication (see below).
The typing rule for parallel composition says that we have to split resources

11

between the components.

'k P:CAProc(t)[T] T+ Q:CAProc(t)[T]
'+ P|Q : CAPRrOC(t + t')[T]
Creating a new name has no influence on the management of resources, as shown
by the rule for restriction.

CA — par

F'n:A-P:U
'k(wn:AP:U

CA —res

To type recursion, we must make sure that the process runs “in constant
space”, as expressed by rule CA — rec: any call to the loop will require the
same amount of resources (t) as the whole term; this is expressed by adding
hypothesis X : CAPrROC(¢t)[T] to T

I'(X) = CAPrOC(t)[T] CA — var — proc

[+ X : CAProc(#)[T) t'>t
I, X : CAProc(t)[T])+ P : CAProOC(t)[T] CA — rec
I'rec X.P: CAProc(t')[T] t' >t

We now explain the typing rules for communication. Since reception of a
message can trigger a process which will necessitate a certain amount of re-
sources, we attach to the type of an ambient the maximum amount of resources
needed by a receiving process running within it: this is information ¢ in an
ambient’s topic of conversation. Put differently, messages are decorated with
an integer representing at least as many resources as needed by the processes
they are liable to trigger: we are thus somehow measuring an effect in this case.

'Em:A CA — send
L'+ (m) : CAProc(¢')[t, 4] t' >t

I',z: AF P: CAPRrOC(t)[t, 4]

Tk (z: A)P: CAPrOC(t')[t, 4]
In this approach, we assume that one emission typically corresponds to several
receptions. The dual approach could have been used, by putting in correspon-
dence one reception and several concurrent emissions. Qur experience in writing
examples suggests that our hypothesis is the most frequent one, not to mention

that the dual option seems less friendly to other type systems such as Single-
Threadedness Types [14].

CA — receive

3.2 Static Resource Control

We now present the main properties of the type system. We start by some
technical properties about typing derivations.

Lemma 1 (Subtyping) Let P be a process and T' an environment. Then:

if T+ P:CAPRroC(t)[T] then V¢ >t,T'+P:CAProC(t)[T].

Proof: See Annex A.1. O

12

Corollary 2_(Minimal typing) If a process P is typeable in T, there is a
minimal t € N such that T' = P : CAPROC(?)[T.

Note that the minimal parameter ¢ can be different for each possible value
T (see for example rule CA — send). Also note that not every term may be
typed (taking s = oo for all ambients), because of the type constraints of the
form (vn: A).

Let us now examine resource control. In order to be able to state the prop-
erties we are interested in, we extend the notion of weight, which has been used
for ambients, to processes, by introducing the notion of resource usage, together
with a natural terminology:

Definition 3 (Resource policy and resource usage) We call resource pol-
icy a typing context.

Given a resource policy I', we define the resource usage of a process P ac-
cording to I', written Resr(P), as follows:

e if I'(a) = CAAMB(s,€)[T], then Resr(a[P]) = ¢;
e Resr(Py|P;) = Resr(Py) + Resr(P2);

e Resp((vn: A) P) = Resrpn.4(P).

e in all other cases, Resp(P) = 0.

Note in particular that according to this definition, prefixed terms (capabil-
ities, reception, recursion) do not take part in a process’ current resource usage
(accordingly, their resource usage is equal to 0).

We now define formally what it means for a process to respect a given re-
source policy.

Definition 4 (Resource policy compliance) Given a resource policy T, we
define the judgment T’ = P (pronounced “P complies with I'”), as follows:

e ifI' = n[P] iffT' = P and there ezists s,e,T such thatT'(n) = CAAMB(s, e)[T],
and Resp(P) < s;

e I' = PP iffT E P andT | Py;

eI'E(wn: AP iffTy)n: A E P;

e in all other cases, T' = P.

The typing rules ensure that a typeable term complies with a resource policy:

Lemma 5 (Typeable terms comply with resource policies) For any pro-
cess P, resource policy T' and process type U, if '+ P :U, then T = P.

Proof: See Annex A.3. |
The following theorem states that typability is preserved by the operational
semantics of Controlled Ambients:

Theorem 6 (Subject Reduction) For any processes P,Q, resource policy T
and type U, if T P:U and P — @, then' F Q : U.

13

Proof: See Section A.7.

|

We finally come to our main result, which is a direct consequence of Lemma 5

and Theorem 6:

Theorem 7 (Resource control) Consider a resource policy I' and a process
P such thatT' = P : U for some U. Then for any Q such that P —* Q, it

holds that T |E Q.

3.3 Examples

Renaming. As already mentioned, one possible expression of renaming is:

a be b.P £ blout a.in, a.open a | out; b.in b.open {a,b}.P.

Let us try and type afa be b.P] in environment I' such that

P(a) =
L)y =
F P :CAProc(s)[T]

CAAMB(s,€e)[T]
CAAMB(s,e)[T]

and s > e. The derivation appears on Figure 7. It shows that this renaming
mechanism is compatible with the typing discipline we propose.

Typing b[-- -]
'-o: CAPRroc(0)[T] CA—nil
'+ opena: CAPRroc(s — €))[T] CA — open
I'tin, a.opena: CAPRroc(s)[T) CA — coin
T+ out a.in| a.open a: CAPRroc(s)[T] CA — out
I' I blout a.in a.open a : CAProc(e)[T] CA — amb
Typing af-- -]
'-P: CAPRroc(s)[T] by hypothesis
T + open {a,b}.P: CAPRroc(s)[T] CA — coopen
I+ in b.open {a,b}.P : CAProc(s)[T) CA—i
T F outy b.in b.open {a,b}.P: CAPROC(s — e)[T] CA — coout
LEb[--]: CAProc(e)[T] proved above
LHb[---]|outy b.---: CAPRroc(s)[T) CA — par
Tkal-]: CAPRroc(e)[U] CA— amb

Figure 7: Typing of renaming

We can actually slightly relax the conditions on types. One can show that
the least set of conditions to type the renaming is:

{ M@ -

Firewall.

—

—~

(=)

~—~
|

CAAMB(s4,€4)[T]
CAAMB(Sb, 6b)[T]

' - P:CAProc(tp)[T]
tp < 84,66 < Sa,84 < Sby€a < Sp

14

Let us recall one possible expression of a firewall:

Typing glout f.in| agent.in f.open {g, f}]

A b out f.in| agent....: CAProc(1)[T] CA — coin
AFg[---]: CAProc(0)[T] CA — amb
Typing out; g.in; g.open g.(entered|- - -]|outs entered.X)
AFX: CAPRroc(t)[T] CA — var — proc
A | outy entered.X : CAProc(t)[T] CA — coout
A | entered[-- -] : CAPRroC(0)[T] CA —amb
A | entered|-- -] | outy entered. X : CAPROC(t)[T] CA — par
At open g.(-++): CAPRroc(t + 1)[T] CA — open
Atiny g.open g, f. - CAPRroc(t + 2)[T] CA — coin
A\ outy g.iny g.open g, f.--: CAProc(t + 1)[T] CA — coout
At g[---]|outy g.---: CAPRroc(t + 1)[T CA — par
FtrecX.---: CAProc(t)[T] A=B CA—rec

Where A = CAPRrROC(t)[T] and B = CAPRrOC(t + 1)[T]

Figure 8: Typing the firewall - simplified derivation

Agent P Q
System

agent[in g.in| entered.open entered.P | Q]

(vf : CAAMB(00,0)[T7)

frec X.(glout f.in| agent.in f.open {g, f}]

| out; g.in, g.open g.(entered[in agent.open {entered, agent}]|
| outy entered.X))]

| rec Y.iny g.out agent.out] g.Y

> 1

Any fully formal typing of this system would take pages. For the sake of
simplicity, let us make the following assumptions:

{ I'(agent) = CAAwMB(ap + ag,1)[T] { r'(f)
['(entered) = CAAwMB(0,0)[T] T'(g)

CAAMB(o0, 0)[T]
CAAMB(1,0)[T]

Figure 8 presents a simplified typing derivation for part of the system. In
this figure, we write A for I', X : CAProOC(t)[T].

This typing requires CAPROC(¢)[T] = CAPROC(¢ + 1)[T]. This is possible
if and only if ¢ = 0o, and as a consequence the capacity of f should also be co.
In other words, the firewall is supposed to have infinite size. This is no surprise,
since it may actually receive any number of external ambients. However, these
ambients are contained in the firewall. Hence, one may still integrate this firewall
as a component in a system with limited resources and resource control.

15

Cab. Let us consider an environment I' such that

I(client) = CAAwmMB(0,1)[T] I'(end) = CAAMB(0,0)[T]
T(call) = CAAwMB(1,0)[T] I(cab) = CAAMB(1,0)[T]
L(trip) = CAAwMB(0,0)[T] [(site;) = CAAMB(o0,0)[T]
I'(arrived) = CAAwMB(0,0)[T] I(city) = CAAMB(0,0)[T]

Note in particular that this resource policy specifies that among the ambients
that may enter the cab, only those named client are taken into account for
resource control: this corresponds to the property we focus on when analyzing
the cab. With these assumptions, the complete cab system is typeable. From
the derivation, we prove that resources are statically controlled in cabs: at any
step of its execution, the cab may contain at most one client. Moreover, by
changing our resource policy in such a way that ambients call, trip, arrived
and end have weight 1 while client has weight 0, we can type the cab as having
size 1. This second typing lets us control the number of “auxiliary” ambients:
at any time, at most one of those may be present in the cab.

4 Other Systems

In this Section, we present several refinements of type system of Section 3, that
we call systems R, Z and RZ. While the basic system we have presented so far
allows one to type many interesting examples, some relatively simple examples
show its limitations. For instance, let us define
T, £ afopen {a,b}.rec X.(X | b[0])] | open a,
and suppose that the weight of b is not 0. The construction rec X.(X | b[0]) then
requires infinite resources. Although the execution would not use any resource
inside a, our type system cannot capture this property: the typing will require
a to have an infinite capacity.
Similarly, let us define
T, £ hlrec X.(m[in, n.out; n.open {m,k}] | out, n.in; n.open m.X)
| n[rec Y.in m.out m.Y]],
and suppose that the weight of n is not 0. By following the evolution of this
term, one may easily notice that a finite capacity for h should be sufficient.
However, trying to apply our system to term 7%, we conclude that the capacity
of h must be infinite.
In both cases, the typing system is not refined enough to express a resource
control property. More specifically, the opening controls resources too strictly.
During the discussion, let us use the following notations for the rule R — open:

hlopen m.P | Q | m[open {m,h}.R| S]] — h[P | Q | R| S]
In order to try and refine the typing of opening, one may want to make the

control on P, @, R or S more precise. For technical reasons, we have chosen to
concentrate on R and S.

System R In System R, we introduce a third parameter in ambient types,
named r. In CAAwmB(s,e,7)[T], 7 € N is an upper bound for the number of
resources allocated to R in the opening ambient. Typing rules for open and
open become:

16

I'tm: CAAMB(S,C,T)[T] I'-P: CAPROC(t)[T] CA— open

I+ open m.P: CAPROC(t — e + s +7)[T] t—e+s+r>0
'km: CAAMB(S, e,r)[T] '-R: CAPROC(t) [T] CA— coopen
I' - open {m,h}.R: CAPrOC(t')[T] t<r

Using these alternative rules, term 77 may be satisfactorily typed (i.e. with
a finite capacity for a), taking r = co. Additionally, we checked that all results
of Section 3.2 still remain valid. However, System R does not help with term
Ts.

System Z System Z, on the other hand, improves the control on S. This is
particularly important, for processes such as
M.--- .M,.open {m,h}.R :

although M;.--- .M, might acquire as many as, say, s resources, it might also
release some or all of them before the actual opening. By taking these releases
into account, we may get a better approximation of resource consumption. To
do so, we can introduce a parameter z < s, representing this better approxi-
mation. More precisely, in System Z, ambient types become CAAMB(s, e, 2)[T
with z € N and z < s, and the typing rules are:

I'm:CAAMB(s,e,z)[T] I'kP:CAPrOC(t)[T] CA— open
I't-open m.P : CAPROC(t — e + 2)[T] t—e+z2>0

IF'tm:CAAMB(s,e,2)[T] T+ R:CAPRrROC(t)[T]
I'+open {m,h}.R: CAPROC(t + s — 2)[T

CA — coopen

In turn, System Z permits a good analysis of term 75, but cannot handle
term T any better than the basic system. Additionally, results from Section 3.2
also remain valid on System Z.

System RZ System R and System Z may be naturally merged into System
RZ, which yields a more accurate analysis of resources, with ambient types of
the form CAAMB(s,e,r,z)[T],r € N,z € Nand z < s and the following rules:

I'+m:CAAMB(s,e,r,2)[T] T+ P:CAPRroOC(?)[T) CA — open

'+ open m.P: CAPrROC(t —e+ z +7)[T] t—et+z+r>0
I'm:CAAMB(s,e,7,2)[T] T'R:CAPROC(t)[T] CA — coopen
I+ open {m,h}.R: CAProOC(¢)[T] t<rt' >s—z

As expected, System RZ correctly handles both terms T and T3, and results
from Section 3.2 also remain valid. Hence, System RZ is a more refined although
more complicated type system.

5 Conclusion

The language of Controlled Ambients has been introduced to analyze resource
control in a distributed and mobile setting through an accurate programming
of movements and synchronisations. We have enhanced our formalism with
a type system for the static control of resources, and extensions of the basic

17

type system have also been presented. Further, examples show that indications
on the maximal amount of resources needed by a process match rather closely
the actual amount of resources which may be reached in the worst case, which
suggests that the solution we propose could serve as the basis for a study of
resource control properties on a larger scale.

We are indeed working on applying this formalism (or an extension of it) to
analyze some examples of concurrent computation involving a form of mobility.

Among extensions of the present work, we are currently working on type
inference for our system. It seems that by requiring the recursion variables to
be explicitely typed, type inference is decidable, and a rather natural algorithm
can compute a minimal type for a given process, if it exists. In particular, the
“message” component of terms leads to a classical unification problem. The
question becomes more problematic if no information is given for recursion vari-
ables: one can compute a set of inequalities (resembling those given for the
example of renaming in Section 3), but solving it in the general case would
require more work.

We are also working on an extension of the language and type system, to
include communication of capabilities, as in the original Mobile Ambients cal-
culus [2]. This should make the translation of properties and encodings from
Mobile Ambients more easy.

Meanwhile, we plan to study whether our approach can be adapted to other
formalisms for mobile and distributed computation such as the distributed -
calculus [17] or the distributed join-calculus [7]. Along the same ideas, in some
process calculi without any primitive notion of site, we could choose to regard
name creation as a form of resource allocation, and find out whether (some of)
our ideas can be adapted to this setting.

We could also consider combining our type system for resource control with
other typing disciplines, adapted from the Single Threadness types of [14], or
the Mandatory Access Control of [1]. It seems that Controlled Ambients could
also be used to approximate some of the analyses done in [6, 11], where, in a
context where security levels are associated with processes, types are used to
check that no agent can access an information having a security level higher than
its own. In the simple case where we have two security levels, we could attach
weight 0 to agents of high level, and 1 to low-level agents, and store high-level
information in ambients of size 0: in such a framework, our type system can
guarantee that only high-level processes can enter high-level data. Of course
this is a very rough approximation, and a more refined account of access control
in Controlled Ambients needs further investigation.

We have not addressed the issue of behavioural equivalences for Controlled
Ambients. A possible outcome of such a study could be to validate a more elab-
orate treatment of resources involving operations like garbage collection, which
would allow one to make available uselessly occupied resources. An example
is the perfect firewall equation of [9]: when ¢ ¢ fn(P), process (vc)c[P] may
manipulate some resources while being actually equivalent to 0).

Other Related works. Other projects aim at controlling resources in possi-
bly mobile systems without resorting to mobile process algebras. [13] presents a
modified ML language with sized types in which bounds may be given to stack
consumption. Like in our framework, resources are releasable entities; however,

18

this approach seems more specialized than ours, and moreover concentrates on a
sequential model. Similarly, [5] introduces a variant of the Typed Assembly Lan-
guage “augmenting TAL’s very low-level safety certification with running-time
guarantees”, while Quantum, [16] may be used to describe distributed systems
from the point of view of their resource consumption. In contrast to our ap-
proach, both systems consider non-releasable resources. Another programming
language, PLAN [12], has been designed specifically for active networks, and
also handles some form of resource bounds. Although PLAN accounts for both
releasable (space, bandwidth) and non-releasable (time) resources, it handles
neither recursion nor concurrency on one node.

These works all focus on resource control. However, none of these approaches
can be directly compared to ours. It might be interesting to study if and how
our approach can be integrated to these works, in order to combine several forms
of resource control.

Another form of accounting on mobile ambients is introduced in [4]: Finite-
Control Mobile Ambients. In a calculus with a slightly different form of recursion
than in CA (and without cocapabilities), the authors introduce a type system
to count the number of active outputs and ambients (at any depth) in a pro-
cess. This analysis, however, is not aimed at resources: it tries and isolate a
finite-control fragment of mobile ambients on which model checking w.r.t. the
Ambient Logic is decidable through state-space exploration.

Acknowledgments We would like to thank Davide Sangiorgi for suggesting
the original idea behind Controlled Ambients and providing insightful sugges-
tions along this work.

References

[1] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. TACS 2001,
LNCS 2215, pages 38—-63. Springer Verlag, 2001.

[2] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, Proceedings
of Foundations of Software Science and Computation Structures (FoSSaCS’98),
volume 1378, pages 140-155. Springer Verlag, 1998.

[3] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Symposium on Prin-
ciples of Programming Languages (POPL’99), pages 79-92. ACM Press, 1999.

[4] W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile ambients.
In European Symposium on Programming 2002 - Lecture Notes on Computer Sci-
ence. to appear.

[5] K. Crary and S. Weirich. Resource bound certification. In Symposium on Prin-
ciples of Programming Languages (POPL’00), pages 184-198. ACM Press, 2000.

[6] M. Dezani-Ciancaglini and I. Salvo. Security types for mobile safe ambients. In
Asian Computing Science Conference (ASIAN’00), LNCS 1961, pages 215-236.
Springer Verlag, 2000.

[7] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In Proceedings of the 7th International Conference on Concurrency
Theory (CONCUR’96), pages 406-421. Springer Verlag, 1996.

[8] C. Fournet, J.-J. Lévy, and A. Schmitt. A distributed implementation of mo-
bile ambients. In Proceedings of IFIP International Conference on Theoretical
Computer Science (IFIP TCS 2000), pages 348-364. Springer Verlag, 1872.

19

[9]

(18]

A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. In
W. Thomas, editor, Proceedings of the Second International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS ’99), volume
1578 of LNCS, pages 212-226. Springer Verlag, 1999.

X. Guan, Y. Yang, and J. You. Making ambients more robust. In Proceedings of
the International Conference on Software: Theory and Practice, pages 377-384,
Aug 2000.

M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
In Proceedings of HLCL ’98: High-Level Concurrent Languages, number 16.3 in
Electronic Notes in Theoretical Computer Science, pages 3-17. Elsevier, 1998.

M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A Packet
Language for Active Networks. In Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming, pages 86-93. ACM Press,
1999.

J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded
space: Towards embedded ML programming. In International Conference on
Functional Programming, pages 70-81. ACM Press, 1999.

F. Levi and D. Sangiorgi. Controlling interference in ambients. In Symposium on
Principles of Programming Languages, pages 352—-364. ACM Press, 2000.

M. Merro and M. Hennessy. Bisimulation congruences in safe ambients, 2002. to
appear in Proc. of POPL’02.

L. Moreau. A distributed garbage collector with diffusion tree reorganisation and
mobile objects. In International Conference on Functional Programming, pages
204-215. ACM Press, 1998.

J. Riely and M. Hennessy. A typed language for distributed mobile processes. In
Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Diego, California, pages 378-390.
ACM Press, 1998.

D. Sangiorgi and A. Valente. A distributed abstract machine for Safe Ambients.
In Proc. of ICALP’01, 2001.

20

A Proofs

A.1 Subtyping

Lemma 1 (Subtyping) Let P be a process and I" an environment. Then

if T+ P:CAPROC(f)[T] then V# >¢T+ P:CAPRoC(t)[T]

Proof: By induction on the derivation of I' H P : CAProOC(?)[T].

Cases CA-nil, CA-amb, CA-rec, CA-var-proc, CA-send
and CA-receive:
In all these cases, the parameter ¢ is free with a lower bound. As a
consequence, we can upgrade it as much as we want.

Cases CA-res, CA-par, CA-in, CA-out, CA-coin, CA-coout,
CA-open and CA-coopen:
All these cases require only a simple induction step.

A.2 Strengthening and Weakening
Lemma 8 IfT'\n: AF-P:U andn ¢ fn(P), thenT+P:U.

Lemma 9 IfT', X :U'+-P:U and X ¢ fu(P), then T+ P:U.

Lemma 10 IfT+P:U andn ¢ fn(P), thenT,n: A+ P:U.

A.3 Resource Control

Lemma 11 IfT + P : CAProC(t)[T], then Resp(P) < t.

Proof: By induction on the derivation of I' H P : CAProOC(?)[T].

Case CA-amb We have I' - n[P] : CAPROC(¢)[T] with e < ¢, where e is the
weight of n in I'. Then, Resp(n[P]) =e < t.

Case CA-par I' - P|Q : CAPROC(tp + tg)[T] must have been derived from
I' - P : CAProC(tp)[T] and T' - Q : CAPRrROC(tq)[T]. By induction
hypothesis, Resr(P) < tp and Resr(Q) < tg. Then, Resr(P|Q) =
ResF(P) + ReSF(Q) S tP + tQ.

Case CA-res I' I (vn : A)P : CAPROC(¢)[T] must have been derived from
I,n: AF P : CAPrRoc(t)[T]. Then, by induction hypothesis, we have:
Resp((vn : A)P) = Resp n.4(P) < t.

Other cases For all other cases, Resp(P) =0 < t.

|

Lemma 5 (Typeable terms comply with resource policies) For any pro-
cess P, resource policy I and process type U, if I' -+ P : U, then " &= P.

Proof: By induction on the structure of P.

21

Case P|Q Since P|Q is typeable in ', so are P and). By induction hypothesis,
I'}=Pand [= Q. Then, T = P|Q.

Case (vn: A)P Since (vn : A)P is typeable in ', P must be tyepable in I',n :
A. By induction hypothesis, I',n : A = P. Then, I = (vn: A)P.

Case n[P] This is the main case; we have to check two properties.

e First, P should respect I'. Since n[P] is typeable in I', P is also
typeable. We conclude I" = P by induction hypothesis.

e Secondly, the resources of n should be locally controlled according to
T, that is Resp(P) < s where s is the capacity of n in I'. Since n[P] is
typeable in I', we have from rule CA—amb: I'(n) = CAAMB(s, e)[T]
and I' - P : CAPROC(¢t)[T], with the condition ¢t < s. By Lemma 11,
we can conclude: Resp(P) <t <s.

Other cases In all other cases, we have nothing to check.

A.4 Equivalence Lemma

Lemma 12 If P=Q and’'HFP:U, then T+ Q : U.
IfQ=P andTHP:U, thenTHQ:U.

Proof: By mutual induction, on the derivation of P = @ and Q = P.

Case S-parnil

o If ' F P : CAPROC(t)[T], we can type I' - 0 : CAPROC(0)[T] and
then I' - P | 0: CAPRrROC(t)[T] by CA — par.

o IfT' P | 0: CAPRrROC(¢)[T], this must have been derived by CA —
par from I' - P : CAPROC(t1)[T] and T - 0 : CAPROC(t2)[T] with
t1 +t2 = ¢. Since t; < t, we have I' F P : CAPRrROC(¢)[T] using
Lemma 1.

Case S-respar

e Suppose that I' - (vn : A)(P|Q) : CAPROC(¢)[T]. This must have
been derived by CA — res from I',;n : A + P|Q : CAProOC(t)[T],
which in turn must have been derived by CA—par fromI',n: A P :
CAPRroc(t)[T]) and T',n : A+ Q : CAPROC(t2)[T] with t; + ¢t = ¢.
From the first affirmation, we get I' - (vn : A)P : CAPROC(t1)[T
by CA — res. From the second one, and since n ¢ fn(Q), we can
use Lemma 8 and obtain I' - Q : CAPROC(t2)[T]. Finally, using
CA—par,wegetI'F (v: A)P | Q : CAPROC(t)[T.

e Starting from I' - (v : A)P | Q : CAPROC(t)[T], the reasoning is
similar, except that we use Lemma 10 instead of Lemma 8.

Case S-amb (for example) I' b m[P] : CAProC(¢)[T"] must have been de-
rived by CA—amb fromT' - m : CAAMB(s,e)[T] andT' F P : CAProC(a)[T]
with ¢ < s and e < t. By induction hypothesis, since P = Q, we
have I' F @ : CAPROC(a)[T]. Then, using CA — amb, we can derive
I'Fm[Q] : CAPrOC(¢)[T].

The other cases are similar or trivial. O

22

A.5 Process Substitution Lemma

Lemma 13 If T, X :UFP:U andTHQ:U, thenT - P{X + Q}:U".
Proof: Let U = CAPROC(t)[T]. In the derivation tree of ' X : U - P : U’, all
occurrences of X must have been typed using C A—var—proc. These occurrences
have the form I', X : U - X : CAProc(¢')[T] with ¢ > ¢t. By Lemma 1, we also
have I' - Q : CAPROC(t)[T]. We can then replace the node X by a derivation
subtree for (). Thus, we get a derivation tree for I', X : U - P{X « Q} : U".

Finally, using Lemma 9, we can remove X from the environment since it is no

more used, and obtain: I' F P{X < Q}: U". O

A.6 Name Substitution Lemma

Lemma 14 IfT,y: AL P:U andT+z: A, thenTF P{y«+ z}:U.

Proof: In the derivation tree of I,y : A+ P : U, all occurrences of y must have
been typed using CA — name. If we replace them with I' - z : A, we get a
derivation tree for I',y : A+ P{y + z} : U. Finally, using Lemma 8, we can
remove y from the environment since it is no more used in P{y < z}. O

A.7 Subject Reduction

Theorem 6 (Subject Reduction) For any processes P, @, resource policy T’
and type U, if ' F P: U and P — Q,then T' - @ : U.

Proof: By induction on the derivation of P — Q.

Case R-in If A — B by one step of R — in, we have

15

Let I" be an environment such that

mlin n.P | Q] | nliny m.R | S] | out; m.T
n[R|S[mP Q[T

I'(m) = CAAMB(Sm,em)[Im]
I'(n) = CAAMB(sp,en)[Tn

r F P: CAPROC(tp)[TP]
r F Q: CAPRrocC(tg)[To]
r F R: CAPROC(tR)[TR]
r F S: CAPRroC(ts)[Ts]
r F T :CAPRroc(tr)[Tr]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in I':

23

Typing m[in n.P | Q]

FFP: CAPRroc(tp)[Tp] by hypothesis
F'FinnP: CAPRroOC(tp)[TP] CA—in
r-Q: CAPROC(tg)[To] by hypothesis
I'Finm.P|Q: CAPRroOC(tp +tg)[Tp] Tp =Tg CA — par
TFEm[-]: CAPRroc(t1)[T4] tp+tg < Sm, CA—amb

em <t1,Tp =Tp
Typing nling m.R | S]

'-R: CAPRoC(tgr)[Tr] by hypothesis
I'kin, m.R: CAPROC(tg + em)[TR] CA — coin
r=Ss: CAPRroC(ts)[Ts] by hypothesis
T'in, m.R|S: CAPROC(ts + tr + em)[Tr] Ts = Tg CA — par
T'knl--]: CAPROC(t2)[T3] ts+tr+em <s,, CA—amb

en < ta, TR = Tn
Typing toplevel

| A A CAProc(tr)[Ir] by hypothesis
'k outy m.T: CAPRroc(tr — e,)[Tr] tr > e, CA— coout
'k n[.]|W m.T : CAPROC(tT + 1 — em)[TT] Tr =Ty CA — par
THA: CAPROC(tT +t1 +ts — em)[TT] Tr =Ty CA-— par

From this set of preconditions, we deduce that the following derivation is

also valid:
'+PpP: CAProc(tp)[Tp] by hypothesis
F'FQ: CAPRroc(tg)[Tq] by hypothesis
'k PIQ: CAPRroC(tg + tg)[Tp] Tp =Tg,/ CA — par
'+ m[P|Q] CAProc(en,)[Tr] Tp =T tp +tq < 8m,/ CA—amb
F'FR: CAPROC(tg)[Tr] by hypothesis
r+Ss: CAPRrOC(ts)[Ts] by hypothesis
r'+ R‘S : CAPROC(tR + ts)[TR] Tgr = TS\/ CA — par
F'FR|S|m[--]: CAPROC(tg +ts + em)[Tr] CA — par
Tknf[---]: CAPROC(t1 + t2 — en)[Tr] en <to <ty +ts— emy/ CA — amb
Tg = TnatR +its+en < sn\/
F-T: CAProcC(tr)[Tr] by hypothesis
I'B: CAPROC(tr + t1 + t2 — e)[T7] CA — par

Case R-out If A — B by one step of R — out, we have

B mlP | Q] n[R|S]|T

{ A = nmlout n.P | Q] | outy m.R| S]|iny m.T

24

Let I" be an environment such that

CAAMB(8m, €m)[Tm]
CAAMB(sp, €,)[Th)
P : CAProC(tp)[
Q: CAPROC(tQ)[TQ]
R : CAPROC(tR)[TR]
S : CAPRroC(ts)[Ts]
T : CAProC(t7)[TT]

=
g
I

Tp]

e B Ml Mlaw M|

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in I':

Typing m[out n.P | Q]

r-pP: CAPRroC(tp)[Tr] by hypothesis
I't-outn.P: CAProc(tp)[Tp] CA —out
r-Q: CAPROC(tg)[T0] by hypothesis
I'Fout m.P|Q: CAPRoC(tp + tQ)[Tp] Tp=1Tg CA — par
T'Em[---]: CAProc(ty)[T1] tp+to < S$my, CA—amb
em < t1, Tp =T,

Typing n[m/[---] | outy m.R | S]
I'-R: CAPRrOC(tg)[Tr] by hypothesis
I'Fouty m.R: CAPRroC(tg — em)[TR] em < tgr CA — coout
FrS: CAPRoOC(tg)[Ts] by hypothesis
T F outy m.R|S : CAPROC(ts + tr — em)[TR] Ts =Tgr CA — par
L'Fm[---]louty m.R|S: CAPROC(t1 +ts +tr —en)[Tr] T1 =Tr CA — par
L'knl--]: CAPROC(t2)[T?] en <t2,Tr =T, CA—amb

t1+ts +tr —em < sp,
Typing toplevel

r+T: CAPRroc(tr)[Tr] by hypothesis
I'Fouty m.T: CAPROC(tr + ey)[T7] CA — coin
I'-A: CAPROC(tz +tr + em)[TT] T =Tt CA — par

From this set of preconditions, we deduce that the following derivation is
also valid:

FFP: CAPRroc(tp)[Tp] by hypothesis
F'FQ: CAPRroc(tg)[Tq] by hypothesis
'FPIQ: CAProc(tg + tQ)[Tr] Tp =Tq,/ CA — par
I'Fm[P|Q] CAProc(ey)[Tr] Tp =Ty tp +tg < Smy/ CA—amb
'+R: CAPRrOC(tgr)[TR] by hypothesis
FFS: CAPRoc(ts)[Ts] by hypothesis
' RIS: CAPRroc(tg + ts)[Tr] Tr=Ts,/ CA — par
'k TL[R|S] CAPROC(tz)[TT] en < tz,TR = Tn\/ CA — amb
tp+ts <ti —en+itp+ts < Sn\/

FET: CAPRroc(tr)[Tr] by hypothesis
'k B: CAPROC(t2 + tr + em) [I7] CA — par(twice)

25

Case R-open If A — B by one step of R — open, we have
{ A = hlopen m.P | Q | m[open {m,h}.R | S]]
B = h[P|Q|R|S]

Let I" be an environment such that

I'(m) = CAAMB(Sm,em)[Tm]

F(h) = CAAMB(Sh, eh)[Th]

r F P: CAPROC('L’P)[TP]
r F Q@ : CAProC(tq)[T0q]
r F R: CAPRroC(tr)[Tr]
r F S :CAProc(ts)[Ts]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in I':

Typing m|[- - -]
rrSs: CAPROC(tg)[Ts] by hypothesis
I'-R: CAPRroOC(tg)[Tr] by hypothesis
I' +-open {m,h}.R: CAPRroOC(tg)[Tr] T =Tr CA — coopen
T' - open {m, h}R | S CAPROC(tR + ts)[TR] Tr=1T1g CA — par
T I—m[] : CAPROC(tl)[Tl] tr+ts < Sm, CA —amb
€m S tl

Typing hjopen m.P | Q | m][---]]
'-Q: CAPRroC(tg)[Tp] by hypothesis
'-P: CAPRroc(tp)[Tp] by hypothesis
I' - open m.P : CAPROC(tp — € + $m)[TP] T,.,=Tp CA— open

tp—em +857, >0
I'openm.P | Q: CAPROC(tp +tQ —em + sm)[ITp] Tp=1Tg CA — par
'k open m.P|Q|m[---]: CAPROC(tp +tQ — €m + Sm +t1)[Tp] Tp =11 CA—par
'-A: CAPROC(t2)[T3] Tp =T, CA—amb
ep < ta,

tp+tg —€em + Sm +11 < sp

From these conditions, we deduce: Tp = Tg = T, = Tr = T's. Then, we
can easily type the following process with multiple applications of CA —
par:

FEP|Q|R|S:CAPRoOC(tp + tg + tr + ts)[Th]

. Using the previous conditions, we find:
tpt+itg+itrtis<tp+ig+sm <tp+ig+sm+ti—em<sn
Finally, we can apply CA — amb and obtain the typing:

I'-B: CAPROC(tz)[Tg]

Case R-msg If A — B by one step of R — msg, we have

{A = (n)|(z:N)P
B = P{z+n}

26

Let I" be an environment such that

{ I'(n) = A,
z: N + P:CAProc(tp)[Tp]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in I':

Tk (n): CAPROC(#1)][t, An] t1 >t CA — send
ILe: NFP: CAProc(tp)Tp] by hypothesis
'k (z:N)P: CAPRroc(tz)[tp,N] Tp =tp CA — receive
'-A: CAPROC(t1+t2)[tp,An] N:An,t:tp CA—pCL’/‘

With the above conditions and by hypothesis, we have:
Tyz: A, P:CAPROC(tp)[tp, An]
and I' Fn: A,. Using Lemma 14, we get:
'k P{z < n}: CAPROC(tp)[tp, Ar]
Then, since tp =t < t; < t; + t2, we can apply Lemma 1 and obtain:

I'B: CAPROC(tl + tz)[tp,An]

Case R-rec If A — B by one step of R — rec, we have

A = recX.P
B = P{X < rec X.P}

The typing I' - A : CAPROC(t')[T] must have been derived from
I, X : CAPRroc(¢t)[T] + P : CAPrOC(t)[T]

with ¢’ > ¢. Using the same rule, we can also conclude that I' - rec X.P :
CAProc(t)[T]. By Lemma 13, we have:

L'k P{X < rec X.P} : CAPROC(¢)[T]
And finally, we get I' - B : CAPROC(t')[T] by Lemma 1.

Case R-res If A — B by one step of R — res, we have A = (vn : N)P and
B = (vn: N)Q, where P — Q. Let us note A =T,n: N. Since A may
be typed in T', we easily find out that P may be typed in A with type U.

By induction hypothesis, we have A F @ : U. Hence, by CA — res, we
concludeI' - B : U.

Case R-par If A — B by one step of R—par, we have A = P|Q and B = P|R,
where) — R. Since A may be typed in I', so do P and Q. Necessiraly,
we have the following typings:

'+ A: CAProC(tp + tQ)[T]
I'- P : CAProc(tp)[T]
'+ Q: CAPRrOC(tg)[T]

By induction hypothesis, we have I' - R : CAPROC(tg)[T]. Finally, by
CA — par, we can conclude I' - B : CAPROC(tp + tg)[T.

27

Case R-amb If A — B by one step of R — amb, we have A = m[P] and
B = m|Q] where P — Q. Since A may be typed in I' with type
CAPRoOC(t)[T], so does P with type CAPROC(tp)[T},], and m with type
CAAMB(8, em)[Tin]- Additionnally, we have tp < s, and e,, < t.

By induction hypothesis, since P — @, we also have that I' - Q :
CAProc(tp)[Ty,]. Since tp < s, and e, < t, we may once again use
CA — amb. We then conclude that I' - B : CAPRroc(¢)[T].

Case R-= This case is trivial, by induction hypothesis and using Lemma 12
twice.

O

28

