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Abstract

This paper introduces the new version of the Madeleine portable multi-protocol
communication library. Madeleine version III now includes full, flexible multi-
cluster support associated to a redesigned version of the transparent multi-
network message forwarding mechanism. Madeleine III works together with
a new configuration management module to handle a wide panel of network-
heterogeneous multi-cluster configurations. The integration of a new topol-
ogy information system allows programmers of parallel computing applications
to build highly optimized distributed algorithms on top of the transparent
multi-network communication system provided by Madeleine III’s virtual net-
works. The preliminary experiments we conducted regarding the new virtual
network capabilities of Madeleine 111 showed interesting results with an asymp-
totic bandwidth of 43 MB/s over a virtual link made of a SISCI/SCI and a
BIP/Myrinet physical link.

Keywords: Cluster of cluster, high-speed networks, multi-protocol communication, heterogeneity.

Résumé

Cet article présente la nouvelle version de la bibliothéque de communication
multi-protocole portable Madeleine. La version III de Madeleine intégre dé-
sormais un support complet et flexible pour les configurations multi-grappes
associé & une version redessinée du mécanisme transparent de retransmission
multi-réseau. Madeleine III travaille de concert avec un nouveau module de
gestion de session capable de prendre en charge une trés grande variété de
configurations multi-grappes hétérogénes au niveau réseau. L’ajout d’un nou-
veau systéme d’information sur la topologie permet en outre au programmeur
d’applications de calcul paralléle de concevoir des algorithmes hautement opti-
misés au-dessus du systéme de communication multi-réseau transparent fourni
par les réseaux virtuels de Madeleine III. Les premiers résultats des expériences
menées sur les nouvelles capacités de réseau virtuel de Madeleine III montrent
des résultats intéressants, avec une bande passante asymptotique de 43 Mo/s
sur un lien virtuel constitué d’un lien physique sur SISCI/SCI et d’un lien
physique sur BIP /Myrinet.

Mots-clés: Grappes de grappes, réseaux rapides, communication multi-protocoles, hétérogénéité.



Heterogeneous Multi-Cluster Networking with the
Madeleine III Communication Library

Olivier Aumage*

1 Introduction

Cluster Computing Evolution The interest in cluster computing kept growing since the early years of
the previous decade. Now, this growing interest is leading many research teams to go further and experiment
with new and wider forms of computer aggregates.

At a very large scale, these new experiments mostly concern two categories of configurations. The first
category is made of the metacomputing grids. These grids interconnect powerful supercomputers from
computation centers disseminated among countries and continents. Metacomputing grids are built using
software such as the Globus environment, which handles session management, security and resource allocation
issues (among many other ones). The second category embraces the loosely coupled systems such as the one
used by the SETI program. These systems use idle CPU cycles on a very large number of workstations to
perform complex computations. Each workstation first works on its own piece of the whole computation and
then sends the results to a centralized server.

Now, at the scale of clusters interconnected by a SAN network, the main objective is to build high
performance computing systems out of several clusters of workstations. The idea is to allow computation
centers to interconnect their clusters with high performance networks (such as the ones used for building
the clusters themselves), and to get a single powerful multi-cluster computing architecture. This objective is
rather challenging for communication libraries. Indeed, the inherent heterogeneity and especially the inherent
network heterogeneity found in such architectures is very high. Nevertheless, communication libraries have
to compose with that heterogeneity while ensuring the most efficient use of underlying hardware capabilities.
Moreover, network links established between clusters may well outperform internal cluster links. As a
consequence, communication environments that were designed for grids (MPICH-G [9], PACX-MPI [6]) are
just unsuitable for supporting multi-cluster communications. They rely on the use of standard protocol
stacks (e.g. TCP) over inter-cluster links which cannot deliver the full networking hardware potential.

Need for Efficient, Flexible Networking Environments It results from this observation that multi-
cluster communication platforms have to be more specifically designed. Several issues have to be addressed
and can be split into two parts.

The first part that comes to mind groups technical issues involving specific communication support over
inter-cluster links in order to extract most of the nominal hardware capabilities up to the application. Most
of these issues have to be addressed by the software located on cluster gateways (the nodes that belong to
more than a single network, that is, the nodes connected to an inter-cluster link). Indeed, the multi-cluster
communication support has to provide an efficient way to transfer messages across cluster boundaries. Yet,
it should strive to make that transfer as transparent as possible, both for the application programmer and for
the application process(es) running on the processing nodes used as gateways. Moreover, the software running
on the gateways should keep messages to be forwarded from going through the whole communication stack
twice on each gateway. Yet, whatever the optimization level of the multi-cluster data forwarding mechanism,
its overhead cannot be made negligible. Finally, applications may have a need for an access to information
about the underlying configuration topology, so as to build clever high-level communication and distribution
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algorithms (for instance, by analyzing whether having a given message cross the boundaries of a cluster is
worth the cost of the overhead or not). Therefore, the communication library should be able to provide the
application with mechanisms to perform queries about topology information.

The second kind of issues concerns the building and the management of the session. The session man-
agement system has to be flexible enough to handle most real-life cases. As the goal of multi-cluster commu-
nication systems is to allow users to easily build powerful computers out of their existing clusters, it would
be unacceptable to reject a configuration just because it does not exactly fit some rigid schemes. Indeed,
supporting (for instance) such a configuration where two networks overlap — with a given network hardware
(let’s say Myrinet) available on every node and another hardware (e.g. SCI) only available on a part of the
whole cluster — requires the communication support to consider every node to be a potential gateway. Yet,
the increase in flexibility from the session management system should be followed by an increased care in
the initialization sequence algorithms to avoid deadlocks while establishing the connections.

Madeleine III The version II of the Madeleine communication library already provided an efficient sup-
port for cluster-level multi-protocol communication to distributed programming environments ([2]). Yet, its
use was restricted to network homogeneous clusters only: each node could only use exactly the same network
hardware(s) (i.e. the same set of NICs) as the other ones. This limitation could be considered acceptable on
single cluster configurations the library was designed for, but it is incompatible with multi-cluster support.

As an attempt to overcome Madeleine IT limitations while still fully exploiting its original internal layers
features, a preliminary study of an automatic multi-network data forwarding extension to Madeleine II was
developed and presented at the HCW’01 workshop ([3]). This successful experience led the way to the
conception and development of a new version of the Madeleine communication library presented in this
paper. This third version builds on the Madeleine II buffer management and multi-protocol support engines
to provide a high-performance multi-cluster networking platform. It integrates an entirely redesigned version
of the multi-network data forwarding mechanism. This mechanism now supports any number of gateways
and as been designed to suppress the risk of deadlocks that could be caused by processes communicating
using a circular scheme, for instance.

It is coupled with a new session management module called Leonie and relies on the introduction of
an additional data structure hierarchy for configuration representation in the internals of Madeleine. The
Leonie module is responsible for parsing the application configuration file and for building the session config-
uration by spawning processes on selected networks/nodes and connecting them together. This paper mainly
focuses on describing the last developments regarding the multi-cluster configuration management and the
topology information system, and their integration with the automatic multi-network message forwarding
mechanism. The preliminary performance results of this mechanism are very encouraging (see Section 5),
with an asymptotic bandwidth at 43 MB/s over a SCI/Myrinet virtual connection, to be compared with the
half bandwidth (the bus on the gateway node both receives data on the first network NIC and send the data
again to the second network NIC) of the 132 MB/s PCI bus used.

This paper is organized as follows. The next section depicts the context of our work and the different
issues to be addressed in supporting communication onto multi-cluster configurations. The section III details
more thoroughly our contribution and presents the new features in Madeleine I11. The section IV is dedicated
to a more in-depth view of its new internals. The section V reports on the performance of the library, both
as raw and forwarded data transfers are concerned. The section VI concludes this paper and briefly presents
ongoing and future work.

2 Context

2.1 Multi-Cluster Environments

A carefull glance at the current picture of networking platforms research efforts around the world shows that
most projects either target wide-area configurations or cluster-scale configurations. Yet, both approaches do
not suitably address inbetween situations such as linking two clusters with a fast communication link.
Even though large scale metacomputing environments such as Globus would be able to support multi-
cluster configurations, they are not well suited for that particular use. Metacomputing environments are
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Figure 1: Multi-cluster link.

equipped with very advanced mechanisms to address issues like security enforcement, resource reservation
and allocation, or fault detection and tolerance. Yet, while these mechanisms are perfectly relevant in the
metacomputing context where resources of many computation center have to be managed with the greatest
care, it is clear that they would be rather oversized—or even irrelevant—for multi-cluster configuration.
Even a light-weight version of such an environment wouldn’t be efficient as metacomputing communication
systems only use standard protocol stacks (like TCP in MPICH-G and PACX-MPI). Again, this approach is
valid for long-distance communication between the nodes of a metacomputer which benefits from the added
value of such protocol stacks. Yet, it will not allow to efficiently exploit a fast cluster interconnect.

Cluster scale communication libraries are not well suited for multi-cluster support either. Yet, while
metacomputing environments are oversized for managing multi-cluster configurations, cluster scale com-
munication libraries are rather undersized for that use. They have not been designed for integrating the
increased complexity of such configurations. Consequently, multi-cluster configurations are either simply
not supported (if the internal structures do not allow the storage of complex configurations) or they involve
the application in managing communication between each network on the gateways. As a result, the former
alternative is not usable and the later one implies a lot of extra-work from the application programmer, to
be repeated for each new application port.

Nevertheless, research labs now commonly own two or more clusters of workstations. The availability of
a fast, portable multi-cluster communication support would provide these labs, mostly for free, with a much
higher aggregated computing power.

2.2 Supporting High-Bandwidth Inter-Cluster Networks

The main specific characteristic of multi-cluster configurations is the fact that the performance of the inter-
cluster links is in the same order of magnitude as the intra-cluster networks. To put it in another way (see
Fig. 1), the feature that can be identified as being common to any multi-cluster configuration is that at least
one node of a cluster named A (node A3 on the figure) built around a A networking hardware owns a B
networking hardware NIC linked to the B cluster network (networks are symbolized by the circles on the
picture). Any multi-cluster configuration is therefore a variation on this general scheme.

Hence, there is no fundamental difference between an intra-cluster link and an inter-cluster link. There-
fore, a multi-cluster communication library should not make any difference between both kind of links at
the driver level. Instead, the new role in supporting multi-clusters of the communication layer will be to
integrate routing and message steering functionalities to implement the gateways. Let’s come back to the
Figure 1. The node A3 can be identified as a gateway node because it belongs to more than one network.
Suppose the node A1 needs to send a message to the node B2. Because A1 and B2 do not belong to the



same network, A1 will not be able to send the message directly to B2. Instead, the message will have to
be relayed by the A3 gateway. The node A3 has to listen both for messages destinated to itself and for
messages to be forwarded from the A network to the B network and conversely. Moreover, the node A1 will
have to determine that his message for B2 has to be physically sent to A3. Hence the need for routing.

As a conclusion, the communication library has to handle inter-network data forwarding to build the
missing physical links, even though networks might be made of different protocol/hardware pairs. The
automation of that relaying job would even hide these missing links. This would show the whole multi-cluster
architecture as a single fully connected virtual cluster to the applications and allow for the straightforward
port of single-cluster applications.

2.3 From Madeleine II to Madeleine 111

The version II of the Madeleine library ([2]) is a cluster scale communication library. It was designed to
provide an efficient and yet portable communication support for distributed computing applications. It
allowed multiple networks and multiple NICs per network to be used within the same computing session.
Yet, it required each node of the configuration to use exactly the same set of NICS. For instance, suppose
each workstation of a cluster owns both a Myrinet card and a Fast-Ethernet card, with the exception of one
workstation equipped with a Myrinet card and two Fast-Ethernet cards. The Madeleine II library would
allow an application to use both the Fast-Ethernet card and the Myrinet card on each workstation but only
the Myrinet card and one among the two Fast-Ethernet cards would have been available for the application
on the workstation with the three NICs. Consequently, the Madeleine II library as such was not ready for
multi-cluster support.

Our preliminary study of an automatic multi-network forwarding extension for gateway support was
conducted using an hacked version of Madeleine II. The hack basically forced Madeleine to ignore missing
NICs and multi-cluster routing used hard-coded routing tables. It was definitely not a suitable version
for production use, but the experiments we conducted with the forwarding extension were successful and
started the development of the new version of Madeleine presented here. This version integrates a redesigned
version of the initial fowarding extension which has now been designed with scalability and flexibility in
mind. Madeleine III now natively supports any combination of union and inclusion of workstations clusters.
At least one direct or indirect path must exist between each pair of nodes among the configuration if
that configuration is to be seen as a single virtual cluster by the application, but it is not mandatory (a
configuration not following this rule will simply generate several disconnected virtual networks instead of a
main single one and the application will take the shape of independently running sets of processes). The
multi-network forwarding extension handles data transfers in a transparent manner from the application
point of view.

In order to replace the hard-coded routing tables used in the testing version of Madeleine II, the
Madeleine IIT library now works together with a new external tool. This tool (called Leonie) is respon-
sible for addressing many session management issues that were handled directly into Madeleine before. The
initialization code of Madeleine has been greatly simplified by this new partition of responsabilities. The
Leonie tool analyses the application configuration file and build the topology and routing tables from it.
It then remotely spawns the session processes and connects them together. Leonie is also responsible for
controling the session clean-up sequence.

These last developments are described in the next section.

3 Contribution

Managing Heterogeneous Configurations with Leonie As explained above Madeleine III library
relies on a new helper program called Leonie to perform configuration and session management duties. The
Leonie tool use the services of a generic configuration file parser library (called Leoparse) to read and analyse
the application configuration file. The Figure 2 shows an example of an application configuration file to be
submitted to Leonie. Madeleine use the word channel for designing the interface abstraction of a network.
The main function of the configuration file, beside indicating the application executable, is to map Madeleine
channels onto physical networks and to map virtual channels (called vchannels in the fig. 2) onto regular



application: {
name: mad_test;

networks: {
include: networks.cfg;

channels: ({

name: first;

net: bip_net;

hosts: (tennessee, faure, ravel);
Ao

name: second;

net: sisci_net;

hosts: (muddy-waters, debussy,

ravel) ;

IR

vchannels: {

name: global;
channels: (first, second);

Figure 2: Example of application description file.

channels. The difference between a regular Madeleine channel and a virtual channel is that the first kind
is only made out of a set of direct physical links, while the second kind, the virtual channels, may contain
nodes that do not belong to the same network. As such, virtual channels may involve the new forwarding
extension to provide virtual point-to-point links between nodes that are not physically directly connected to
each other.

From the application point-of-view, there is no difference between regular and virtual channels at the
Madeleine communication interface level. The application selects the channel to use for sending a message
by passing its name as parameter to the interface of Madeleine. Then, according to what was analyzed in
the application configuration file by Leonie, that name is mapped onto its corresponding regular or virtual
channel. In the example of the figure 2, if the application passes the string "global" to the interface of
Madeleine, the virtual channel described in the configuration file will be used for the transmission. Changing
the definition of the global channel (or simply using another configuration file) to the one of a regular channel
would have the application communicate onto that regular channel, without even the need of recompiling it.

The Leonie tool builds a complete internal representation of the session configuration and of the routing
information from the configuration file. It then starts the process spawning sequence. Yet, Leonie has to take
the special case of network interface launchers into account. Indeed, several communications interfaces require
that the processes be launched using a proprietary black-box launcher (e.g. bipload for the BIP/Myrinet
interface, mpirun with many MPI implementations). Consequently, Leonie must sort the processes of the
configuration into several sets according to the launcher needed to spawn it. Moreover, each launcher must
have a specific interfacing stub in Leonie to handle issues such as building the command line. It is only after
the sorting step that processes can effectively be spawned. Each set of processes is passed to its corresponding
launcher interfacing stub, or to the common fallback generic loader. Each set is always launched as a whole
and Leonie can be interfaced with optimized tree-based application launchers (in that case, such a launcher is
used in the place of the fallback loader for the nodes where it is available). Once a process is launched, it calls
back the Leonie server over a TCP link. This link will be used all along the session (but mainly during the
initialization and clean-up sequences) to exchange information, but the very first exchange involves two steps.



First, the application process identifies itself by sending information about is location, and then, Leonie sends
the process rank number in the configuration. This rank number is very important as it uniquely identifies a
process among the configuration. It should be noted that this rank number cannot be passed to the process
as a command line argument during the spawning step because most black-box launchers just do not have
support for sending process specific information.

Once the processes are launched, Leonie schedules the initialization sequences of each instance of Madeleine.
Network drivers, network adapters are first initialized. They are followed by the initialization of the regular
channels and finally by the initialization of the virtual channels. Such a tight synchronization is mandatory
to avoid deadlocks during the setup of connections. The reverse sequence is used for session clean-up.

Beside these session management services, Leonie also provides multi-purpose services such as synchro-
nization routines (over the whole session) and centralized display routines.

Multi-Cluster Networking over Virtual Channels As mentionned earlier, Madeleine III provides
two public types of channels to the applications: the regular channels and the wirtual channels. In the
figure 2, the channels named first and second are related to a single physical network driver. These two
channels are regular channels. The basic idea of the regular channel concept is that each point-to-point
connection of a regular channel is either direct or inexistent. The communication interface of Madeleine only
supports sending messages over point-to-point connections. Consequently, an application process running
on a given node cannot send a message to another node over a regular channel if both nodes are not directly
interconnected by a physical network link.

The wvirtual channels have been introduced to overcome that limitation while preserving the communica-
tion interface of Madeleine. Virtual channels are built over the regular channels. They rely on the use of the
multi-network forwarding extension to fill in the gaps with virtual point-to-point connections were physical
point-to-point connections are missing. In order to preserve communication consistency, a regular channel
selected in a virtual channel is locked. It cannot be used directly by the application anymore. Each virtual
channel consumes its regular channels. A regular channel cannot appear in more than one virtual channel,
again for ensuring communication consistency. It should be noted however that both limitations could be
easily removed by increasing the length of internal message headers. Such an approach would reduce the
use of multiplexing resources, at the cost of decreased performances, especially at the regular channel level
because the regular channel messages currently do not have headers.

Each regular channel involved in a virtual channel has a twin forwarding channel with identical charac-
teristics. Forwarding channels are built automatically from regular channels information and they do not
have to be declared in the application configuration file. A forwarding channel is private to Madeleine and
may never be used by the application because it is permanently locked. Forwarding channels are used to
convey to-be-forwarded messages while their twin regular channels only carries direct messages. This way,
the gateways can easily tell messages targeted to themselves from messages to be relayed. Again, the use
of forwarding channels could be replaced by extra information in message headers to reduce multiplexing
resource usage, at the cost of a reduced level of performance.

4 Implementation

We now details the implementation of the changes induced by the addition of multi-cluster support into
Madeleine. Among those changes, internal data structures were partially redesigned and extended to support
the specificity and the increased complexity of multi-cluster configurations.

Configuration Directory The internals of the Madeleine II communication are built around an object-
oriented data structure stack. The function of this structure was to provide an internal representation for
concepts such as drivers, adapters, channels and point-to-point connections. Because Madeleine II requires
each node of the configuration to use exactly the same set of NICS, each node has the same set of objects.
As such, each node immediately knows the configuration details of any other node just by looking at its own
configuration.

With the introduction of multi-cluster configurations, this is not true anymore. For instance, a given
regular channel that would be unavailable on several nodes just wouldn’t even appear in the object stack of
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these nodes. As a consequence a difference must now be made between the internal representation of the
information about the whole configuration and the internal representation of the state of the software and
hardware communication components (adapters, channels, etc.) The first kind of information represents data
describing the entire configuration and can be considered to remain static during the session. The second
information is a dynamic and instantaneous view of the state of the communication library instance on a
given node. A new object stack was integrated into Madeleine III to complete the existing one by storing
configuration information separately. This data structure is called the configuration directory (or simply just
directory) and is represented in the figure 3. It is made of a hierarchy of tables and lists of objects and can
be considered as a kind of knowledge base about the whole configuration.

The Leonie server is responsible for building the master copy of the directory out of the information
extracted from the application configuration file. Once the directory has been initialized and the processes
have been launched, a copy of the directory is sent to each process of the configuration. Most of the
information is just copied as-is from the configuration file to the directory. The remaining is essentially
made of the routing tables of the virtual channels and is computed by Leonie. The algorithm currently used
for computing network routes is a simple adaptation of a regular all shortest path algorithm. However it
could easily be replaced with a more clever algorithm. Such an algorithm could take, for instance, network
performance characteristics or gateway balancing into account to build better inter-network routes. Yet,
whatever the algorithm chosen, the routing tables cannot currently be changed dynamically during the
session in this implementation.

Multi-Threaded Data Forwarding We now describe the implementation of the multi-network forward-
ing extension included in Madeleine III. This part requires a basic knowledge of the internals of the Madeleine
library so we give a short description of these internals first, before the actual presentation of the extension.

The architecture of Madeleine presented in [1] is summarized in figure 4. It uses a traditional approach
with a high level portable layer for buffer management and a low level layer for network hardware interfacing.
The high level layer is made of several buffer management modules (BMM), each implementing its own
management policy. The network layer is also made of several modules called transmission modules (TM)
and protocol management modules (PMM). A protocol module is basically a network driver for Madeleine.
It must contain at least one transmission module, but there is no upper limit on their number. Each
transmission module implements a way to use a given network interface (e.g BIP for Myrinet) or a network
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Figure 4: Madeleine internal architecture.

protocol (e.g. TCP).

The whole forwarding module was designed to perfectly mimic the specifications of the transmission
module interface and the protocol module interface of Madeleine (see figure 5). Indeed, this solution has
two major advantages. The first one is that this way, the messages to be forwarded on the gateways
are kept from traversing the whole Madeleine stack twice (which was one of the main objectives in the
design of this extension). The second advantage is that the forwarding module runs un-intrusively with
respect to the Madeleine buffer management layer: implementing the forwarding extension doesn’t required
a major redesign of the buffer management layer. Moreover, the forwarding module also use the protocol
module interface and the transmission module interface — but now from the consumer point-of-view — to
control the actual underlying network modules. Another main objective of the forwarding extension was the
overall transparency of the forwarding mechanism for the application. The forwarding module included in
Madeleine III relies on the services of the Marcel user-level multi-threading library [5]. The use of threads to
receive and retransmit messages allows the mechanism to run un-intrusively with respect to the application
code running on the gateway nodes.

The Madeleine communication interface is based on the paradigm of incremental message building and
extraction. A message is initiated with a call to the begin_packing routine, incrementally built with a series
of calls to the pack routine and finalized by a call to the end_packing routine. The message extraction scheme
is just the same. The buffer management layer of Madeleine is then responsible for virtually aggregating
(or not) each packed piece of data together before eventually passing them to a transmission module for
actually putting them on the wire. Consequently, a given Madeleine message may well require several
transactions with a transmission module to be integrally sent over the wire. Moreover, there is no bound
over the delay between each successive transaction, and hence there is no bound over the whole message
construction duration either. On a regular channel directly used by the application, the corresponding point-
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to-point connection would be reserved during the whole message construction, whatever its duration. The
same is true for a virtual point-to-point connection of a virtual channel. However, the underlying direct
connections that build this virtual connection cannot be locked for so long as they may meanwhile be needed
by other virtual connections. Doing so would unavoidably lead to deadlocks. As a consequence, the atomic
transmission unit used by the forwarding module internally is not the whole message but a unit simply called
block. The forwarding module blocks are made of a fixed length header and a variable length payload. The
link reservation is limited to a single direct connection (from the sender to the first relay, or between two
further transmission relays) and its duration is limited to the time to send a block.

This assertion means that blocks being part of different messages may travel interleaved on the same wire.
This is not a problem because these blocks either differ by their source or by their destination. Remember, a
virtual connection is locked during the whole message construction and transmission. Therefore, there cannot
be interleaved messages on the same virtual connection, and hence there cannot be any interleaved messages
with both the same source and destination on the same wire. The last relay of each virtual connection (the
one retransmitting a block to its actual destination) is responsible for sorting the blocks. It accumulates
the messages blocks for each destination it is responsible for, because the flow of data over the last direct
connection of a virtual connection is controlled by the receiver. As a result, a worst case situation where
a gateway keeps receiving blocks of data while their actual destination processes never ask for them could
end up in the gateway memory being exhausted. To avoid this problem, Madeleine III also integrates an
optional flow control mechanism over whole virtual lines.

5 Evaluation

This section presents an evaluation of the overall Madeleine III performance on the networks we have been
using to test the previous version of Madeleine, to allow for an easier comparison with previous papers.
The following performance results were obtained using a cluster of dual INTEL PENTIUM II 450 MHz
PC nodes with 128 MB of RAM and a 33 MHz 32bit PCI bus running LiNux Kernel 2.2.13. The cluster
interconnection networks are 100 Mb/s FAST-ETHERNET for TCP, DorPHIN SCI ([8], [7]) (D310 NICs) for
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Figure 6: Latency and bandwidth over TCP/FAST-ETHERNET

SISCI and MYRINET (LANai 4.3, 32bit bus, 1 MB SRAM) for BIP [10]. Results were obtained by ping pong
tests (half round-trip).

Raw Performances Raw performance results for Madeleine III over TCP /Fast-Ethernet, SISCI/SCI and
BIP /Myrinet are displayed in figures 6, 7 and 8. The performance of Madeleine IIT over SISCI/SCI shows
that the inherent overhead of Madeleine IIT is very low. The minimal latency achieved by Madeleine 111
over this network is around 5.3 us. As, the raw SISCI/SCI latency is around 2 us, the Madeleine III raw
overhead may be estimated to be between 3 and 4 us. Yet, the Madeleine III source code is not currently
over-optimized. Indeed, this low overhead is due to the short and rather straightforward critical path of the
transmission routines, which also allows for transfer rates to fill most of the available hardware bandwidth
on both SISCI/SCI and BIP/Myrinet (and of course TCP/Fast-Ethernet). The internals and optimizations
of Madeleine SISCI/SCI and BIP/Myrinet drivers have been thoroughly described in [1] and did not change
significantly during the transition between the version II and the version III of Madeleine. Therefore, they
won’t be presented in this paper again.

Forwarding Performances The performance of data transmission over Madeleine III’s virtual channels
is shown in figure 9. The test program performs a ping-pong with messages traveling back and forth over a
virtual connection going through a BIP /Myrinet link and a SISCI/SCI link. Expectedly, the 50 us minimal
latency is quite high. There two main reasons for that high latency. The first reason is that messages now
have to go through two nodes in the test, instead of only one in the raw experiments with Madeleine’s drivers.
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Figure 7: Latency and bandwidth over SISCI/SCI

The second reason is that the data blocks that travel over a virtual connection are made of two pieces of
data (the header and the body) while messages sent over regular channels don’t have an header. Moreover,
the cost of that additional header is also amplified by the additional node to go through. Yet, it should be
noted that this 50 ps minimal latency is only half the minimal TCP /Fast-Ethernet latency. However, it is
not the main focus of the forwarding mechanism and this interesting result compared to the TCP latency is
only a nice side-effect.

The asymptotic bandwidth reaches 43 MB/s, which is a very good result indeed. The gateway node
PCI bus has to be shared between both a SCI NIC and a BIP NIC, so the theoretical maximum bandwidth
achievable is 66 MB/s (half the 132 MB PCI bus bandwidth). This theoretical limit is for one-way burst
data transfers only. Taking into account the fact that in the gateway context, the two NICs unavoidably
conflict for accessing the bus, the 43 MB/s bandwidth obtained can be considered an interesting result.

6 Conclusion and Future Work

In this paper, we presented the new version of the Madeleine communication library and the modifications
induced by the addition of a support for multi-cluster configurations to it. This transition involved design and
redesign work inside the library as well as the development of an external helper program. This program,
called Leonie removes the session management issues from the tasks of the Madeleine library. It is in
charge of duties such as analyzing application configuration files, building the internal representation of the
configuration and the inter-cluster routing tables, launching the session processes and finalizing the session.
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Figure 8: Latency and bandwidth over BIP/MYRINET

Madeleine internals have been extended with a new data structure for representing static information
about the network components (drivers, channels, etc.) of the configuration. This data structure called
configuration directory completes the existing one which stores information about the current state of the
Madeleine library instance running as part of an application process. The Madeleine interface has been
left untouched by this transition to multi-cluster support. Cluster networks are still presented as channels
although some channels may now be virtual. As a result, an application can run unmodified on this new
multi-cluster version of Madeleine. Such an application may later be optimized by accessing the configuration
directory to retrieve topology information and use it to adopt clever communication schemes. Madeleine also
includes a redesigned version of its automatic multi-network message forwarding extension. This extension
handles gateway traffic in a transparent manner using a multi-threaded approach. This transparent approach
is the key part of the virtual channels as it provides for the building of the virtual connections between nodes
standing on different networks.

The preliminary experiments we conducted with Madeleine III showed the low overhead of the library and
the encouraging results of the virtual network support. We now intend to focus our work on our adaptation
of MPI over Madeleine [4] to efficiently import the new multi-cluster capabilities of Madeleine III.
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