Jacques Mazoyer 
  
V Eronique Terrier 
  
Jacques Mazoyer Yz 
  
Signals in one dimensional cellular automata

Keywords: Cellular automata, computability, m o ves of information Automates cellulaires, calculabilit e, mouvement de l'information

In this paper, we are interested in signals, form whereby the data can be transmitted in a cellular automaton. We study generation of some signals. In this aim, we i n vestigate a notion of constructibility of increasing functions related to the production of words on the initial cell (in the sense of Fischer for the prime numbers). We establish some closure properties on this class of functions. We a l s o exhibit some impossible moves of data.

Introduction

One of the greatest interest of Cellular automata (in short CA) is the modelization of massively parallel computation. In particular, for one dimensional CA, the interest focuses on these following topics: synchronization problems such t h a t F rench Flag and Firing Squad [START_REF] Terrier | Temps r eel sur automates cellulaires[END_REF], 1] and 6]), real time production of words on the rst cell [START_REF] Culik | Variation of the ring squad synchronization problem, I n f o rmation Processing Letter[END_REF] and 8]), real time recognition of languages ( 2], 3] a n d 5 ]). It seems that signals are intrinsic objects of massively parallel computation. Indeed the signals are not only a natural tool to collect and dispatch the information through the network but more deeply this notion appears to be a strength way to encode and combine the information.

Thus signals seem to be objects interesting to be studied in themselves. In this paper, we i n vestigate what kind of set of sites or, in other words, what kind of path can draw a signal in CA.

In section 2, we propose a formal de nition of CA and we i n troduce a notion of Fisher's constructible functions connected to the production of words on the initial cell (in the sense of Fisher [START_REF] Culik | Variation of the ring squad synchronization problem, I n f o rmation Processing Letter[END_REF]) for prime numbers).

In section 3, we list some examples of signals.

In section 4, we exhibit some impossible fast moves of the data.
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In section 6, we point out the links between Fischer's constructible functions and other notions like r i g h tward signals of a given ratio, real time unary languages and real time constructibility.

De nitions

De nition 1 A one dimensional cellular automaton A is a 4-tuple (Q ] L ) with :

Q is a nite set (states), ] i s a s p ecial state not in Q (the border state),

: Q f ]g Q Q ;! Q is the state transition function,
L is a another special state such that (L L L) = (] L L) = L (the quiescent state). We consider an half line of identical nite automata (cells) indexed by N.Each cell communicates with its two neighbors. All cells evolve s y n c hronously inducing a discrete time. The state (in Q) o f t h e k-t h c e l l a t t i m e t is denoted by < k t > .

At each step, every cell enters a new state according to the state transition function, its own state and states of its two neighbors. For t > 0 and k > 0, the state < k t > is de ned by: < k t > = (< k ; 1 t ; 1 > < k t ; 1 > < k + 1 t ; 1 >).

The rst cell having no left neighbor, we use the border state: 8t 2 N < 0 t > = (] < 0 t ; 1 > < 1 t ; 1 >). We depict the evolution of a CA on N N elementary squares on the square of coordinates k and t, w e mark state < k t > (by a n umber, a letter or a pattern). Such a picture is called the space time diagram of A.

When we w ant to emphasize not the states but the communication between cells, the previous elementary squares are reduced to points, called sites. The lines between sites (k t) and (k + t + 1 ) ( 2 f ; 1 0 1g) are marked in such a w ay that they depict the data sent b y cell k at time t to itself and its two neighbors. Such a representation is called a communication space time diagram.

In order to study how an information can be moved through the network, we start with a special initial line. All cells are in the quiescent state except the leftmost one (cell 0). This fact will allow us to study the possible moves of the data regardless of the input words. This leads us to the following de nition.

De nition 2 A one dimensional impulse cellular automaton A (in short ICA) is a 5-tuple (Q ] G L ) where (Q ] L ) is a cellular automaton, with a distinguished state G of Q such that, at initial time, all cells are in the quiescent state L except the cell 0 w h i c h i s i n s t a t e G.

The case where the input word is considered constant can be easily reduced to de nition 2: it is su cient to de ne a new half line whose cells are obtained by grouping the n signi cant cells in one cell.

We will study the sites distinguished by the initial impulse when they appear as a line in the space time diagram. In this case, at each time, only one cell is distinguished. This remark induces the following de nition of a signal. 

of Q such that < k t > 2 Q 0 if and only if (k t) 2 S. Such a signal is called C A constructible.
3. A signal is basic if the sequence of its elementary moves fc(t+1);c(t)g t2N (whose values are i n t o f;1 0 1g) is ultimately periodical. Fact 1 Basic signals are C A c onstructible. If an impulse generates a signal S such that all sites, not in S, a r e in the quiescent state (i.e. (k t) 6 2 S ()< k t>= L), then S is nite or basic.

Proof

The CA which sets up a basic signal S of period T from t 0 , h a s t 0 states which de ne S for t < t 0 (including the impulse state G), and T states for the periodic part. The gure 1 illustrates this trick o n a n e x a m p l e .

For t 2 N , w e denote the state < c (t) t >by q t . I f S is in nite, then, for all time t, q t is not quiescent ( i f q t0 = L, then the signal S does not exist for time greater than t 0 ). The in nite sequence fq t t 0g of states of QnL becomes periodical: q t+1 is obtained from q t by one of the transitions (q t L L ), (L q t L ) or (L L q t ) ( t h e c hoice between these three possibilities only depends on the value of q t ). Thus the signal S is basic.

Let S be a basic signal of period T from time t 0 and U be the sum of all elementary moves of a period: U = c(t + T) ; c(t) for any t > t 0 . The rational number T U is called the slope of S. Clearly j T U j is greater or equal to 1.

To visualize signals in a more convenient w ay, w e represent a signal of slope by a straight line of slope . T h us any signal can be depicted by straight lines. Such a representation is called a geometric diagram.

De nition 4 Let be a n i n c r easing function from N into N. is the ratio of a rightward signal S if S reaches the cell n at time (n). M o r e p r ecisely, (n (n)) 2 S but (n (n) ; 1) 6 2 S.

A rightward s i g n a l S is of speed (n) if its ratio is n (n) .

We note that 8n 2 N , (n) n and that the maximal speed is 1.

In 4], Fischer shows how the binary sequence representing the set of prime numbers can be generated by an initial impulse on the rst cell. In this point o f view, we will develop the notions of words Fischer's produced and of functions Fischer's constructible.

De nition 5 Let ! = ! 0 : : : ! i : : :be an in nite word on an alphabet A, ! is Fischer produced i f t h e r e exists an ICA (Q ] ! 0 L ) such that 8i 2 N < 0 i > = ! i with A Q (the i th letter of ! appears on cell 0 at time i).

This allows us to de ne a new notion of computation for increasing function.

De nition 6 An i n c r easing function f is Fischer's constructible (or constructible) by ICA if there exist a subset of states D of Q and a word Fischer's produced ! = ! 0 : : : ! i : : :such that ! i 2 D () 9 n 2 Ni = f(n). I t m e ans that the sites (0 f (n)) can be distinguished b y D.

3 Some examples of signals m ;! h m is Fischer's constructible where h is an xed integer and m 2 N ). Figure 2 illustrates this construction on a geometric diagram when h = 2 and h = 3 . We rst consider a basic signal h of slope h+1 h;1 : this signal appears on diagrams as a line which starts from site (0 0) and reaches cells h(h;1) 2 at time h(h+1) 2 . Another signal S remains on the cell 0 until time h, then it goes rightward at maximal speed until it reaches the signal h and then it comes back, at maximal speed, to cell 0. Reaching cell 0, it repeats this process and thus it zigzags between cell 0 and h . If the signal S leaves the cell 0 at time h m , i t r e a c hes h on the cell h m (h;1) 2 at time h m + h m (h;1) 2 (this site is on h , taking = h m;1 ). Then, coming back, it reaches cell 0 at time h m + h m (h ; 1) which i s h m+1 .

2. We can transform this Fischer's construction in a signal of ratio h m . Figure 3 illustrates this transformation on a geometric diagram when h = 2 and h = 3. In point 1, an unde ned signal always remains on cell 0. The feature to obtain a signal of ratio h n is to move this signal one cell to the right a t e a c h h n units of time. Clearly, the signals S and h must also be shifted to the right. The shifted signals are denoted by S (instead of S) and h (instead of h ). We note S exp the signal of ratio h m . The signal h is basic but with a non periodic part : it goes h cells to the right during h + 1 units of time and then it becomes periodic with a slope h+1 h;1 until it meets again signal S . When a signal S reaches the signal S exp , it remains one unit of time on the same cell and then it goes rightward at maximal speed until the signal h . T h e n i t i m m ediately comes back to the left at maximal speed. The signal S exp , when it is reached by a signal S , remains one unit of time on the same cell, goes one cell to the right and then it remains on this new cell until it is reached again by signal S . The previous process is initialized as follows. Signals S exp and S are created on cell 0 at time h ; 2 (using a nite signal S init1 ). The signal h is created on the cell h(h;1) 2 at time h 2 +h;2 2 (using a nite signal S init2 ). We prove the correctness of the process by induction on m. Let the induction hypothesis be:

H m ] The signal S reaches the signal S exp on cell m;1 a t t i m e h m ;2 and then it reaches h at time h m+1 +h m ;2 2 on cell m ; 1 + h m (h;1) 2 .

H 1 ] i s o b vious by our initialization choice. We assume H m ] and we p r o ve H m+1 ]. After its meeting with h , S goes leftward at maximal speed and reaches the signal S exp on the cell m at time h m+1 +h m ;2 2 ; 1 + h m (h;1) 2 = h m+1 ; 2. At time h m+1 ; 1, signals S exp and S remain on cell m. Then at time h m+1 , signal S exp goes on cell m + 1 (and then stay on it) and signal S runs rightward at maximal speed. Thus signal S visits sites (m + 1 + h m+1 + ) 2 N . T aking = ;1 + h m+1 (h;1)

2

, w e see that signal S is on cell m + h m+1 (h;1) 2 at time h m+2 +h m+1 ;2

. N o w, signal h moves right for h cells during h + 1 units of time and runs rightward with a sloper h+1

h;1 . T h us it visits sites

(m ; 1 + h m (h;1) 2 + h + (h ; 1) h m+1 +h m ;2 2 + h + 1 (h + 1)) 2 N . Taking = h m+1 +h m ;2 2
, w e obtain that signal h is on cell m+ h m+1 (h;1) 2 at time h m+2 +h m+1 ;2 2 .

Figure 4 illustrates these signals on a communication space time diagram

when h = 2 a n d h = 3: a signal of ratio (with 1) is set up with right m o ves and ; stays.

Signals of ratio n k with k 2 N

Figure 5 illustrates these signals on a geometric diagram 1. The rst example of a quadratic signal can be found in 4]. A signal of ratio n 2 is easily obtained using the formula: (n+1 ) 2 = n 2 +2 n+1 .F rom the site (n n 2 ), we obtain the site (n + 1 (n + 1 ) 2 ) w aiting 2n units of time on cell n and moving in one unit of time of one cell to the right. To wait 2n units of time is easy: it is the delay needed for a signal, created on site (n n 2 ) to go to cell 0 and to come back on cell n. 2. A signal of ratio n 3 is constructed in a similar way using quadratic signals.

From the site (n n 3 ), we obtain the site (n + 1 (n + 1 ) 3 ) w aiting 3n 2 + 3 n units of time on cell n and then moving in one step of one cell to the right. The delay o f 3 n is the delay needed for a signal, born on site (n n 3 ) t o go to cell 0, to come back to cell n 3 and to go, once time more, to cell 0. The delay o f 3 n 2 is the delay needed to a quadratic signal, born on site (0 n 3 + 3 n) to go to cell n, t o c o m e b a c k to cell 0 and then to go again to cell n. 3. Clearly, it is easy to set up signals of any ration n k .

Signals of ratio involving roots

We can construct signals of ratio rn+ ( b p nc) for r 2 N and r > 1. We d o n o t know if a signal of ratio n + b p nc exists. Figure 6 illustrates the case of r = 2 . Let S root be the signal which starts from the site (0 0), it remains one step on the cell 0 and then it runs rightward with a slope r. A signal T starts from the site (0 0) and moves one cell on the right in one unit of time and then it runs rightward to the right with a slope r. A signal Z starts from the cell 1 at time 1, it remains on cell 1. At the intersection of the signals S root and Z, Z runs at maximal speed to the right and S root remains one unit of time on its current cell and moves again to the right w i t h a s l o p e r. A t the intersection of Z and T , Z and T move one cell to the right in one unit of time, then, Z remains on the same cell and T runs to the right with the slope r. S root characterizes the sites (n rn + b p nc).

Signals of ratio involving logarithms

We can construct signals of ratio n + blog q nc. Figure 7 illustrates the case of r = 2 .

Let n be written in basis q. Note that to add 1 to n can be made by a nite automaton with no delay, i . e . t h e i-th digit of n + 1 is de ned after the reading of the i-th digit of n. So, if the n-th vertical sends n, precisely if each site (n n + i) sends the i-th digit of n to the site (n + 1 n + 1 + i), then the site (n + 1 n + 1 + i) can send the i-th digit of n + 1. The signal which delimits the non quiescent area, distinguishes the sites (n n + blog (n)c).

Fischer's construction of a factorial

As an example of a Fischer's constructible function which g r o ws faster than an exponential one, there is the function n ;! 2(n!). Let us describe this construction depicted on gure 8.

From the site (0 2(n!)), we obtain the site (0 2(n + 1)!) by w aiting n times 2n! units of time. The delay o f 2 n! units of time is the delay needed to achieve a zigzag, at maximal speed, from the cell 0 to the cell n!. So, we h a ve t o characterize the cell n!. For that, a signal S of slope 3 is created on the site (0 0) and a signal T of slope 1 starts from the site (0 2(n!)). They intersect on the site (n! 3(n!)). From this site, a vertical signal V which c haracterizes the cell n! is created. Now, to count n zigzags, i.e. n times 2(n!), we h a ve t o c haracterize the cell n. Indeed, if at the beginning of the computation of 2(n + 1)!, a signal C starts from the cell n and at each zigzag it moves one cell to the left, then it will reach with the last zigzag the cell 0 at time 2((n + 1)!). To c haracterize the cell n, we use a signal M which starts on the site (0 0), it moves vertically except at its meeting with a signal T, o n w h i c h i t m o ves one cell to the right. At t h e beginning of the computation of 2(n + 1 ) ! , M has met n signals T, t h us it runs on the cell n.

Clearly, w e can construct the function n ;! (n!), grouping cells two b y t wo.

As we shall see, this induces the existence of a signal of speed n!.

Periodicity on diagonals

Proposition 1 For any rightward signal of ratio (n), (n) ; n becomes constant or there exists an integer such that (n) n + l o g (n) (8n 2 N ).

Proof

We consider the time space diagram of some cellular automaton A.

Let us consider the words !(i n) = ! 0 (i) : : : ! n (i) where ! k (i) = < i i + k > , it is to say !(i n) is the sequence of the n rst non quiescent states of the i th vertical. Let q be the cardinal of Q (the set of states). Let n 0 be such t h a t (n 0 ) < n 0 + l o g q (n 0 ). On Q, there only exist n 0 words of length log q (n 0 ). Then there exist two i n tegers i and T such that, for i 0 and T > 0, i + T n 0 and !(i log q (n 0 )) = !(i + T log q (n 0 )). And thus, 8j i, 8k > 0, !(j log q (n 0 )) = !(j + kT log q (n 0 )).

But as (n 0 );n 0 < log q (n 0 ) and the site (n 0 (n 0 )) belonging to the signal S of ratio (n) is in a special state, we h a ve that all sites (n 0 +kT (n 0 )+kT) a r e i n the same state and then belong to the signal S. T h us, (n 0 +kT) = (n 0 )+kT.

Since is an increasing function, we g e t `(n 0 + k) = `(n 0 ) + k. In other words, 8n n 0 , (n) ; n = (n 0 ) ; n 0 , i.e. (n) ; n becomes constant. Remark 1

The proposition 1 shows that there exists a gap in the ratios of signals.

We can de ne a new notion of computation by: an increasing function f is constructible if there exists a signal of ratio f.

Properties of stability

Now, we come back to the notion of Fischer's constructibility. W e proof some properties of stability on the set of Fischer's constructible functions. In this section, we denote by f and g two constructible functions. The two ICA which set up them are viewed as a black b o x which distinguishes the sites < 0 f (i) > and < 0 g (i) >. T o obtain new ICA computing new functions, we consider new impulses generated on sites < 0 f (i) > and < 0 g (i) >, w e describe behavior of these impulses in such a w ay that they distinguish some new site of the rst cell.

Stability b y m ultiplication with a rational

Proposition 2 The set of Fischer's constructible functions is stable by multiplication by a rational.

Proof

Construction of pf with p 2 N .

The gure 9 illustrates this proof. On the site (0 0), a basic signal T of slope p+1 p;1 is created. From each site (0 f (n)), a basic signal F of slope 1 is sent. This signal F reaches the signal T on the site ( (p;1)f(n) 2 (p+1)f(n) 2

).

A signal R of slope ;1 starts from this site. It reaches the cell 0 at time pf(n). Thus the sites (0 p f (n)) (8n 2 N ) are distinguished. Construction of b f p c with p 2 N We consider the ICA A 0 such that the cell (i j) represents the cells f(pi+u pj+v) 0 u v < pg of A: it is su cient to group the cells p p in space and time. By this way, the states of A 0 are a p p matrix of states of A. A state of A 0 is distinguished if and only if a state (of A) of the rst column of the matrix is distinguished. And thus, the sites (0 b f(n) p c) are distinguished by A 0 .

Signal H dies and signal T k pursues its move, a signal T k;1 of slope bk;1+1 bk;1;1 is created.

When a signal H meets a signal T i with i 2 f 2 : : : k ; 1g:

Signal T i dies and signal H pursues its move, a signal T i;1 of slope bi;1+1 bi;1;1 is initialized. At the intersection of a signal H and a signal T 1 :

T 1 dies, H pursues its moves, a signal R of slope ;1 is created. Now w e s h o w that the signals R reach the cell 0 at times f(n).

The signal H, which follows the diagonal of equation y = x+f(n), reaches the signal T k on the site ( (bk;1)

f(n) 2 (bk+1)f(n) 2
). Between two consecutive signals H which follow diagonals y = x +f(n) a n d y = x+ f(n+ 1 ) ,e v ery signal T i (i 2 f 2 : : : k ;1g) m o ves of (bi;1)(f(n+1);f(n)) 2 cells on the right in (bi+1)(f(n+1);f(n)) 2 units of time.

Then the signal T k;1 , emitted from the site ( (bk;1)f(n)

2 (bk+1)f(n) 2
), reaches the next signal H on the site ( (bk;1)f(n) 2

+ (bk;1;1)(f(n+1;f(n)) 2 (bk+1)f(n) 2 )+ (bk;1+1)(f(n+1;f(n)) 2
. F rom this last site, a signal T k;2 runs to the next signal H, and so on. Finally, the signal T 1 reaches a signal H on the site: ( (bk;1)f(n) 2 + (bi;1)(f(n+k;i);f(n+k;i;1)) 2 (bk+1)f(n) 2

)+ (bi+1)(f(n+k;i);f(n+k;i;1)) 2 .

On this last site, a signal R of slope ;1 is created and it reaches the cell 0 a t t i m e b k f(n) + P k;1 i=1 a i b i (f(n + k ; i) ; f(n + k ; i ; 1)) which i s f(n + k).

Stability i n volving subtraction with extra conditions

Lemma 1 If f and g are Fischer's constructible functions, f g (i.e. 8n 2 N , f(n) g(n)) and (b + 1 ) f ; bg (b 2 N ) is an increasing function, then the function (b + 1 ) f ; bg is Fischer's constructible.

Proof The gure 13 illustrates this proof. From the rst cell, at each time f(n), a signal F of slope 1 is sent and, at each time g(n), a signal G of slope b+2 b is sent. Since f g, the signal G meets the signal F on the site ( b(f(n);g(n)) b(f(n);g(n)) 2 ). On this site, both signals F and G die and a signal H of slope -1 is created. This signal H reaches the cell 0 at time (b + 1 ) f(n) ; bg(n).

But, if we consider all signals F and G, the following fact can happen: if, for some n, w e h a ve g(n) < g (n+1) f(n), then the n+1-th signal G will meet the n-th signal F before the signal n-th G. S o , w e i n troduce a signal E, indicating the active signal G. This signal E is created on site (0 g (1)) and follows the rst signal G. The process of the signal E is to follow a signal G until the meeting of this signal G and a signal F , then to run leftwa r d w i t h s l o p e ;1 u n til it reaches the next signal G and then to follow it. We observe that as (b + 1 ) f ; bg) i s increasing, this signal E reaches the n-th signal G before the meeting of the n-th signal G and n-th signal F. B y t h i s w ay, the signal H which the cell 0 marks the cell 0 at times (b + 1 ) f(n) ; bg(n) is created by the simultaneous meeting of three signals G, F and E.

Proposition 5 Let a and b be two positive integers and f and g be two Fischer's constructible functions. If there e x i s t s a p ositive integer m such that f g mb+1 ma and if af ; bg is increasing, then af ; bg is Fischer's constructible.

Proof By the proposition 2, maf and (mb+1)g are constructible. The condition of proposition 5 ensures us that maf (mb+1 ) g. The function (mb+1 ) maf ; mb(mb + 1 ) g can be written m(mb + 1 ) ( af ; bg) a n d , t h us, is increasing. By the lemma 1 and the proposition 2, af ; bg is Fischer's constructible.

Remark 2

The proposition 5, in fact, induces that f and af ;bg are of the same order. Let us consider f(n) = n 3 + n and g(n) = n 3 , w e h a ve ( f ; g)(n) = n. f and g do not satisfy the conditions of the proposition 5, indeed f(n) ; g(n) = n cannot be constructed from f(n) = n 3 + n with a simple linear acceleration.

Below, we shall need the following corollary.

Corollary 3 Let a and b be two positive integers and f and g be two Fischer's constructible functions. If f is ah + bg, if there e x i s t s a p ositive integer m such that g mh and if h is increasing then h is Fischer's constructible.

Proof In this case, f g mb+1 m and f ; bg = ah is increasing. So, according to the proposition 5, h is Fischer's constructible.

Stability i n volving recurrent functions

Proposition 6 Let a 1 : : : a k be k integers, if the function h de ned by the data: h(1), h(2), : : : , h(k) and h(n) = Proof There exist positive i n tegers b i and c i such t h a t h(n) = P k i=1 b i h(n ; i) ; P k i=1 c i h(n ; i). We p r o ve that, if h is increasing, then h is Fischer's constructible. First, the following functions are Fischer's constructible by the proposition 4:

f(n) = P k i=1 b i h(n ; i) and g(n) = P k i=1 c i h(n ; i).
Secondly, a s h is increasing, we h a ve:

P k i=1 c i h(n) P k i=1 c i h(n ; i) = g(n). It
is to say g P k i=1 c i h. Finally, according to the corollary 3, h is Fischer's constructible.

Stability b y composition

Lemma 2 If f and g are Fischer's constructible functions, then f g + 2 g is Fischer's constructible.

Proof The gure 14 illustrates this proof.

Characterization of the sites (n n + f(n)).

From each ( 0 f (i)), a signal F of slope 1 is created. A signal T starts from the site (0 0), it moves of one cell to the right in one unit of time, and then remains on cell 1. When a signal F meets the signal T , the signal F dies and the signal T moves of one cell to the right in one unit of time, and then remains on the same cell. Meetings of signals F and T occur on the sites (n n + f(n)).

Constructibility of the sites f g + 2 g.

A signal U of slope 2 is sent from the site (0 0). From each site (0 g (i)), a signal G of slope 1 is created. It reaches the signal U on the site (g(i) 2g(i)). On this site, a signal V , which remains on cell g(i) is created. As f is increasing, we h a ve 2 g(i) g(i) + f(g(i)) and, thus, the signal V reaches the site (g(i) g (i) + f(g(i)) on which occurs the meeting of the previous signals F and T . Then, from this site, a signal R of slope ;1 i s sent and it reaches the cell 0 at the time f(g(i)) + 2g(i).

Proposition 7 If f and g are Fischer's constructible functions, then f g is Fischer's constructible.

Proof By lemma 2, f g + 2 g is Fischer's constructible. By hypothesis, g is Fischer's constructible. As f and g are increasing, f g is increasing and we have f g g. T h us by the corollary 3, f g is Fischer's constructible.

Stability b y minimum and maximum

Proposition 8 If f and g are Fischer's constructible functions, then the functions min(f g) and max(f g) are Fischer's constructible.

Proof We only give the proof for min(f g), the case of max(f g) is similar. The sum s of the digits which reach the diagonal y = x + s is the di erence between the numb e r o f i n tegers i such t h a t g(i) < s and the number of integers i such that f(i) < s . T h us: s = j f i g(i) < s gj;jf i f(i) < s g j . So, at time s, a digit is taken in or out if s is equal or not to f(n) o r g(n). The transitions of states are indicated on the gure 15. We observe that, for a transition on a cell c (c > 0), if jij < 2 a n d jjj < 1, then jkj < 1 a n d jpj < 2. For a transition on the cell 0, if jij < 1 a n d jjj < 1, then jkj < 1 a n d jpj < 2. This shows that the number of signals is nite. The gure 16 illustrates this proof on an example.

Stability b y m ultiplication

Proposition 9 If f and g are Fischer's constructible functions, then f g is Fischer's constructible.

Proof We m a y assume that f g: if it is not the case, we replace f and g by min(f g) a n d max(f g) according to the proposition 8.

By the corollary 2 and the proposition 3, we h a ve t wo I C A w h

i c h construct G(n) = P n i=1 g(i) a n d G(n ; 1) + f(n).
First, we c haracterize the sites (0 2f(n)g(n) + 2 G(n ;1)+G(n)). The gure 17 illustrates this construction. On the site (0 0), a signal T of slope 2 is initialized. At each time G(n), a signal G of slope 1 is created on the rst cell. When this signal G meets T on the site (G(n) 2G(n)), G dies and a new signal V which always remains on cell G(n) i s s e n t. In the same way, a t e a c h time G(n ; 1) + f(n), a signal F of slope 1 is initialized on the rst cell, dies at its meeting with T on the site (G(n ; 1) + f(n) 2G(n ; 1) + 2f(n)) and a new signal C, w h i c h remains on cell G(n ; 1) + f(n), is created on this site.

The distance between two consecutive signals V is g(n). Thus to achieve a zigzag at maximal s p e e d b e t ween these two signals need exactly 2g(n) units of time. The distance between signals V and C is of f(n) cells. we use the signal C as a counter: at each zigzag, it moves of one cell to the left in one unit of time. More precisely, when the n-th signal G meets T, a signal R of slope 1 is created on its meeting with the n + 1-th signal V , it dies and creates a signal A of slope 1. This signal A dies on its meeting with the n-th signal V , creating a new signal R., and so on. During this process, when a signal R passes through the signal C, C moves of one cell to the left. This process ends when signals C and R simultaneously reach the signal V . A t this time, the signals R have a c hieved f(n) m o ves and the signals A have a c hieved f(n);1 m o ves. Thus, C reaches V at time 2G(n)+(2f(n);1)g(n) w h i c h i s 2 f(n)g(n)+G(n;1)+G(n). On the site (G(n;1) 2f(n)g(n)+G(n;1)+G(n)) of this meeting, a signal K of slope ;1 i s created. This last signal reaches the cell 0 at time 2f(n)g(n)+2G(n;1)+G(n).

We observe that 8n 2 N , f(n)g(n) ng(n) > G (n). Thus, by the corollary 3, f g is Fischer's constructible.

Relationships between Fischer's constructibility and related notions

We i n vestigate relationship between Fischer's constructible functions and ratio of signals.

Proposition 10 Let h be a n i n c r easing function. If there exists an ICA which sets up a signal of ratio h(n), t h e n h is Fischer's constructible.

Proof From each site (n h(n)), a signal of slope ;1 i s s e n t. This signal reaches the cell 0 at time n + h(n). thus, the sites (0 n + h(n) are distinguished and by the corollary 3, h is Fischer's constructible.

Fact 2 The converse is false.

Proof We h a ve seen (proposition 1) that there does not exist a signal of ratio n + (n) where (n) is sublogarithmic. But there exist Fisher's constructible functions which increase strictly faster than an exponential: factorial one (see paragraph 3.5), 2 2 n (by proposition 7), : : :Thus, their complement functions, de ned by (n) = n + jfi f(i) ; i < n gj are also Fischer's constructible. And (n) ; n are sublogarithmic and there do not exist signals of ratio (n).

Nevertheless, if the di erence between f(n) a n d n is, at least, linear, the converse is true.

Proposition 11 Let f be a Fischer's constructible function. If there exists an integer k such that (k ; 1)f(n) kn, then there exists a signal which characterizes the sites (n f(n)) Proof Assume that k is even: indeed if there exists an odd integer satisfying the condition, then an even one exists. First, we mark the sites (kn kf(n)). The gure 18 illustrates this construction. From the site (0 0) are sent the following signals:

a signal T of slope k+1 k;1 , a signal Dk 2 which m o ves right o f k 2 cells in k 2 units of time, and from time k 2 remains on the cell k 2 , a signal D k which m o ves right o f k cells in k units of time and then remains on cell k. From each site (0 f (n)), a signal E is sent. Our ICA has the following behavior: at the meeting of a signal E and the signal T :

the signal E dies, a signal E ;1 of slope ;1 is created, the signal T pursues its moves with the same slope k+1 k;1 . At the meeting of a signal E ;1 with a signal Dk 2 : the signal E ;1 dies, a signal E 1 of slope 1 is created, the signal Dk 2 moves right o f k 2 cells in k 2 units of time, and then remains on the same cell. At the meeting of a signal E 1 and a signal D k :

the signal E 1 dies, the signal D k moves right o f k cells in k units of time and then remains on the same cell. Now, we show that the signal D k characterize the sites (kn kf(n)). The n-th signal E reaches the signal T on the site (k;1)f(n) 2 (k+1)f(n) 2

. F rom this site, the signal E ;1 starts. As (k ; 1)f(n) kn, the n-th signal E ;1 reaches the signal Dk 2 on the cell kn 2 (note that signal Dk 2 moves of k 2 cells to the right w h e n it meets a signal E ;1 , t h us after n ; 1-th meetings with signals E ;1 , i t i s o n the cell kn 2 . So, the signal E ;1 meets the signal Dk 2 on the site ( kn 2 kn 2 ). From this last site, a signal E ;1 starts. It meets the signal D k which runs on the cell kn (by the same argument as previously), on the site (kn kf(n)). In order to characterizes the sites (n f(n)), we group the cells k by k. I t i s su cient to consider a new ICA such that the state of the site (i j) represents the states of the sites f(ki+ u kj + v) 0 u < k 0 v < k g. Now, we consider the bijection between the set of increasing functions and the set of unary languages, de ned by: at the function f, is associated the language L f = a f(n) n 2 N which i s t h e s e t o f a l l w ords of length f(n). We recall that a language L is recognizable in real time by a cellular automaton if on input ! in L, the CA enters an accepting state on cell 0 at time j!j. W e observe that, if a CA recognizes the language L in real time, its working area on an input of length n, i s b o u n d e d b y the diagonal f(c t) c + t = ng. Proposition 12 The function f is Fischer's constructible if and only if the language L f is real time recognizable by a one dimensional cellular automaton.

Proof If f is Fischer's constructible, then there exists a CA which marks the sites (0 f (n)). If, in addition, this CA creates a signal of slope ;1 o n t h e last cell of the input word at time 0, then the CA knows if the length of the input word can be written f(n) for some integer n when reaches the cell 0 on a distinguished site.

Conversely, w e suppose that there exists a CA (A) w h i c h recognizes the words of length f(n) in real time. We o b s e r v e that, for any CA, each s i t e (c t) with c + t < n is in the same state whatever the input word a m for m n. As our CA recognizes the language L f in real time, the two space time diagrams on inputs a n and a m with m > n are di erent only on the sites (c t) w i t h c + t n (in some way, recognition of a n is done on the diagonal D n = f(c t) c + t = n c 0g). Now w e consider the CA (A ? ) whose states are couple of states of A. The rst components correspond to the states of A on the input word a infinity . On the diagonal D n , the second components correspond to the states of A on the input word a n . A ? distinguishes a site on the rst cell according to its second component. Clearly, A ? marks the sites (0 f (n)).

The next section shows a property of these functions on Turing machines.

Proposition 13 If an increasing function is Fischer's constructible, it is Turing space c onstructible.

Proof We construct a Turing machine. On its rst tape, we consider the simulation of the one dimensional cellular automaton by a T uring machine as de ned in 7]: the i-th cell of the tape of the Turing machine represents the i-th cell of the CA. On the CA, as at time 0 the cell 0 is the only one in a non quiescent state, at time t, only the t + 1 rst cells are in a non quiescent state. Thus, during the simulation of the step t of the CA, the head visits exactly the rst t + 1 cells of the tape.

In addition, on a second tape, our Turing machine counts how m a n y times the rst cell of the CA has been distinguished. On a third tape, our Turing machine compares this number with the integer n, written on its input tape. If these numbers are equal, the machine halts. So, the Turing machine halts, during the simulation of the f(n)-th step, when the head visits f(n) + 1 cells and, thus, f is Turing space constructible.

Conclusion

We h a ve begun to investigate two sets of increasing computable (in some sense) functions: Fischer's constructible ones and another ones de ned by ratios of signals. They correspond to possible moves of an elementary information. Some properties of stability h a ve b e e n s h o wn. This work induces some open problems Are all Turing time constructible increasing functions constructible? Do there exist another gaps in ratio of signals? In particular, for a signal of ratio (n), is there always a gap around it? 
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 1 Signals of exponential ratio1. C. Cho rut and Culik II 2] h a ve give n a t ypical example of signal: their cellular automaton marks the cell 0 at every time h m (the function f :
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 134568910 Figure 1: The basic signal, de ned by the sequence of moves 0 1 0 (1 0 ;1 1) !
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 11121617 Figure 11: Fischer's construction of af + bg.

Figure 18 :

 18 Figure 18: Characterization of the sites (n f(n)).

  De nition 3 1. A signal S is a set of sites f(c(t) t ) t 2 N g where c is a mapping from N

on N such that (c(t + 1 ) t + 1 ) is (c(t) ; 1 t + 1 ) or (c(t) t + 1 ) or (c(t) + 1 t + 1 ) . A signal is called rightward (resp. leftward) i f (c(t + 1 ) t + 1 ) belongs to f(c(t) t + 1 ) (c(t) + 1 t + 1 ) g (resp. f(c(t) ; 1 t + 1 ) (c(t) t + 1 ) g).

2. A signal S is constructed b y a n I C A i f t h e r e exists a subset Q 0

f (n) +

P k i=1 a i h(n ; i) is increasing, then h is Fischer's constructible.

Stability i n volving addition

Proposition 3 Fischer's constructible functions are stable by addition.

Proof The gure 10 illustrates this proof. From the site (0 0), a signal T of slope 3 is created. From each site (0 f (n)) (resp. (0 g (n))) a signal F (resp. G) of slope 1 is sent.

When f(n) g(n), we construct f(n) + g(n) = 2 f(n) + ( g(n) ; f(n)) in the following way: the signal F which starts from the site (0 f (n)), meets the signal T on the site ( f(n) 2 3f(n)

2 ). From this site, a signal F 0 is sent this signal always remains on the same cell. This signal F 0 meets the signal G on the site

. At the intersection of F 0 and G, a signal R of slope ;1 i s created. This signal reaches the initial cell at time f(n) + g(n). When g(n) f(n), the signal G, created on the site (0 g (n)), meets the signal T before the signal F . In this case, the roles played by F and G are inverted and we construct 2g

We observe that the choice between the two previous cases is not ambiguous: signals F (resp. G) are suppressed when they meet signals G 0 (resp. F 0 ).

Corollary 1 Fischer's constructible functions are stable by linear combinations with rational coe cients.

Proof According to proposition 2, af and bg are constructible. And thus is af + bg by proposition 3. The gure 11 shows a direct construction of af + bg we do not detail this construction.

Corollary 2 Fischer's constructible functions are s t a b l e b y i t e r ated addition.

Proof Let F (n) b e P i=n i=0 f(i) where f is Fischer's constructible. Replacing the site (0 g (n)) by the site (0 F (n)), the proof of proposition 3 shows that F is Fischer's constructible. Proposition 4 Fischer's constructible functions are stable by recurrent addition with k steps.

Proof Let a 1 a 2 : : : a k be positive i n tegers, we p r o ve that the function de ned by the data f(0) f (1) : : : f (k ; 1) and f(n) = P k i=1 a i f(n ; i) i s F i s c her's constructible.

The gure 12 illustrates this proof in the case of k = 3 a n d a 1 = a 2 = 1 .

We h a ve: f(n) = b k f(n ; k) + b k;1 (f(n ; k + 1 ) ; f(n ; k)) + : : : + b i (f(n ; i) ; f(n ; i + 1)) + : : : + b 1 (f(n ; 1) ; f(n ; 2)) with b i = P i s=1 a s

We de ne the evolution of the ICA computing f, in the following way: from the site (0 0), a signal T k of slope bk+1 bk;1 is sent. From each site (0 f (n)), a signal H of slope 1 is sent. When a signal H meets the signal T k :