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Abstract

In this paper� we are interested in signals� form whereby the data
can be transmitted in a cellular automaton� We study generation of
some signals� In this aim� we investigate a notion of constructibility
of increasing functions related to the production of words on the
initial cell �in the sense of Fischer for the prime numbers�� We
establish some closure properties on this class of functions� We also
exhibit some impossible moves of data�

Keywords� Cellular automata� computability� moves of information

R�esum�e

Nous nous int�eressons �a la notion de signal sur une ligne d�automates�
Par l�a� nous mod�elisons le mouvement d�une information �el�emen�
taire� Cette notion est �etroitement reli�ee �a la construction en temps
r�eel de fonctions croissantes an sens de Fisher� Nous donnons des
propri�et�es de cl�oture des fonctions ainsi calculables� En outre nous
exhibons des mouvements d�information impossibles�

Mots�cl�es� Automates cellulaires� calculabilit�e� mouvement de l�information
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� Introduction

One of the greatest interest of Cellular automata �in short CA� is the modeliza�
tion of massively parallel computation� In particular� for one dimensional CA�
the interest focuses on these following topics	

� synchronization problems such that French Flag and Firing Squad �
��� 
�
and 
����

� real time production of words on the �rst cell �
�� and 
����

� real time recognition of languages �
��� 
�� and 
����

It seems that signals are intrinsic objects of massively parallel computation�
Indeed the signals are not only a natural tool to collect and dispatch the in�
formation through the network but more deeply this notion appears to be a
strength way to encode and combine the information�

Thus signals seem to be objects interesting to be studied in themselves� In
this paper� we investigate what kind of set of sites or� in other words� what kind
of path can draw a signal in CA�

In section �� we propose a formal de�nition of CA and we introduce a notion
of Fisher�s constructible functions connected to the production of words on the
initial cell �in the sense of Fisher �
��� for prime numbers��

In section �� we list some examples of signals�
In section �� we exhibit some impossible fast moves of the data�
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In section �� we show that the set of Fisher�s constructible functions is stable
by some operations	 addition�some subtractions� recurrent construction� com�
position� minimum� maximum and multiplication�

In section �� we point out the links between Fischer�s constructible func�
tions and other notions like rightward signals of a given ratio� real time unary
languages and real time constructibility�

� De�nitions

De�nition � A one dimensional cellular automaton A is a ��tuple �Q� �� L� ��
with �

� Q is a �nite set �states��

� � is a special state not in Q �the border state��

� � 	 Q � f�g �Q� Q �� Q is the state transition function�

� L is a another special state such that ��L�L� L� � ���� L� L� � L �the
quiescent state��

We consider an half line of identical �nite automata �cells� indexed by
N �Each cell communicates with its two neighbors� All cells evolve synchronously
inducing a discrete time� The state �in Q� of the k�th cell at time t is denoted
by � k� t ��

At each step� every cell enters a new state according to the state transition
function� its own state and states of its two neighbors� For t � � and k � �� the
state � k� t � is de�ned by	

� k� t �� ��� k � � t�  ��� k� t�  ��� k � � t�  ���

The �rst cell having no left neighbor� we use the border state	

�t � N � � �� t �� ���� � �� t�  ��� � t�  ���

We depict the evolution of a CA on N � N elementary squares � on the
square of coordinates k and t� we mark state � k� t � �by a number� a letter or
a pattern�� Such a picture is called the space time diagram of A�

When we want to emphasize not the states but the communication between
cells� the previous elementary squares are reduced to points� called sites� The
lines between sites �k� t� and �k � �� t � � �� � f�� �� g� are marked in such
a way that they depict the data sent by cell k at time t to itself and its two
neighbors� Such a representation is called a communication space time diagram�

In order to study how an information can be moved through the network�
we start with a special initial line� All cells are in the quiescent state except the

�



leftmost one �cell ��� This fact will allow us to study the possible moves of the
data regardless of the input words� This leads us to the following de�nition�

De�nition � A one dimensional impulse cellular automaton A �in short ICA�
is a ��tuple �Q� ��G� L� �� where �Q� �� L� �� is a cellular automaton� with a dis�
tinguished state G of Q such that� at initial time� all cells are in the quiescent
state L except the cell � which is in state G�

The case where the input word is considered constant can be easily reduced
to de�nition �	 it is su�cient to de�ne a new half line whose cells are obtained
by grouping the n signi�cant cells in one cell�

We will study the sites distinguished by the initial impulse when they appear
as a line in the space time diagram� In this case� at each time� only one cell is
distinguished� This remark induces the following de�nition of a signal�

De�nition � �� A signal S is a set of sites f�c�t�� t� � t � Ng where c is a
mapping from N � on N such that �c�t � �� t � � is �c�t� � � t � � or
�c�t�� t� � or �c�t� � � t� ��
A signal is called rightward �resp� leftward� if �c�t � �� t � � belongs to
f�c�t�� t� �� �c�t� � � t� �g �resp� f�c�t�� � t� �� �c�t�� t� �g��

�� A signal S is constructed by an ICA if there exists a subset Q� of Q such
that � k� t �� Q� if and only if �k� t� � S� Such a signal is called CA
constructible�

	� A signal is basic if the sequence of its elementary moves fc�t���c�t�gt�N
�whose values are in to f�� �� g� is ultimately periodical�

Fact � Basic signals are CA constructible� If an impulse generates a signal S
such that all sites� not in S� are in the quiescent state �i�e� �k� t� �� S �	�

k� t �� L�� then S is �nite or basic�

Proof The CA which sets up a basic signal S of period T from t�� has t�
states which de�ne S for t � t� �including the impulse state G�� and T states
for the periodic part� The �gure  illustrates this trick on an example�

For t � N � we denote the state � c�t�� t � by qt� If S is in�nite� then� for all
time t� qt is not quiescent �if qt� � L� then the signal S does not exist for time
greater than t��� The in�nite sequence fqt � t 
 �g of states of QnL becomes pe�
riodical	 qt�� is obtained from qt by one of the transitions ��qt� L� L�� ��L� qt� L�
or ��L�L� qt� �the choice between these three possibilities only depends on the
value of qt�� Thus the signal S is basic�

Let S be a basic signal of period T from time t� and U be the sum of all
elementary moves of a period	 U � c�t � T � � c�t� for any t � t�� The rational
number T

U
is called the slope of S� Clearly j T

U
j is greater or equal to �
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To visualize signals in a more convenient way� we represent a signal of slope
� by a straight line of slope �� Thus any signal can be depicted by straight lines�
Such a representation is called a geometric diagram�

De�nition � Let � be an increasing function from N into N � � is the ratio
of a rightward signal S if S reaches the cell n at time ��n�� More precisely�
�n� ��n�� � S but �n� ��n� � � �� S�

A rightward signal S is of speed ��n� if its ratio is n
��n� �

We note that �n � N � ��n� 
 n and that the maximal speed is �
In 
��� Fischer shows how the binary sequence representing the set of prime

numbers can be generated by an initial impulse on the �rst cell� In this point of
view� we will develop the notions of words Fischer�s produced and of functions
Fischer�s constructible�

De�nition � Let 	 � 	�� 
 
 
 � 	i� 
 
 
 be an in�nite word on an alphabet A� 	
is Fischer produced if there exists an ICA �Q� �� 	�� L� �� such that �i � N � �
�� i �� 	i with A � Q �the ith letter of 	 appears on cell 
 at time i��

This allows us to de�ne a new notion of computation for increasing function�

De�nition 	 An increasing function f is Fischer�s constructible �or constructible�
by ICA if there exist a subset of states D of Q and a word Fischer�s produced
	 � 	�� 
 
 
 � 	i� 
 
 
 such that 	i � D �	 �n � N i � f�n�� It means that the
sites ��� f�n�� can be distinguished by D�

� Some examples of signals

��� Signals of exponential ratio

� C� Cho�rut and �Culik II 
�� have given a typical example of signal	 their
cellular automaton marks the cell � at every time hm �the function f 	
m �� hm is Fischer�s constructible where h is an �xed integer and
m � N ��� Figure � illustrates this construction on a geometric diagram
when h � � and h � �� We �rst consider a basic signal �h of slope
h��
h�� 	 this signal appears on diagrams as a line which starts from site ��� ��

and reaches cells �h�h���
� at time �h�h���

� � Another signal S remains on
the cell � until time h� then it goes rightward at maximal speed until it
reaches the signal �h and then it comes back� at maximal speed� to cell
�� Reaching cell �� it repeats this process and thus it zigzags between cell
� and �h�

If the signal S leaves the cell � at time hm� it reaches �h on the cell
hm�h���

�

at time hm� hm�h���
� �this site is on �h� taking � � hm���� Then� coming

back� it reaches cell � at time hm � hm�h� � which is hm���

�



�� We can transform this Fischer�s construction in a signal of ratio hm� Fig�
ure � illustrates this transformation on a geometric diagram when h � �
and h � �� In point � an unde�ned signal always remains on cell �� The
feature to obtain a signal of ratio hn is to move this signal one cell to the
right at each hn units of time� Clearly� the signals S and �h must also be
shifted to the right� The shifted signals are denoted by S� �instead of S�
and ��h �instead of �h�� We note Sexp the signal of ratio hm�

The signal ��h is basic but with a non periodic part 	 it goes h cells to the
right during h� units of time and then it becomes periodic with a slope
h��
h�� until it meets again signal S��
When a signal S� reaches the signal Sexp� it remains one unit of time on
the same cell and then it goes rightward at maximal speed until the signal
��h� Then it immediately comes back to the left at maximal speed�
The signal Sexp� when it is reached by a signal S�� remains one unit of
time on the same cell� goes one cell to the right and then it remains on
this new cell until it is reached again by signal S��

The previous process is initialized as follows� Signals Sexp and S� are
created on cell � at time h� � �using a �nite signal Sinit��� The signal ��h
is created on the cell h�h���

� at time h��h��
� �using a �nite signal Sinit���

We prove the correctness of the process by induction on m� Let the in�
duction hypothesis be	

Hm� The signal S� reaches the signal Sexp on cell m� at time hm��
and then it reaches ��h at time hm���hm��

� on cell m �  � h
m�h���

� �

H�� is obvious by our initialization choice�
We assume 
Hm� and we prove 
Hm���� After its meeting with ��h� S

�

goes leftward at maximal speed and reaches the signal Sexp on the cell m

at time h
m���hm��

� �  � hm�h���
� � hm�� � �� At time hm�� � � signals

Sexp and S� remain on cell m� Then at time hm��� signal Sexp goes on
cell m� �and then stay on it�� and signal S� runs rightward at maximal
speed� Thus signal S� visits sites �m� ��� hm����� � � � N � Taking

� � � � hm�� �h���
� � we see that signal S� is on cell m � hm���h���

� at

time h
m���hm��

��
� � Now� signal ��h moves right for h cells during h � 

units of time and runs rightward with a sloper h��
h�� � Thus it visits sites

�m �  � hm�h���
� � h � ��h� �� h

m���hm��
� � h� ��h � �� � � � N �

Taking � � hm���hm��
� � we obtain that signal ��h is on cell m�

hm�� �h���
�

at time hm���hm����
� �

�� Figure � illustrates these signals on a communication space time diagram
when h � � and h � �	 a signal of ratio �

�
�with �

�

 � is set up with �

right moves and �� � stays�

�



��� Signals of ratio n
k with k � N �

Figure � illustrates these signals on a geometric diagram

� The �rst example of a quadratic signal can be found in 
��� A signal of
ratio n� is easily obtained using the formula	 �n��� � n���n�� From
the site �n� n��� we obtain the site �n � � �n � ��� waiting �n units of
time on cell n and moving in one unit of time of one cell to the right� To
wait �n units of time is easy	 it is the delay needed for a signal� created
on site �n� n�� to go to cell � and to come back on cell n�

�� A signal of ratio n� is constructed in a similar way using quadratic signals�
From the site �n� n��� we obtain the site �n�� �n���� waiting �n���n
units of time on cell n and then moving in one step of one cell to the right�
The delay of �n is the delay needed for a signal� born on site �n� n�� to
go to cell �� to come back to cell n� and to go� once time more� to cell ��
The delay of �n� is the delay needed to a quadratic signal� born on site
��� n���n� to go to cell n� to come back to cell � and then to go again to
cell n�

�� Clearly� it is easy to set up signals of any ration nk�

��� Signals of ratio involving roots

We can construct signals of ratio rn� �bpnc� for r � N and r � � We do not
know if a signal of ratio n� bpnc exists� Figure � illustrates the case of r � ��

Let Sroot be the signal which starts from the site ��� ��� it remains one step
on the cell � and then it runs rightward with a slope r� A signal T starts from
the site ��� �� and moves one cell on the right in one unit of time and then it
runs rightward to the right with a slope r� A signal Z starts from the cell  at
time � it remains on cell � At the intersection of the signals Sroot and Z� Z
runs at maximal speed to the right and Sroot remains one unit of time on its
current cell and moves again to the right with a slope r� At the intersection of Z
and T � Z and T move one cell to the right in one unit of time� then� Z remains
on the same cell and T runs to the right with the slope r� Sroot characterizes
the sites �n� rn� bpnc��

��� Signals of ratio involving logarithms

We can construct signals of ratio n � blogq nc� Figure � illustrates the case of
r � ��

Let n be written in basis q� Note that to add  to n can be made by a
�nite automaton with no delay� i�e� the i�th digit of n �  is de�ned after the
reading of the i�th digit of n� So� if the n�th vertical sends n� precisely if each
site �n� n� i� sends the i�th digit of n to the site �n�� n�� i�� then the site

�



�n� � n� � i� can send the i�th digit of n� � The signal which delimits the
non quiescent area� distinguishes the sites �n� n� blog��n�c��

��� Fischer�s construction of a factorial

As an example of a Fischer�s constructible function which grows faster than
an exponential one� there is the function n �� ��n��� Let us describe this
construction depicted on �gure ��

From the site ��� ��n���� we obtain the site ��� ��n� ��� by waiting n times
�n� units of time� The delay of �n� units of time is the delay needed to achieve
a zigzag� at maximal speed� from the cell � to the cell n�� So� we have to
characterize the cell n�� For that� a signal S of slope � is created on the site
��� �� and a signal T of slope  starts from the site ��� ��n���� They intersect on
the site �n�� ��n���� From this site� a vertical signal V which characterizes the
cell n� is created�

Now� to count n zigzags� i�e� n times ��n��� we have to characterize the cell
n� Indeed� if at the beginning of the computation of ��n���� a signal C starts
from the cell n and at each zigzag it moves one cell to the left� then it will reach
with the last zigzag the cell � at time ���n � ���� To characterize the cell n�
we use a signal M which starts on the site ��� ��� it moves vertically except at
its meeting with a signal T � on which it moves one cell to the right� At the
beginning of the computation of ��n� ��� M has met n signals T � thus it runs
on the cell n�

Clearly� we can construct the function n �� �n��� grouping cells two by two�
As we shall see� this induces the existence of a signal of speed n��

� Periodicity on diagonals

Proposition � For any rightward signal of ratio ��n�� ��n� � n becomes con�
stant or there exists an integer � such that ��n� 
 n� log��n� ��n � N ��

Proof We consider the time space diagram of some cellular automaton A�
Let us consider the words 	�i� n� � 	��i�� 
 
 
 � 	n�i� where 	k�i� �� i� i� k ��
it is to say 	�i� n� is the sequence of the n �rst non quiescent states of the ith

vertical�
Let q be the cardinal of Q �the set of states�� Let n� be such that ��n�� �
n� � logq�n��� On Q� there only exist n� words of length logq�n��� Then there
exist two integers i and T such that� for i 
 � and T � �� i � T  n� and
	�i� logq�n��� � 	�i � T� logq�n���� And thus� �j 
 i� �k � �� 	�j� logq�n��� �
	�j � kT� logq�n����

But as ��n���n� � logq�n�� and the site �n�� ��n��� belonging to the signal S
of ratio ��n� is in a special state� we have that all sites �n��kT� ��n���kT � are in
the same state and then belong to the signal S� Thus� ��n��kT � � ��n���kT �

�



Since � is an increasing function� we get �n� � k� � �n�� � k� In other words�
�n 
 n�� ��n� � n � ��n��� n�� i�e� ��n� � n becomes constant�

Remark �

The proposition  shows that there exists a gap in the ratios of signals�
We can de�ne a new notion of computation by	 an increasing function f is
constructible if there exists a signal of ratio f �

� Properties of stability

Now� we come back to the notion of Fischer�s constructibility� We proof some
properties of stability on the set of Fischer�s constructible functions� In this
section� we denote by f and g two constructible functions� The two ICA which
set up them are viewed as a black box which distinguishes the sites � �� f�i� �
and � �� g�i� �� To obtain new ICA computing new functions� we consider new
impulses generated on sites � �� f�i� � and � �� g�i� �� we describe behavior
of these impulses in such a way that they distinguish some new site of the �rst
cell�

��� Stability by multiplication with a rational

Proposition � The set of Fischer�s constructible functions is stable by multi�
plication by a rational�

Proof

Construction of pf with p � N �


The �gure � illustrates this proof� On the site ��� ��� a basic signal T of
slope p��

p�� is created� From each site ��� f�n��� a basic signal F of slope  is

sent� This signal F reaches the signal T on the site � �p���f�n�� �
�p���f�n�

� ��
A signal R of slope � starts from this site� It reaches the cell � at time
pf�n�� Thus the sites ��� pf�n�� ��n � N � are distinguished�

Construction of b f
p
c with p � N � We consider the ICA A� such that the cell

�i� j� represents the cells f�pi�u� pj�v� � �  u� v � pg of A	 it is su�cient
to group the cells p � p in space and time� By this way� the states of A�

are a p�p matrix of states of A� A state of A� is distinguished if and only
if a state �of A� of the �rst column of the matrix is distinguished� And

thus� the sites ��� b f�n�
p
c� are distinguished by A��

�



��� Stability involving addition

Proposition � Fischer�s constructible functions are stable by addition�

Proof The �gure � illustrates this proof� From the site ��� ��� a signal T of
slope � is created� From each site ��� f�n�� �resp� ��� g�n��� a signal F �resp�
G� of slope  is sent�
When f�n�  g�n�� we construct f�n� � g�n� � �f�n� � �g�n� � f�n�� in the
following way	 the signal F which starts from the site ��� f�n��� meets the

signal T on the site � f�n�� �
�f�n�
� �� From this site� a signal F � is sent� this signal

always remains on the same cell� This signal F � meets the signal G on the site

� f�n�� �
f�n�
� � g�n��� At the intersection of F � and G� a signal R of slope � is

created� This signal reaches the initial cell at time f�n� � g�n��
When g�n�  f�n�� the signal G� created on the site ��� g�n��� meets the signal
T before the signal F � In this case� the roles played by F and G are inverted
and we construct �g�n� � �f�n� � g�n�� � f�n� � g�n��
We observe that the choice between the two previous cases is not ambiguous	
signals F �resp� G� are suppressed when they meet signals G� �resp� F ���

Corollary � Fischer�s constructible functions are stable by linear combinations
with rational coe�cients�

Proof According to proposition �� af and bg are constructible� And thus is
af � bg by proposition �� The �gure  shows a direct construction of af � bg�
we do not detail this construction�

Corollary � Fischer�s constructible functions are stable by iterated addition�

Proof Let F �n� be
Pi�n

i�� f�i� where f is Fischer�s constructible� Replacing the
site ��� g�n�� by the site ��� F �n��� the proof of proposition � shows that F is
Fischer�s constructible�

Proposition � Fischer�s constructible functions are stable by recurrent addi�
tion with k steps�

Proof Let a�� a� 
 
 
ak be positive integers� we prove that the function de�ned
by the data f���� f��� 
 
 
 � f�k � � and f�n� �

Pk

i�� aif�n � i� is Fischer�s
constructible�
The �gure � illustrates this proof in the case of k � � and a� � a� � �
We have	 f�n� � bkf�n � k� � bk���f�n � k � � � f�n � k�� � 
 
 
� bi�f�n �
i�� f�n � i � �� � 
 
 
� b��f�n � � � f�n � ��� with bi �

Pi

s�� as
We de�ne the evolution of the ICA computing f � in the following way	 from the
site ��� ��� a signal Tk of slope bk��

bk��
is sent� From each site ��� f�n��� a signal H

of slope  is sent�
When a signal H meets the signal Tk	

�



� Signal H dies and signal Tk pursues its move�

� a signal Tk�� of slope
bk����
bk����

is created�

When a signal H meets a signal Ti with i � f�� 
 
 
 � k� g	
� Signal Ti dies and signal H pursues its move�

� a signal Ti�� of slope
bi����
bi����

is initialized�

At the intersection of a signal H and a signal T�	

� T� dies� H pursues its moves�

� a signal R of slope � is created�

Now we show that the signals R reach the cell � at times f�n��

� The signalH� which follows the diagonal of equation y � x�f�n�� reaches

the signal Tk on the site � �bk���f�n�
� �

�bk���f�n�
� �� Between two consecutive

signals H which follow diagonals y � x�f�n� and y � x� f�n��� every

signal Ti �i � f�� 
 
 
 � k�g� moves of �bi����f�n����f�n��
� cells on the right

in �bi����f�n����f�n��
� units of time�

� Then the signal Tk��� emitted from the site � �bk���f�n�� �
�bk���f�n�

� �� reaches

the next signalH on the site � �bk���f�n�� � �bk������f�n���f�n��
� �

�bk���f�n�
� ��

�bk������f�n���f�n��
� � From this last site� a signal Tk�� runs to the next

signal H� and so on�

� Finally� the signal T� reaches a signal H on the site	

� �bk���f�n�� � �bi����f�n�k�i��f�n�k�i����
� �

�bk���f�n�
� �� �bi����f�n�k�i��f�n�k�i����

� �
On this last site� a signal R of slope � is created and it reaches the cell
� at time bkf�n� �

Pk��
i�� aibi�f�n � k � i� � f�n � k � i � �� which is

f�n � k��

��� Stability involving subtraction with extra conditions

Lemma � If f and g are Fischer�s constructible functions� f 
 g �i�e� �n � N �
f�n� 
 g�n�� and �b � �f � bg �b � N �� is an increasing function� then the
function �b� �f � bg is Fischer�s constructible�

Proof The �gure � illustrates this proof� From the �rst cell� at each time f�n��
a signal F of slope  is sent and� at each time g�n�� a signal G of slope b��

b
is

sent�
Since f 
 g� the signal G meets the signal F on the site � b�f�n��g�n��� � f�n� �

�



b�f�n��g�n��
� �� On this site� both signals F and G die and a signal H of slope �

is created� This signal H reaches the cell � at time �b� �f�n� � bg�n��
But� if we consider all signals F and G� the following fact can happen	 if� for
some n� we have g�n� � g�n��  f�n�� then the n��th signal G will meet the
n�th signal F before the signal n�th G� So� we introduce a signal E� indicating
the active signal G� This signal E is created on site ��� g��� and follows the �rst
signal G� The process of the signal E is to follow a signal G until the meeting of
this signal G and a signal F � then to run leftward with slope � until it reaches
the next signal G and then to follow it� We observe that as �b � �f � bg� is
increasing� this signal E reaches the n�th signal G before the meeting of the n�th
signal G and n�th signal F � By this way� the signal H which the cell � marks
the cell � at times �b � �f�n� � bg�n� is created by the simultaneous meeting
of three signals G� F and E�

Proposition � Let a and b be two positive integers and f and g be two Fischer�s
constructible functions� If there exists a positive integer m such that f

g

 mb��

ma

and if af � bg is increasing� then af � bg is Fischer�s constructible�

Proof By the proposition �� maf and �mb��g are constructible� The condition
of proposition � ensures us that maf 
 �mb��g� The function �mb��maf �
mb�mb � �g can be written m�mb � ��af � bg� and� thus� is increasing� By
the lemma  and the proposition �� af � bg is Fischer�s constructible�

Remark �

The proposition �� in fact� induces that f and af � bg are of the same order�
Let us consider f�n� � n� � n and g�n� � n�� we have �f � g��n� � n� f and
g do not satisfy the conditions of the proposition �� indeed f�n� � g�n� � n

cannot be constructed from f�n� � n� � n with a simple linear acceleration�

Below� we shall need the following corollary�

Corollary � Let a and b be two positive integers and f and g be two Fischer�s
constructible functions� If f is ah� bg� if there exists a positive integer m such
that g  mh and if h is increasing then h is Fischer�s constructible�

Proof In this case� f
g

 mb��

m
and f � bg � ah is increasing� So� according to

the proposition �� h is Fischer�s constructible�

��� Stability involving recurrent functions

Proposition 	 Let a�� 
 
 
 � ak be k integers� if the function h de�ned by the
data� h��� h���� 
 
 
� h�k� and h�n� �

Pk

i�� aih�n � i� is increasing� then h is
Fischer�s constructible�





Proof There exist positive integers bi and ci such that h�n� �
Pk

i�� bih�n �
i� � Pk

i�� cih�n � i�� We prove that� if h is increasing� then h is Fischer�s
constructible�
First� the following functions are Fischer�s constructible by the proposition �	
f�n� �

Pk

i�� bih�n� i� and g�n� �
Pk

i�� cih�n� i��

Secondly� as h is increasing� we have	
Pk

i�� cih�n� 

Pk

i�� cih�n� i� � g�n�� It

is to say g Pk

i�� cih�
Finally� according to the corollary �� h is Fischer�s constructible�

��� Stability by composition

Lemma � If f and g are Fischer�s constructible functions� then f � g � �g is
Fischer�s constructible�

Proof The �gure � illustrates this proof�

Characterization of the sites �n� n� f�n��

From each ��� f�i��� a signal F of slope  is created� A signal T starts from
the site ��� ��� it moves of one cell to the right in one unit of time� and
then remains on cell � When a signal F meets the signal T � the signal F
dies and the signal T moves of one cell to the right in one unit of time�
and then remains on the same cell� Meetings of signals F and T occur on
the sites �n� n� f�n���

Constructibility of the sites f � g � �g

A signal U of slope � is sent from the site ��� ��� From each site ��� g�i���
a signal G of slope  is created� It reaches the signal U on the site
�g�i�� �g�i��� On this site� a signal V � which remains on cell g�i� is created�
As f is increasing� we have �g�i�  g�i� � f�g�i��� and� thus� the signal
V reaches the site �g�i�� g�i� � f�g�i�� on which occurs the meeting of the
previous signals F and T � Then� from this site� a signal R of slope � is
sent and it reaches the cell � at the time f�g�i�� � �g�i��

Proposition � If f and g are Fischer�s constructible functions� then f � g is
Fischer�s constructible�

Proof By lemma �� f � g � �g is Fischer�s constructible� By hypothesis� g is
Fischer�s constructible� As f and g are increasing� f � g is increasing and we
have f � g 
 g� Thus by the corollary �� f � g is Fischer�s constructible�

��� Stability by minimum and maximum

Proposition � If f and g are Fischer�s constructible functions� then the func�
tions min�f� g� and max�f� g� are Fischer�s constructible�

�



Proof We only give the proof for min�f� g�� the case of max�f� g� is similar�
The sum �s of the digits which reach the diagonal y � x � s is the di�erence
between the number of integers i such that g�i� � s and the number of integers
i such that f�i� � s� Thus	 �s � j fi � g�i� � sg j�j fi � f�i� � sg j� So� at time
s� a digit is taken in or out if s is equal or not to f�n� or g�n��
The transitions of states are indicated on the �gure �� We observe that� for a
transition on a cell c �c � ��� if jij � � and jjj � � then jkj �  and jpj � �� For
a transition on the cell �� if jij �  and jjj � � then jkj �  and jpj � �� This
shows that the number of signals is �nite� The �gure � illustrates this proof
on an example�

��� Stability by multiplication

Proposition  If f and g are Fischer�s constructible functions� then f � g is
Fischer�s constructible�

Proof We may assume that f 
 g	 if it is not the case� we replace f and g by
min�f� g� and max�f� g� according to the proposition ��
By the corollary � and the proposition �� we have two ICA which construct
G�n� �

Pn

i�� g�i� and G�n� � � f�n��
First� we characterize the sites ��� �f�n�g�n���G�n���G�n��� The �gure �
illustrates this construction� On the site ��� ��� a signal T of slope � is initialized�
At each time G�n�� a signal G of slope  is created on the �rst cell� When
this signal G meets T on the site �G�n�� �G�n��� G dies and a new signal V
which always remains on cell G�n� is sent� In the same way� at each time
G�n� � � f�n�� a signal F of slope  is initialized on the �rst cell� dies at its
meeting with T on the site �G�n � � � f�n�� �G�n � � � �f�n�� and a new
signal C� which remains on cell G�n� � � f�n�� is created on this site�
The distance between two consecutive signals V is g�n�� Thus to achieve a
zigzag at maximal speed between these two signals need exactly �g�n� units of
time� The distance between signals V and C is of f�n� cells� we use the signal
C as a counter	 at each zigzag� it moves of one cell to the left in one unit of
time�
More precisely� when the n�th signal G meets T � a signal R of slope  is created�
on its meeting with the n��th signal V � it dies and creates a signal A of slope
� This signal A dies on its meeting with the n�th signal V � creating a new
signal R�� and so on� During this process� when a signal R passes through the
signal C� C moves of one cell to the left� This process ends when signals C and
R simultaneously reach the signal V � At this time� the signals R have achieved
f�n� moves and the signals A have achieved f�n�� moves� Thus� C reaches V
at time �G�n����f�n���g�n� which is �f�n�g�n��G�n���G�n�� On the site
�G�n��� �f�n�g�n��G�n���G�n�� of this meeting� a signalK of slope � is
created� This last signal reaches the cell � at time �f�n�g�n���G�n���G�n��
We observe that �n � N � f�n�g�n� 
 ng�n� � G�n�� Thus� by the corollary ��

�



f � g is Fischer�s constructible�

� Relationships between Fischer�s constructibil�

ity and related notions

We investigate relationship between Fischer�s constructible functions and ratio
of signals�

Proposition �� Let h be an increasing function� If there exists an ICA which
sets up a signal of ratio h�n�� then h is Fischer�s constructible�

Proof From each site �n� h�n��� a signal of slope � is sent� This signal reaches
the cell � at time n� h�n�� thus� the sites ��� n� h�n� are distinguished and by
the corollary �� h is Fischer�s constructible�

Fact � The converse is false�

Proof We have seen �proposition � that there does not exist a signal of ratio
n � ��n� where ��n� is sublogarithmic� But there exist Fisher�s constructible
functions which increase strictly faster than an exponential	 factorial one �see
paragraph ����� ��

n

�by proposition ��� 
 
 
 Thus� their complement functions�
de�ned by ��n� � n� jfi � f�i� � i � ngj are also Fischer�s constructible� And
��n� � n are sublogarithmic and there do not exist signals of ratio ��n��

Nevertheless� if the di�erence between f�n� and n is� at least� linear� the
converse is true�

Proposition �� Let f be a Fischer�s constructible function� If there exists an
integer k such that �k � �f�n� 
 kn� then there exists a signal which charac�
terizes the sites �n� f�n��

Proof Assume that k is even	 indeed if there exists an odd integer satisfying
the condition� then an even one exists�
First� we mark the sites �kn� kf�n��� The �gure � illustrates this construction�
From the site ��� �� are sent the following signals	

� a signal T of slope k��
k�� �

� a signal D k

�
which moves right of k

� cells in k
� units of time� and from time

k
� remains on the cell k

� �

� a signalDk which moves right of k cells in k units of time and then remains
on cell k�

From each site ��� f�n��� a signal E is sent�
Our ICA has the following behavior	 at the meeting of a signal E and the signal
T 	

�



� the signal E dies�

� a signal E�� of slope � is created�

� the signal T pursues its moves with the same slope k��
k��

�

At the meeting of a signal E�� with a signal D k

�
	

� the signal E�� dies�

� a signal E� of slope  is created�

� the signal D k

�
moves right of k

� cells in k
� units of time� and then remains

on the same cell�

At the meeting of a signal E� and a signal Dk	

� the signal E� dies�

� the signal Dk moves right of k cells in k units of time and then remains
on the same cell�

Now� we show that the signal Dk characterize the sites �kn� kf�n��� The n�th

signal E reaches the signal T on the site
�
�k���f�n�

� �
�k���f�n�

�

�
� From this site�

the signal E�� starts� As �k � �f�n� 
 kn� the n�th signal E�� reaches the
signalD k

�
on the cell kn

� �note that signalD k

�
moves of k

� cells to the right when

it meets a signal E��� thus after n � �th meetings with signals E��� it is on
the cell kn

�
� So� the signal E�� meets the signal D k

�
on the site �kn

�
� kn
�
�� From

this last site� a signal E�� starts� It meets the signal Dk which runs on the cell
kn �by the same argument as previously�� on the site �kn� kf�n���
In order to characterizes the sites �n� f�n��� we group the cells k by k� It is
su�cient to consider a new ICA such that the state of the site �i� j� represents
the states of the sites f�ki � u� kj � v� � �  u � k � �  v � kg�

Now� we consider the bijection between the set of increasing functions and
the set of unary languages� de�ned by	 at the function f � is associated the
language Lf �

�
af�n� � n � N� which is the set of all words of length f�n�� We

recall that a language L is recognizable in real time by a cellular automaton if
on input 	 in L� the CA enters an accepting state on cell � at time j	j� We
observe that� if a CA recognizes the language L in real time� its working area
on an input of length n� is bounded by the diagonal f�c� t� � c� t � ng�

Proposition �� The function f is Fischer�s constructible if and only if the
language Lf is real time recognizable by a one dimensional cellular automaton�

Proof If f is Fischer�s constructible� then there exists a CA which marks the
sites ��� f�n��� If� in addition� this CA creates a signal � of slope � on the
last cell of the input word at time �� then the CA knows if the length of the

�



input word can be written f�n� for some integer n when � reaches the cell � on
a distinguished site�

Conversely� we suppose that there exists a CA �A� which recognizes the
words of length f�n� in real time� We observe that� for any CA� each site
�c� t� with c � t � n is in the same state whatever the input word am for
m 
 n� As our CA recognizes the language Lf in real time� the two space
time diagrams on inputs an and am with m � n are di�erent only on the sites
�c� t� with c � t 
 n �in some way� recognition of an is done on the diagonal
Dn � f�c� t� � c � t � n � c 
 �g�� Now we consider the CA �A�� whose states
are couple of states of A� The �rst components correspond to the states of
A on the input word ainfinity� On the diagonal Dn� the second components
correspond to the states of A on the input word an� A� distinguishes a site on
the �rst cell according to its second component� Clearly� A� marks the sites
��� f�n���

The next section shows a property of these functions on Turing machines�

Proposition �� If an increasing function is Fischer�s constructible� it is Tur�
ing space constructible�

Proof We construct a Turing machine�

� On its �rst tape� we consider the simulation of the one dimensional cellular
automaton by a Turing machine as de�ned in 
��	 the i�th cell of the tape
of the Turing machine represents the i�th cell of the CA� On the CA� as
at time � the cell � is the only one in a non quiescent state� at time t�
only the t �  �rst cells are in a non quiescent state� Thus� during the
simulation of the step t of the CA� the head visits exactly the �rst t � 
cells of the tape�

� In addition� on a second tape� our Turing machine counts how many times
the �rst cell of the CA has been distinguished�

� On a third tape� our Turing machine compares this number with the
integer n� written on its input tape� If these numbers are equal� the
machine halts�

So� the Turing machine halts� during the simulation of the f�n��th step� when
the head visits f�n� �  cells and� thus� f is Turing space constructible�

	 Conclusion

We have begun to investigate two sets of increasing computable �in some sense�
functions	 Fischer�s constructible ones and another ones de�ned by ratios of
signals� They correspond to possible moves of an elementary information� Some
properties of stability have been shown� This work induces some open problems

�



� Are all Turing time constructible increasing functions Fischer�s construc�
tible�

� Do there exist another gaps in ratio of signals� In particular� for a signal
of ratio ��n�� is there always a gap around it�
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Figure 	 The basic signal� de�ned by the sequence of moves �� � � � �� ���� ��
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Figure �	 Signals of ratio �n and �n� on a communicational space time diagram
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