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Abstract

This paper studies the tricolorations of edges of triangulations of sim-
ply connected orientable surfaces such that the degree of each interior
vertex is even. Using previous results on lozenge tilings, we give a lin-
ear algorithm of coloration for triangulations of the sphere, or of planar
regions with the constraint that the boundary is monochromatic. We
define a flip as a shift of colors on a cycle of edges using only two col-
ors. We prove flip connectivity of the set of solutions for the cases seen
above, and prove that there is no flip accessibility in the general case
where the boundary is not assumed to be monochromatic. Nevertheless,
using flips, we obtain a tiling invariant, even in the general case. We
finish relaxing the condition, allowing monochromatic triangles. With
this hypothesis, there exists some local flips. We give a linear algorithm
of coloration, and strong structural results on the set of solutions.

Keywords: tiling, height function, flip
Résumé

Cet article etudie les tricolorations des aretes des triangulations
des surfaces simplement connexes orientables, telles que le degre de
chaque sommet interieur soit pair. A partir de resultats precedents
sur les pavages par des losanges, nous donnons un algorithme li-
neaire de colorations pour les triangulations de la sphere, ou pour
des regions du plan sous la contrainte que le bord est monochro-
matique. Nous definissons un flip comme etant une inversion des
couleurs sur un cycle d’aretes n’utilisant que deux couleurs. Bous
prouvons la connexite par flips de l’ensembles des solutions dans les
cas vus ci-dessus, et montrons que la connexit n’est pas toujours ob-
tenue quand le bord n’est pas monochromatique. Neanmoins, grace
aux flips, nous avons un invariant de pavage, valable dans le cas
general.
Nous terminons en relachant les conditions par l’introduction de
tuiles monochromatiques. Dans ce cas, il existe des flips locaux.
Nous donnons un algorithme linaire de colorations et des rsultats
structurels fors sur l’espace des solutions.

Mots-clés: pavage, fonction de hauteur, flip
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Abstract

This paper studies the tricolorations of edges of triangulations of simply con-
nected orientable surfaces such that the degree of each interior vertex is even.

Using previous results on lozenge tilings, we give a linear algorithm of coloration
for triangulations of the sphere, or of planar regions with the constraint that the
boundary is monochromatic.

We define a flip as a shift of colors on a cycle of edges using only two colors. We
prove flip connectivity of the set of solutions for the cases seen above, and prove that
there is no flip accessibility in the general case where the boundary is not assumed
to be monochromatic. Nevertheless, using flips, we obtain a tiling invariant, even
in the general case.

We finish relaxing the condition, allowing monochromatic triangles. With this
hypothesis, there exists some local flips. We give a linear algorithm of coloration,
and strong structural results on the set of solutions.

1 Introduction

In 1990, W. P. Thurston [13] gave an algebraic study of tilings problems, based on ideas
from J. H. Conway and J. C. Lagarias [4]. Especially, in his paper, W. P. Thurston studies
the tilings simply connected regions of the triangular lattice, with lozenges formed from
two triangles of the lattice. Using a height function and local transformations (called
flips), an algorithm of tiling is exhibited. Remark that such a tiling can be seen as a
coloration of edges in two colors (blue and red) such that each triangle has two blue
edges and a red edge and the boundary is blue.
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In the present paper, we add a color for edges, and study tricolorations. We are
focused in the most natural problem, where the constrains are that each triangle must
have an edge of each color and the boundary has to be monochromatic.

Our framework is larger than simply connected bounded regions of the triangular
lattice studied by W. P. Thurston : we work in finite triangulations of orientable com-
pact surfaces, such the degree of each interior vertex is even. Our arguments hold in
this framework, which points out the importance of topologic properties for this type of
problem.

Using results about lozenge tilings, we first give an algorithm of coloration. Afterwards
we introduce flips ( which are shifts of colors on a cycle of edges using only two colors).
At the opposite as for the classical cases as lozenge tilings, these flips are not local, which
creates a strong difficulty. We prove that one can transform any coloration into any other
one by a sequence of our flips. The flip connectivity is a main property in problems of
uniformly random [8] or exhaustive [7] generation.

If we assume that the coloration of the boundary is fixed, but not monochromatic,
then the flip connectivity is lost. Nevertheless flips can be used to prove that the number
of direct rectangles (i. e. those whose colors yellow, blue, red are seen in this order
turning clockwise around the rectangle) is a invariant which does not depends on the
coloration.

We finish allowing monochromatic triangles : in this case, local flips appear, which
permits to get a linear algorithm of coloration and strong structural properties of the set
of solutions.

2 Previous results on lozenge tilings

Triangulations A triangulation (see [9] for details) of a compact surface S is a finite
family {Tr1, T r2, . . . , T rp} of closed subsets of S that cover S, and a family of homeomor-
phisms ϕi : Tr′i → Tri, where each Tr′i is a a triangle of the plane R2. The subsets Tri

are called ”triangles”, the subsets of Tri which are the images of the vertices and edges
of the triangle Tr′i under ϕi are also called vertices and edges. It is required that any
two distinct triangles, Tri and Trj, either be disjoint, have a single vertex in common,
or have an entire edge in common. Two vertices of a same triangle, or two triangles with
an common edge, are said neighbors.

Let Φ be a triangulation. We say that Φ is even if Φ is a triangulation of a simply
connected (i. e. each cycle can be contracted) orientable surface (i. e. homeomorphic
to a sphere or a compact surface of the plane R2) such that each interior vertex has an
even number of neighbors. This notion comes from the fundamental example of bounded
subsets of the classical triangular lattice of the plane, without hole.

If Φ is even, then that there exists a bicoloration of triangles with white or black colors,
in such a way that two neighbors triangles have not the same color. Now, we fix such a
coloration. Edges of triangles of Φ can be directed in such a way that the three edges of
any black triangle form a clockwise circuit, and the three edges of any white triangle form
a counterclockwise circuit (see figure 1). For the sequel, we denote GΦ as the directed
graph defined by this way. For each pair (v, v′) of neighbor vertices, we define orient(v, v′)
by : orient(v, v′) = 1 if (v, v′) is a directed edge of GΦ, and orient(v, v′) = −1 otherwise.
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The corresponding indirected edge is denoted by [v, v′].
Lozenge tilings A lozenge is a pair of neighbor triangles of Φ. The common (undi-

rected) edge is called the central axis of the lozenge. A lozenge tiling of Φ is a set of
lozenges which cover the whole surface with neither gap nor overlap. In other words, it
is a perfect matching on the triangles of Φ.

There exists a very powerful tool to study lozenge tilings on even triangulations : it
is the notion of height function, introduced by W. P. Thurston ([13]) and independently
in the statistical physics literature (see [2] for a review)for simply connected regions of
the triangular lattice, and precisely studied and generalized by several authors ([3], [11],
[12], [7]). The main results of the study are summarized below (see especially [12], [7]
for details). The extension to even triangulations is straightforwards. Notice that the
notions below can be applied in a more general framework ([1], [3], [11]).

Height functions A lozenge tiling T of an even triangulation can be encoded by a
height function hT , defined as follows (see figure 1) : fix an origin vertex O of GΦ (in the
boundary of the surface, when it is not empty), for which hT (O) = 0, and the following
rule : if (v, v′) is a directed edge of GΦ such that [v, v′] is the central axis of a lozenge of
T , then hT (v′) = hT (v) − 2 ; otherwise hT (v′) = hT (v) + 1. This definition is coherent,
since it is coherent on each triangle and we have the simple connectivity.
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Figure 1: Left : An even triangulation and the induced orientation of edges. Right : A
lozenge tiling and its height function

Order Let (T, T ′) be a pair of tilings of Φ. We say that T ≤ T ′ if for each ver-
tex v of GΦ, hT (v) ≤ hT ′(v). The functions hinf(T,T ′) = min(hT , hT ′) and hsup(T,T ′) =
max(hT , hT ′) are height functions of tilings, (which can be interpreted in order theory
that the set of tilings has a structure of distributive lattice (see for example [5] for basis
of lattice theory).

Flips Let v be an interior vertex such that all the directed edges of GΦ ending in v
correspond to the central axes of lozenges of a tiling T . A flip is the replacement of all
these lozenges by lozenges whose central axis correspond to an edge starting in v (see
figure 2). A new tiling Tflip is obtained by this way, and T and Tflip are comparable
for the order defined above on tilings. Moreover T ≤ T ′ if and only if there exists an
increasing sequence (T = T0, T1, . . . , Tp = T ′) of tilings such that for each integer i such
that 0 ≤ i < p, Ti+1 is deduced from Ti by a flip. As a corollary we get the flip connectivity
: given any pair (T, T ′) of tilings of Φ, on can pass from T to T ′ by a sequence of flips and,
more precisely, the minimal number of flips to pass from T to T ′ is

∑
v |hT (v)−hT ′(v′)|/3.

Construction There exists a minimal tiling which has a convexity property that no
local maximum can exist, except on the boundary or in the origin vertex, since, otherwise,
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Figure 2: Examples of flips

a flip can be done around the local maximum.
From this property, there exists a linear algorithm of tiling, which construct the

minimal tiling, when there exists a tilings, or, otherwise, claims that there is no tiling.

3 Construction of a tiling by trichromatic-edges tri-

angles

In this section, we apply the previous results to solve the following problem : given a
triangulation whose edges of the boundary are colored in yellow, does it exist a linear
time algorithm to color the other edges (in either yellow, blue or red) in such a way
that each triangle has exactly one edge of each color ? This is what we call a tiling by
trichromatic-edges triangles (or trichromatic tiling for short) .

Theorem 1 Let Φ be a triangulation and Φinter denote the new trangulation obtained
removing triangles with an edge on the boundary of the surface.

The triangulation Φ has a trichromatic tiling with yellow boundary if and only if Φinter

has a lozenge tiling.
Moreover, we have a polynomial (linear for even triangulations) time algorithm to

build a trichromatic tiling when there exists one (and claim that there is no tiling, other-
wise).

Proof. We suppose that we have a tiling by trichromatic-edges triangles. Then, the red
(resp. yellow or blue) edges are clearly the central axes lozenges of a tiling of Φinter.

Conversely, assume that we have a lozenge tiling T of Φinter. Color the central axes of
the lozenges of T in yellow. Now, we denote by HT,y the symmetric graph on the cells of
Φ and such that two cells are joined by an edge if and only if this two cells are adjacent
by a non-yellow edge. It is clear that this graph is a disjoint union of elementary even
cycles. Moreover, its edges are in one to one correspondence with the non-yellow edge of
triangulation. It suffices to alternatively color on each cycle the edges in red and blue to
obtain a tiling by trichromatic-edges triangles.

Moreover, given a tiling T of Φinter, the method above of alternatively coloring cycles
of HT,y gives a trichromatic tiling in linear time. This gives the algorithmic part of the
theorem, since such a lozenge tiling of Φinter can be obtained in polynomial time (and
linear time for even triangulations, using height functions).

4 Accessibility by cyclic flips

Let T be a tiling by trichromatic-edges triangles. We recall that we denote by HT,y (resp.
HT,b, HT,r) the symmetric graph on the cells of Φ and such that two triangles are joined
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by an edge if and only if this two triangles are linked by a non-yellow (resp. non-blue,
non-red) edge. This graphs are disjoint unions of elementary even cycles. We call an
anti-yellow cycle (resp. anti-blue cycle, anti-red cycle), a cycle in HT,y (resp. HT,b, HT,r).
An anti-yellow (resp. anti-red, anti-blue) cyclic flip id the inversion of the red and blue
(resp. blue and yellow, yellow and red) edges in an anti-yellow (resp. anti-red, anti-blue)
cycle. We obtain by this transformation a new tiling by trichromatic-edges triangles. A
natural question is to know if we can obtain all the other tilings of Φ from T by a sequence
of cyclic flips.

Theorem 2 Let Φ be an even triangulation. All the tilings by trichromatic-edges trian-
gles of Φ with yellow boundary are mutually flip accessible.

Proof. We have seen below that we can associate to a tiling by trichromatic-edges triangles
T a lozenge tiling Ty in considering the yellow edges of T as the central axes of lozenges
of Ty.

Now, suppose that we have two tilings by trichromatic-edges triangles T1 and T2, then
we know by the results of section 2 that there exists a sequence of flips to transform T1,y

into T2,y. We will prove by induction on the length ∆(T1, T2) of the minimum sequence
of flips which transforms T1,y into T2,y that T1 and T2 are accessible by cyclic flips.

If ∆(T1, T2) = 0 , then T1,y = T2,y, and so, T1,y and T2,y have exactly the same anti-
yellow cycles. It is easy to see that we can obtain T2 from T1 by a sequence of (anti-yellow)
cycle flips.

Suppose that we have the property for any pair (T0, T
′
0) such that ∆(T0, T

′
0) = n

and take a pair (T1, T2) such that ∆(T1, T2) = n + 1. We will prove that there exists a
trichromatic tiling T ′ such that T ′ can be deduced from T1 by a sequence of cyclic flips
and ∆(T ′, T2) = n. If we prove this point it is clear that we have achieved the proof by
induction.

We denote by x the vertex where we do the first flip f1. Consider the set φx of triangles
a vertex of which is x. Each of these triangles has a unique edge which does not contain
x, and φx is an even triangulation of a surface Sx, homeomorphic to a closed disk. We
distinguish two cases according to the colors on the boundary of Sx.

The simple case is when this boundary is monochrome, for example red, in T1. In
this case, we have an anti-red cyclic flip around x, (which also is a lozenge flip) which
transforms T1 into T ′, and ∆(T ′, T2) = n, which gives the result.

The tricky case is when the boundary of Sx is not monochrome in T . Consider the
lozenge tiling Lx of φx such that non-yellow edges issued from x are central axes of
lozenges of Lx. Two neighbors triangles φx of are in the same lozenge of Lx if and only
if they are in the same cycle. Notice that if triangles are ordered clockwise, all the first
triangles of lozenges of Lx have the same color, which can be assumed to be white.

Then, take an anti-yellow cycle C of T which contains at least one of the lozenges of
Lx. Let (l1, l2, . . . , lp) be the sequence of lozenges of Lx in C, in a clockwise order around
x (see figure 3). We direct C in such a way that C comes into l1 by its white triangle and
leaves l1 by a black triangle. Notice that, following C, all the edges which are crossed
when one passes from a white triangle to a black triangle have the same color.

What happens, following C, after having left l1 ? Because of planarity (especially
Jordan’s theorem on loops of the plane), the next time that C comes back into Sx, then
C necessarily comes into l2, (since otherwise, l2 cannot be visited, later in the cycle) by
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Figure 3: The intersection of the anti-yellow cycle C with Sx

its white triangle (since otherwise C cannot visit other lozenges without cutting itself).
Thus, repeating the argument, C comes into all the lozenges of the sequence (l1, l2, . . . , lp)
by the white triangles.

The conclusion of this study is that all the edges of the boundary of φx which are
edges of triangles of C have the same color. So, we can make cycle flips around some
of the anti-yellow cycles which meet Sx to obtain a tiling T ′

1 which has a monochrome
boundary of Sx. Moreover, observe that T1,y = T ′

1,y. So, we have gone back to the first
simple case. This achieves the proof.

A counter-example in the planar general case In the figure below, we present
a example which shows that there is no general flip accessibility, when the boundary is
not monochromatic.

Figure 4: Two tricolorations, equal on he boundary, with no accessibility from one to the
other one, since each of these colorations has no cycle.

5 Invariant of orientations of triangles

The goal of this section is to describe an invariant for the tilings. In other words, we look
for some properties of the tilings which depend only on the triangulation.

We limit ourselves to even (consequently orientable) triangulations. In this case,
remark that there exists to type of colored triangles : the direct colored ones and the
indirect. If we turn counterclockwise around a direct triangle, we see consecutively a red,
a blue and a yellow edge. Conversely, If we turn around a indirect triangle, we see a red,
a yellow and a blue edge.

For each trichromatic tiling T , direct(T ) is the number of direct triangles of T and
indirect(T ) is the number of indirect triangles of T . In this section, we will prove that
these values are of tiling invariants of tilings.

We start with the simple case of the sphere, from which the result will be extended
later.
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Theorem 3 (invariant for the sphere) All the tilings by trichromatic-edges triangles
of an even triangulation of the sphere have the same number of direct (and indirect)
triangles.

Proof. As all tilings are accessible by cyclic flips, it suffices to show that the number of
direct triangles in a cycle C in HT,y or HT,b or HT,r does not change when we make a
flip on C. Indeed, when we make a flip on C, we transform all its direct triangles into
indirect ones, and conversely.

So, we have to prove that, for any cycle, there is the same number of direct triangles
than indirected ones.

Coding function To do it, we introduce the coding functions of trichromatic tilings.
Let T such a tiling, the function fT is defined from the set of vertices of GΦ to the set C

of complex numbers, by : fT (O) = 0 (where O denotes the origin vertex), and for each
directed edge (v, v′) of GΦ fT (v′) − fT (v) is equal to 1 (resp. j, j2) if the edge [v, v′]
is yellow (resp. blue, red) in T (where j denotes the unique complex number such that
j3 = 1 and the (purely) complex component of j is positive). This definition is coherent,
since it is coherent for any triangle, and the sphere is simply connected.

Combinatorial boundaries of cycles Now, let C be an anti-yellow cycle of T ,
assumed to be directed clockwise. let Tr be a triangle of C, the successor of Tr is the first
triangle Tr′ of C, obtained after Tr in the cycle, such that the yellow edges of Tr and
Tr′ are not disjoint. By this definition, we define some (two in fact) disjoint circuits of
triangles, whose union cover C. Each of these circuits induces a circuit (v0, v1, . . . , vp = v0)
of vertices (called a combinatorial boundary of C) such that, for each integer i such that
0 ≤ i ≤ p, [vi, vi+1] is the yellow edge of the successor Tr′ of the triangle Tr whose yellow
edge is [vi−1, vi].
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Figure 5: Left : the combinatorial boundaries of a cycle. Right : a triangle and its
successor have the same orientation if and only if they have the same color.

Notice that Tr and Tr′ have the same orientation if and only if Tr and Tr′ have the
same color, that is if and only if orient(vi−1, vi) = orient(vi, vi+1) (since indirected edges
issued from vi crossing the cycle C alternatively have red and blue colors) (see figure
5). Moreover, for each combinatorial boundary,

∑p
i=1 orient(vi−1, vi) =

∑p
i=1 fT (vi) −

fT (vi−1) = fT (vp) − fT (v0) = 0, which means that, the number of edges of positive
orientation is equal to the number of edges of negative orientation. Thus, for each circuit
of triangles, the number of direct triangles is equal to the number of indirect triangles.
The same argument can be done (up to the existence of a factor j or j2 in the sequence
of equalities) for blue or red cycles, which achieves the proof.
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We now prove the analog theorem for the triangulations of regions region of the plane.
Notice that we do not necessarily assume that the boundary is monochromatic.

Theorem 4 (invariant for surfaces of the plane) All the tilings by tri-chromatic-
edges triangles of an even triangulation of a simply connected compact surface of the
plane with the same fixed coloration of the boundary have the same number of direct (and
indirect) triangles.

Proof. We use the theorem 3 to prove that. Let T1 and T2 be two tilings of an even
triangulation Φ of a simply connected compact surface of the plane with the same fixed
coloration of the boundary. We denote by [T1, T2] the tiling of the triangulation1 of the
sphere obtained gluing (by identification) the boundary of T1 with the boundary of T2.
Notice that [T1, T2] tiles an even triangulation.

Now, consider both tilings [T1, T1] and [T1, T2], by the theorem 3 they have the same
number of direct (and indirect) triangles. Obviously, this involves that T1 and T2 have
the same number of direct (and indirect) triangles.

6 Related problems

In this section, we allow monochromatic triangles. We see that the problem becomes
much easier since there exists local flips. In each case below, we use a height function
and the ideas previously used in [10] for Wang tiles.

Tiling by trichromatic-edges and monochromatic-edges triangles Firstly, we
relax our condition allowing all types of monochromatic triangles. Such a tiling T can
be encoded using a function gT from the set of vertices of GΦ to the set Z/3Z of integers
modulo 3, such that gT (O) = 0 (where O denotes the origin vertex) and for each directed
edge (v, v′) of GΦ, gT (v′)−gT (v) is equal to 0 (resp. 1, 2) if the edge [v, v′] is yellow (resp.
blue, red) in T . This definition is coherent, since it is coherent for any triangle, and we
have the simple connectivity.

Notice that, conversely, each function g from vertices of GΦ to Z/3Z such that g(O) =
0 induces a coloration of Φ with trichromatic and monochromatic triangles. Thus there
exists such a coloration if and only if the function gT can be defined on the boundary
with no contradiction (this condition is, of course satisfied in the sphere, which has an
empty boundary, in the other cases, we just have to flow the boundary to construct gT on
the boundary). Moreover, given a coloration of the boundary, there exists an easy linear
algorithm of tiling, and if a tiling exists, then there exists 3N tilings satisfying the same
boundary condition, where N denotes the number of free vertices (i. e. vertices which
are not the origin for the spheres, vertices which are not on the boundary in the other
cases).

We define a flip as the change the value gT (v) of a free vertex v (which changes all
the colors of the edges with v as endpoint). We have the flip connectivity for each set
of tilings satisfying the same boundary condition, and moreover the minimal number of

1Formally, we do not exactly have a triangulation when a triangle of Φ has two edges on the boundary
(since two glued triangles share two edges), nevertheless our arguments can be obviously adapted to this
case
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necessary flips to pass from a tiling T to a tiling T ′ is
∑

v(1 − δ(gT (v), gT ′(v)) (where
δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise).

Tiling by trichromatic-edges and one fixed monochromatic-edges triangle
We now only allow monochromatic yellow triangles (and trichromatic triangles). This
study is nearly the same as the one for lozenge tilings, so we sketch it.

Such a tiling T can be encoded using a height function g′
T from the set of vertices of

GΦ to the set Z of integers, such that gT (O) = 0 (where O denotes the origin vertex) and
for each directed edge (v, v′) of GΦ, gT (v′) − gT (v) is equal to 0 (resp. 1, −1) if the edge
[v, v′] is yellow (resp. blue, red) in T . Conversely, for each function g′ from vertices of GΦ

to Z such that g′(O) = 0 and for each edge (v, v′) of GΦ, |g′(v)− g′(v′)| ≤ 1, there exists
a tiling T such that g′ = g′

T . If g′ and g′′ are functions satisfying the above conditions,
then min(g′, g′′) and max(g′, g′′) also satisfy the same conditions. This implies that each
set of tilings with the same boundary has a structure of distributive lattice for the order
defined by : T ≤ T ′ if, for each vertex v of Φ, gT (v) ≤ gT ′(v).

We define a flip as, when it is possible, the change of the value g′
T (v) of a free vertex

v of one unit (which changes all the colors of the edges with v as endpoint). Let T and
T ′ be tilings such that T < T ′ and v0 be a vertex such that gT ′(v0) − gT (v0) is maximal,
and gT (v0) is minimal with the previous condition. One easily sees that a flip can be
done in v0, which increases the height function. This yields, repeating the argument that
there exists an increasing sequence (T = T0, T1, . . . , Tp = T ′) of tilings such that for each
integer i such that 0 ≤ i < p, Ti+1 is deduced from Ti by a flip. As a corollary, we get the
flip formula : the minimal number of flips to pass from T to T ′ is

∑
v |g′

T (v) − g′
T ′(v′)|.

Finally, remark that the minimal tiling Tmin of has no local maximum for free vertices
(since, otherwise, a height decreasing flip can be done), which yields to a linear algorithm
of tiling of the same kind as the algorithm of W. P. Thurston [13] for lozenges and
dominoes.
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