
HAL Id: hal-02101865
https://hal-lara.archives-ouvertes.fr/hal-02101865

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract geometrical computation: Turing-computing
ability and unpredictable accumulations (extended

abstract).
Jérôme Durand-Lose

To cite this version:
Jérôme Durand-Lose. Abstract geometrical computation: Turing-computing ability and unpredictable
accumulations (extended abstract).. [Research Report] LIP RR-2004-09, Laboratoire de l’informatique
du parallélisme. 2004, 2+11p. �hal-02101865�

https://hal-lara.archives-ouvertes.fr/hal-02101865
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Abstract geometrical computation:
Turing-computing ability and

unpredictable accumulations (extended

abstract)

Jérôme Durand-Lose Mars 2004

Research Report No 2004-09

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Abstract geometrical computation: Turing-computing ability and

unpredictable accumulations (extended abstract)

Jérôme Durand-Lose

Mars 2004

Abstract

In the Cellular Automata (CA) literature, discrete lines inside (discrete) space-
time diagrams are often idealized as Euclidean lines in order to analyze a dy-
namics or to design CA for special purposes. In this article, we present an
analog model of computation corresponding to this abstraction: dimension-
less signals are moving on a continuous space in continuous time generating
Euclidean lines on (continuous) space-time diagrams. Like CA, this model is
parallel, synchronous, uniform in space and time, and uses local updating. The
main difference is that space and time are continuous and not discrete (i.e. R

instead of Z). In this article, the model is restricted to Q in order to remain
inside Turing-computation theory. We prove that our model can carry out any
Turing-computation through two-counter automata simulation. Because of the
nature of time, Zeno phenomena, i.e. accumulations, can happen. By reducing
the NTOT problem (whether a recursive function is not total), we prove that
forecasting any accumulation is Σ0

2-complete in the arithmetical hierarchy, i.e.
totally undecidable.

Keywords: Abstract geometrical computation, Analog model of computation, Arithmetic hierarchy,
Cellular automata, Geometry, Turing universality, Zeno phenomena.



Résumé

Dans la littérature des automates cellulaires (AC), les lignes discrètes appa-
raissant sur les diagrammes espace-temps sont souvent assimilées à des lignes
du plan euclidien pour analyser une dynamique ou au contraire produire un
AC particulier. Dans cet article, nous présentons un modèle de calcul ana-
logique correspondant à cette abstraction : des signaux sans dimension se
déplacent dans un espace continu et engendre de vraies droites sur les dia-
grammes espace-temps (continus). Comme pour les AC, le modèle de calcul
est parallèle, synchrone, uniforme dans le temps comme l’espace et les mises
à jours se font de manière locale. La principale différence est que le temps est
continu et non plus discret. Dans cet article, nous nous restreignons à valeurs
rationnelles afin de rester dans le cadre de la théorie de Turing. Nous prou-
vons qu’il y est possible d’effectuer n’importe quel calcul au sens de Turing
par la simulation d’automates à deux compteurs. À cause de la nature conti-
nue du temps, des phénomènes de type Zénon, i.e. des accumulations, peuvent
apparâıtre. En réduisant le problème NTOT (une fonction récursive est-elle
totale ?), nous prouvons que la prévision d’une accumulation est Σ0

2-complète
dans la hiérarchie arithmétique, i.e. totalement indécidable.

Mots-clés: Abstract geometrical computation, Modèles de calcul analogiques, Hiérarchie
arithmétique, Automates cellulaires, Géometrie, Turing universalité, Phénomène type Zénon.

2



Abstract geometrical computation: Turing-computing ability and

unpredictable accumulations(extended abstract)

Jérôme Durand-Lose

March 2003

Abstract

In the Cellular Automata (CA) literature, discrete lines inside (discrete) space-time diagrams are
often idealized as Euclidean lines in order to analyze a dynamics or to design CA for special pur-
poses. In this article, we present an analog model of computation corresponding to this abstraction:
dimensionless signals are moving on a continuous space in continuous time generating Euclidean lines
on (continuous) space-time diagrams. Like CA, this model is parallel, synchronous, uniform in space
and time, and uses local updating. The main difference is that space and time are continuous and
not discrete (i.e. R instead of Z). In this article, the model is restricted to Q in order to remain
inside Turing-computation theory. We prove that our model can carry out any Turing-computation
through two-counter automata simulation. Because of the nature of time, Zeno phenomena, i.e.
accumulations, can happen. By reducing the NTOT problem (whether a recursive function is not
total), we prove that forecasting any accumulation is Σ0

2-complete in the arithmetical hierarchy, i.e.
totally undecidable.

Key-words: Abstract geometrical computation, Analog model of computation, Arithmetic hierarchy, Cellular

automata, Geometry, Turing universality, Zeno phenomena.

1 Introduction

Cellular automata (CA) form a well known and studied model of computation and simulation. Configu-
rations are Z-arrays of cells, the states of which belong to a finite set. Each cell can only access the states
of its neighboring cells. All cells are updated iteratively and simultaneously. The main characteristics of
CA are: parallelism, synchrony, uniformity and locality of updating. The trace of a computation, or the
orbit starting from an initial configuration, is represented as a space-time diagram: a coloring of Z × N

with states.
Discrete lines are often observed on these diagrams. They can be the keys to understanding the

dynamics and correspond to so-called particles or signals as in, e.g., [Ila01, pp. 87–94] or [BNR91,
DL98, HSC01, JSS02]. They can also be the tool to design CA for precise purposes and then named
signals and used for, e.g., prime number generation [Fis65], firing squad synchronization [Got66, VMP70,
LN90, Maz96] or reversible simulation [DL97, DL00]. These discrete lines systems have also been studied
on their own [DM02, MT99]. The figures in cited papers all exhibit discrete lines which are explicitly
refereed to –and are often idealized as Euclidean lines– for describing or designing. Many more articles
could have been cited, the cited ones were randomly chosen in order to show the variety.

We want to consider Euclidean lines on their own –not as a passing point for analysis or conception–
while remaining with the main characteristics of CA. As Euclidean lines belong to Euclidean spaces and
not Z × N, we change the supports of space and time to R. Configurations (at a given time or the
restriction of the space-time diagram to a given time) are not mappings from Z to a finite set of states
but partial mappings from R to the union of a finite set of meta-signals and a finite set of collision rules,
defined for finitely many positions. The time scale is R+ (not N), so that there is no such thing as a “next
configuration”. The following configurations are defined by the uniform movement of each signal, the
speed of which is defined by its associated meta-signal. When two or more signals meet, this produces
a collision defined by a collision rule. Each collision rule is defined by a pair of sets of meta-signals:

1



(incoming meta-signals, outgoing meta-signals). There must be at least two incoming meta-signals and
all sets of incoming meta-signals must differ (which means determinism). In the configurations following
a collision, incoming signals are removed and outgoing signals corresponding to the outgoing meta-signals
are added.

Due to the continuous nature of space and time and the uniformity of movements, the traces of signals
form Euclidean lines on the space-time diagrams, which we freely call signals. Each signal corresponds
to a meta-signal which indicates its slope. Since there are finitely many meta-signals, there are finitely
many slopes. This limitation may seem restrictive and unrealistic, even awkward as a quantification
inside an analog model of computation. Let us notice that, first, it comes from CA: once a discrete line
is identified, wherever (and whenever) the same pattern appears, the same line is expected, thus with
the same slope. Second, we give two pragmatic arguments: (1) laws to define the new slopes from the
previous ones in collisions are not so easy to design and pretty cumbersome to manipulate; (2) there is
already much computing power and scheming things (as presented in this paper and addressed in the
conclusion).

Before presenting the results in this paper, we want to convince the reader that it is not just “one
more analog model of computation”. First, it does not come “out of the blue” because of its CA origin
(where it is implicitly used). Second, let’s do a brief tour of analog/super-Turing models of computation
(a wider survey can be found in [DL03, Chap. 2]). To our knowledge, the closest model is the Mondrian
automata of Jacopini and Sontacchi [JS90]. They also define dynamics and work on space-time diagrams
which are mappings from Rn × R to a finite set of colors. Their diagrams should be bounded finite
polyhedra; we are only addressing lines –(hyper-)faces are not considered– and our diagrams may be
unbounded and accumulation points may appear (they just forbid them). Another close model is the
piecewise-constant derivative system [AM95, Bou99]. Continuous space is partitioned into finitely many
polygonal regions. The trajectory from a point is defined by a constant derivative on each region, thus an
orbit is a sequence of (Euclidean) line segments. This model is very different from ours: it is sequential
–there is only one “signal”– and the hyper-faces that delimit the regions are artifacts that do not exist
in our model.

All the other models are based on totally different approaches. Some only define mapping over R

like recursive analysis (type 2 Turing machines) [Wei00] or analog recursive function [Moo96]. Many use
a discrete iterative time like the BSS model [BCSS98] or analog recurrent neural networks [SS95]. The
models with continuous time mostly use differential equations, finite support (variables) with uncountably
many possible values [Orp94, ŠO01, PE74, Bra95]. To our knowledge, our model is the only one that is
a dynamical system with continuous time and space but finitely many local values.

In this paper, space and time are restricted to rationals. This is possible since all the operations
used preserve rationality. Moreover, this allows manipulation by, e.g., Turing machines, and is enough
for Turing-computing capability. All intervals should be understood over Q, not R. Extending the
definitions to real values is automatic but only the rational case is addressed here.

After formally defining our model in Sect. 2, we rapidly show that any Turing-computation can be
carried out through the simulation of two-counter automata in Sect. 3. The counters are encoded in
unary and the instructions are going forth and back between the two groups of signals. The nature of
space is used here: any finite number of signals can be enclosed in a bounded interval of Q.

In Sect. 4, we show how to bound temporally a computation that is already spatially bounded.
This method is constructive and relies on the continuous nature of space and time: no matter how
many signals there are, there is always room for more everywhere. The construction generates an
accumulation point. We define the Accumulation forecasting problem (given a signal machine and an
initial configuration, will there be any accumulation?) and prove that it belongs to the Σ0

2 level of the
arithmetical hierarchy [Odi99].

In Sect. 5, we apply this temporal bounding construction to our two-counter automata simulation and
make little modifications so that if the simulated computation stops, everything is wiped out, hence for-
bidding any accumulation. We prove this way that Accumulation forecasting is co-recursively enumerable-
hard, i.e. Π0

1-hard in the arithmetical hierarchy.
In Sect. 6, we show that this problem is in fact Σ0

2-complete by reducing NTOT (whether a recursive
function is not total). Testing the definition for one entry can be done with a bounded portion of the
space-time diagram as in Sect. 5; we add the necessary structure to start all the possible simulations.

Conclusion, remarks and perspectives are gathered in Sect. 7.

2



2 Definitions

Our abstract geometrical computations are defined by the following machines:

Definition 1 A signal machine is defined by (M, S, R) where M is a finite set, S is a mapping from M
to Q, and R is a subset of P(M)×P(M) that corresponds to a partial mapping of the subsets of M of
cardinality at least 2 to the subsets of M (both domain and range are restricted to elements of different
S-images).

The elements of M are called meta-signals. Each instance of a meta-signal is a signal which corre-
sponds to a line segment in the space-time diagram. The mapping S assigns rational speeds to meta-
signals, i.e. the slopes of the segments. The set R defines the collision rules, i.e. what happens when
two or more signals meet. It also defines the intersections of the segments. The signal machines are
deterministic because R must correspond to a mapping; if it were just a relation, then the machine
would be non-deterministic.

Definition 2 A configuration, c, is a partial mapping from Q to the union of M and R such that the
set { q ∈ Q | c(q) is defined } is finite.

Let us define the dynamics:
A signal corresponding to a meta-signal µ at a position q, i.e. c(q) = µ, is moving uniformly with

constant speed S(µ). A signal must start in the initial configuration or be generated by a collision. It
must end in a collision or in the last configuration. This corresponds to condition 1. in Def. 3.

A collision corresponds to a collision rule ρ = (ρ−, ρ+), also noted as ρ−→ρ+. All, and only, signals
corresponding to the meta-signals in ρ− (resp. ρ+) must end (resp. start) in this collision. No other
signal should be present. This corresponds to condition 2. in Def. 3.

Definition 3 The space-time diagram, or orbit, issued from an initial configuration c0 and lasting for
T , is a mapping c from [0, T ] to configurations (i.e. a partial mapping from Q × [0, T ] to M ∪ R) such
that, ∀(q, t) ∈ Q× [0, T ] :

1. if ct(q)=µ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

• ∀t′ ∈ (ti, tf ), ct′(q + S(µ)(t′ − t)) = µ,

• ti = 0 or cti(qi) ∈ R and µ ∈ (cti(qi))+ where qi = q + S(µ)(ti − t),

• tf = T or ctf
(qf ) ∈ R and µ ∈ (ctf

(qf ))− where qf = q + S(µ)(tf − t);

2. if ct(q) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [0, T ],

• if t− ε < t′ < t then ∀µ ∈ ρ−, ct(q + S(µ)(t′ − t)) = µ,

• if t < t′ < t + ε then ∀µ ∈ ρ+, ct(q + S(µ)(t′ − t)) = µ,

• ∃α, 0 < α, c[t−ε,t)([q − α, q + α])=ρ− and c(t,t+ε]([q − α, q + α])=ρ+.

This definition can easily be extended to the case where T =∞.
The traces of signals represent line segments whose directions are defined by (S(.), 1) (1 is the temporal

coordinate). Collisions correspond to the extremities of these segments. Examples of space-time diagrams
are provided by the various figures. Time is always increasing upwards.

3 Turing-computation capability

We prove the Turing-computation power of our model by simulating any two-counter automaton (a finite
automaton couple with two counters, A and B). The possible actions on any counter are add/subtract 1
and branch if non-zero. These machines can be described with a six-operations (the three aforementioned
ones for each of the two counters) assembly language with branching labels as on the left part of Fig. 2
(see [Min67] for more on two-counter automata).

3



The simulation is carried out with both counters unary encoded. Configurations are formed by, left to
right: a left end-marking signal, a signals amounting for the value of A, one signal encoding the current
instruction, b signals for B and a right end-marking signal. The only active signal (no collision ever
happens without this signal being present) is the middle one; this signal both carries out the operation
and encodes the line number. It goes forth and back between the signals encoding A and B. The end-
markers are used when the value is zero, otherwise there would be no other signal on the side. They also
provide a simple way to test for non-zero: an end marker is met if and only if the value is zero.

They are two kinds of meta-signals: five for the counters and end-markers and the ones generated
for the code. The meta-signals of the first kind are: endMarker, a and b of speed 0 used to mark the
borders and to encode respectively A and B in unary, and aMv and bMv of speed 1/2 and −1/2 used
to increment A and B. The use of bMv is explained in the presentation of B++ (Fig. 1). For the second
kind, each line n of the program is converted to −→n and ←−n of speed 1 and −1 (except for the test of B
�= 0 which generates −→n , ←−n Y , and ←−n N ). The program is encoded in the collision rules related to the
second kind.

The full transformation of a program into a signal machine is not given. We only detail the collision
rules generated for a B++ instruction at line n:

{−→n , endMarker} → {←−n , bMv, endMarker}, {endMarker,←−n } → {endMarker,
−−→
n+1},

{−→n , b} → {←−n , bMv, b}, {a,←−n } → {a,−−→n+1},
{−→n , bMv} → {←−n , bMv, b}, {aMv,←−n } → {a,−−→n+1}.

In the space-time diagram of Fig. 1, we suppose that instructions at lines n−1 and n+1 are not doing
anything, except in the last case where the previous one is also B++, so that there is some bMv to set in
position. Each instruction sets the moving bMv (or aMv), if any.

en
d
M

ar
ke

r

en
d
M

ar
ke

r

−→n

←−n

←−−n−1

−−→
n+1

←−−n+1

bMv

b

a b

−→n

←−n

←−−n−1

−−→
n+1

←−−n+1

bMv

b

a

b

bMv

−→n

←−n

←−−n−1

−−→
n+1

←−−n+1

bMv

b

Figure 1: Implementation of B++.

The instruction A++ is carried out similarly. The instructions A-- and B-- are just erasing exactly
one corresponding signal, if any. The non-zero tests are done by simply noticing that the endMarker is
met only if it is zero; branching is done on the collision on the left side.

Figure 2 provides three space-time diagrams associated to different initial values. The pictures are
strained vertically in order to fit.

This way, any two-counter automaton can be simulated by a signal machine. Signal machines thus
form a model of computation which has at least Turing-computing capability.

4 Contracting construction

It is possible to partially strain any space-time diagram as schematized on Fig. 3. The idea is to decompose
the upper part according to two non-collinear vectors. One vector is used as a boundary (here the one of
speed β). A change of scale is done on the second one (here multiplication by 3 on the axis corresponding
to speed α). This is a strain of a given ratio about the second axe. On Fig. 3, the dotted lines indicate
how the images of two points are computed. The grey parts indicate the ongoing computation.

This geometrical transformation is easily implemented inside our model: by switching to strained
signal on the boundary, all following computations mimic the unstrained one. The following meta-
signals are added: one for the boundary, and one strained meta-signal for each initial meta-signal1. All
the collision rules are duplicated so that strained signals behave exactly as unstrained ones. Collisions

1Its speed is computed by some (ax + b)/(cx + d) formula, the coefficients depend on the parameters which have to
satisfy some conditions (see [DL03, Chap. 7] for all details). These conditions are always satisfied in this paper.

4



beg: B++
A--
A != 0 beg1
B != 0 imp

beg1: A--
A != 0 beg

pair: B--
A++
B != 0 pair
A != 0 beg

imp: B--
A++
A++
B != 0 imp1
A != 0 beg

imp1: B--
A++
A++
A++
B != 0 imp1
A != 0 beg

�

a=1 b=0

�

a=3 b=0

�

a=13 b=0

Figure 2: A two-counter automaton and its simulations for three different initial values.

of the form {boundary and unstrained}→{boundary and strained} are added. New rules are created to
account for the possibility of the boundary to pass exactly on a collision.

α β

1 1
3α

3

Figure 3: Strain principe.

With this construction, it is possible to build artifacts that scale by one half the rest of the computa-
tion as illustrated by Fig. 4. The two directions used correspond to v0 and 4v0, where v0 is big enough.
In the left picture, nothing happens. In the middle picture, the lower signal is the boundary and a strain
of ratio 1/2 is done about to the upper signal. In the right picture, a second strain takes place: the
role of the directions are exchanged, and the ratio is still 1/2. After the two strains, the computation
is scaled by 1/2 on both directions, thus on any direction. The whole computation is scaled by 1/2 and
the original meta-signals can be used again since the computation undergoes no strain after the second

5



one. This makes it possible to iterate the shrinking.

Figure 4: Shrinking principle.

From now on, only spatially bounded space-time diagrams are considered. This is sufficient to ensure
that the computation remains inside the structure when shrinking is iterated. It is possible to add some
extra signals to restart the shrinking each time as in the left part of Fig. 5. The middle picture represents
the application of this structure to a simulation of a two-counter automaton.

Figure 5: Iterated shrinking.

In the upper corner of the left and middle pictures of Fig. 5, there is an accumulation point: there
are infinitely many collisions accumulating to the upper angle of the triangle. This is a “Zeno effect”:
finite (continuous) duration but infinitely many (discrete) instants.

Accumulation points are defined by infinitely many collisions accumulating to the position. Infinitely
many of them should be in its light cone2 ending there (and any light cone containing it).

The next sections are interested in the Accumulation forecasting decision problem: given a signal
machine and an initial configuration, will there be any accumulation?

There is an accumulation if, and only if, there exists a position such that for all n, there are at least
n collisions in the light cone ending in the position. Since all data are rational, it is possible to build
a program always halting s.t. given the machine, the initial configuration, a position and n, it decides
whether there is a least n collisions in the light cone. This means that Accumulation forecasting can
be expressed as a total recursive predicate preceded by ∃ and ∀ quantifiers over N (possibly recursively
encoding Q). Thus, Accumulation forecasting is in Σ0

2 in the arithmetical hierarchy (it could be easier
but not harder).

2A light cone is formed by all positions that might have an influence on the extremity; it is bounded by the minimal
and maximal speed.

6



5 Π0
1-hardness of Accumulation forecasting

The class Π0
1 corresponds to co-recursively enumerable decision problems/sets. The complement of the

Halting problem is thus Π0
1-complete. To prove that Accumulation forecasting is Π0

1-hard, we co-reduce
the Halting problem over two-counter automata (which are equivalent to Turing machines) to it. We
provide a construction, from a two-counter automaton and an initial value, of a machine and an initial
configuration such that there is an accumulation if, and only if, the computation of the automaton does
not stop.

This is done quite easily: the previous construction provides a structure that always produces an
accumulation, while our simulations of two-counter automata do not produce any accumulation on their
own and are spatially bounded. The idea is to start the iterated shrinking on the simulation, with a slight
modification. When the computation stops, the simulation stops and both simulation and structure are
erased (as in the right picture of Fig. 5); so that there is no accumulation. If the computation does not
stop, neither does the simulation, then nothing prevents the structure from producing an accumulation.
Erasing is very simple to implement: a signal goes on each side, erasing any signal it meets until it
reaches the border of the structure and then disappears.

6 Σ0
2-completeness of Accumulation forecasting

Not only is Accumulation forecasting Π0
1-hard, but it is Σ0

2-hard (and thus complete) as we prove by
reducing the following Σ0

2-complete problem NTOT : whether a recursive function is not total, i.e. strictly
partial [Odi99, p. 621]. This problem corresponds to Whether there exists an infinite computation for a
given two-counter automaton.

The reduction is done very simply: all the possible entries are tried with previous reduction. If the
computed function is not total, then the simulation for an undefined value produces the accumulation. If
it is total, then none of the simulations produces an accumulation. There only remains to have a global
structure that starts all the simulations without provoking any accumulation.

The construction in the previous section only needs bounded space and time; the bounds are deter-
mined by the shrinking structure. The localization of the computations is done according to the left of
Fig. 6. On the right side, the scheme to generate 0 then 1. . . n. . . is presented: signals are bouncing
inside a ribbon producing one extra signal each cycle. The signals leaving the ribbon are: two bounding
signals (to start the simulation and the shrinking) and in-between them the unary value for the counter.

(0, 3) (1, 2) (2, 1) (3, 0)

(0, 2) (1, 1) (2, 0)

(0, 1) (1, 0)

(0, 0)

Figure 6: Localization of computations and mechanism for generating the values.

The way simulation is started and the initial counter values are set is presented on the right part of
Fig. 7. On the right part is indicated how the shrinking structure is started.

Finally, all the pieces are gathered on Fig. 8. There can be seen the global structure and all the
simulations. Let us note that the inner size of the squares is parametrized so that simulations do not
overlap.

7 Conclusion

All the details of constructions and proofs can be found in [DL03], a long article in English is in prepa-
ration.

As long as the model is restricted to rationals, there are finitely many signals present at any instant
and there is no accumulation, the model is Turing-universal and can be simulated by any Turing machine

7



Figure 7: Starting simulation and iterated shrinking.

Figure 8: Simulating all the runs.

and is thus Turing-equivalent. If the “finite number of signals” condition is lifted, but signals are isolated,
then this is a super-Turing model of computation following the “Infinity principle” of [EW03]. The analog
power really appears when one of the remaining two constraints is lifted.

Allowing real values for speeds or positions is simple. These real values can be used as oracles and
thus provide computing ability that goes beyond Turing-computation.

With a careful “treatment of accumulations”, it is possible to access infinite Turing computation
or computation on ordinals [Ham02]. Our model then becomes somehow similar to the black hole
model [EN02]. With different levels of accumulation, we hope to climb the arithmetical hierarchy as in
[AM95, Bou99].

References

[Ada02] A. Adamatzky, editor. Collision based computing. Springer, 2002.

[AM95] E. Asarin and O. Maler. Achilles and the Tortoise climbing up the arithmetical hierarchy. In
FSTTCS ’95, number 1026 in LNCS, pp. 471–483, 1995.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer,
New York, 1998.

[BNR91] N. Boccara, J. Nasser, and M. Roger. Particle-like structures and interactions in spatio-
temporal patterns generated by one-dimensional deterministic cellular automaton rules. Phys.
Rev. A, 44(2):866–875, 1991.

[Bou99] O. Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret.
Comp. Sci., 210(1):21–71, 1999.

8



[Bra95] M. S. Branicky. Universal computation and other capabilities of hybrid and continuous dy-
namical systems. Theoret. Comp. Sci., 138(1):67–100, 1995.

[DL97] J. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular automaton. In
STACS ’97, number 1200 in LNCS, pp. 439–450. Springer, 1997.

[DL98] J. Durand-Lose. Parallel transient time of one-dimensional sand pile. Theoret. Comp. Sci.,
205(1–2):183–193, 1998.

[DL00] J. Durand-Lose. Reversible space-time simulation of cellular automata. Theoret. Comp. Sci.,
246(1–2):117–129, 2000.

[DL03] J. Durand-Lose. Calculer géométriquement sur le plan — machines à signaux —. Habilitation
à diriger des recherches, École Doctorale STIC, Université de Nice-Sophia Antipolis, 2003. In
French, http://perso.ens-lyon.fr/jerome.durand-lose/Hdr.

[DM02] M. Delorme and J. Mazoyer. Signals on cellular automata. in [Ada02], pp. 234–275, 2002.

[EN02] G. Etesi and I. Nemeti. Non-Turing computations via Malament-Hogarth space-times. Int.
J. Theor. Phys., 41:341–370, 2002. gr-qc/0104023.

[EW03] E. Eberbach and P. Wegner. Beyond Turing machines. Bull. EATCS, 81:279–304, 2003.

[Fis65] P. C. Fischer. Generation of primes by a one-dimensional real-time iterative array. J. ACM,
12(3):388–394, 1965.

[Got66] E. Goto. Ōtomaton ni kansuru pazuru [Puzzles on automata]. In T. Kitagawa, editor,
Jōhōkagaku eno michi [The Road to Information Science], pp. 67–92. Kyoristu Shuppan Pub-
lishing Co., Tokyo, 1966.

[Ham02] J. D. Hamkins. Infinite time Turing machines: Supertask computation. Minds and Machines,
12(4):521–539, 2002. math.LO/0212047.

[HSC01] W. Hordijk, C. R. Shalizi, and J. P. Crutchfield. An upper bound on the products of particle
interactions in cellular automata. Phys. D, 154:240–258, 2001.

[Ila01] A. Ilachinski. Cellular Automata –A Discrete Universe–. World Scientific, 2001.

[JS90] G. Jacopini and G. Sontacchi. Reversible parallel computation: an evolving space-model.
Theoret. Comp. Sci., 73(1):1–46, 1990.

[JSS02] M. H. Jakubowsky, K. Steiglitz, and R. Squier. Computing with solitons: A review and
prospectus. in [Ada02], pp. 277–297, 2002.

[LN90] K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional cellular
automata. Complex Systems, 4:299–318, 1990.

[Maz96] J. Mazoyer. On optimal solutions to the Firing squad synchronization problem. Theoret.
Comp. Sci., 168(2):367–404, 1996.

[Min67] M. Minsky. Finite and Infinite Machines. Prentice Hall, 1967.

[Moo96] C. Moore. Recursion theory on the reals and continuous-time computation. Theoret. Comp.
Sci., 162(1):23–44, 1996.

[MT99] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. Theoret. Comp. Sci.,
217(1):53–80, 1999.

[Odi99] P. Odifreddi. Classical Recursion Theory. Volume 2. Number 143 in Studies in Logic and the
Foundations of Mathematics. Elsevier, Amsterdam, 1999.

[Orp94] P. Orponen. A survey of continuous-time computation theory. In D.-Z. Du and K.-J. Ko,
editors, Advances in Algorithms, languages and complexity, pp. 209–224. Kluwer Academic
Publisher, 1994.

9



[PE74] M. B. Pour-El. Abstract computability and its relation to the general purpose analog computer
(some connections between logic, differential equations and analog computers). Trans. Amer.
Math. Soc., 199:1–28, 1974.

[ŠO01] J. Š́ıma and P. Orponen. Computing with continuous-time Liapunov systems. In STOC ’01,
pp. 722–731. ACM Press, 2001.

[SS95] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. J. Comput.
System Sci., 50(1):132–150, 1995.

[VMP70] V. I. Varshavsky, V. B. Marakhovsky, and V. A. Peschansky. Synchronization of interacting
automata. Math. System Theory, 4(3):212–230, 1970.

[Wei00] K. Weihrauch. Introduction to Computable Analysis. Texts in theoretical computer science.
Springer, Berlin, 2000.

10


