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Abstract

We show that deciding whether an algebraic variety has an irreducible
component of codimension at least d is an NPc-complete problem for
every fixed d (and is in the Arthur-Merlin class if we assume a bit model
of computation). However, when d is not fixed but is instead part of the
input, we show that the problem is not likely to be in NP¢ or in coNPc.
These results are generalized to arbitrary constructible sets. We also
study the complexity of a few other related problems.

This report updates LIP report 98-10.

Keywords: irreducible components, dimension, NP-completeness,
Blum-Shub-Smale model.

Résumé

On montre que décider si une variété algébrique a une composante
irréductible de codimension au moins d est un probléme NPc-complet
pour toute constante d (et est dans la classe Arthur-Merlin si on travaille
avec un modele de calcul booléen). Par contre, si d n’est pas fixé mais
est au contraire un entier arbitraire donné en entrée, on montre que ce
probléme n’est probablement pas dans NP¢ ni dans coNP¢. Ces résultats
sont étendus aux ensembles constructibles. On étudie également la com-
plexité de quelques problémes connexes.

Ce rapport est une mise a jour du rapport LIP 98-10.

Mots-clés: composantes irréductibles, dimension, NP-complétude,
modele de Blum-Shub-Smale.
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Abstract

We show that deciding whether an algebraic variety has an irre-
ducible component of codimension at least d is an NP¢-complete prob-
lem for every fixed d (and is in the Arthur-Merlin class if we assume a
bit model of computation). However, when d is not fixed but is instead
part of the input, we show that the problem is not likely to be in NP¢
or in coNP¢. These results are generalized to arbitrary constructible
sets. We also study the complexity of a few other related problems.

This report updates LIP report 98-10.
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1 Introduction

It was shown in [14] that computing the dimension of algebraic varieties is
NPc-complete in the Blum-Shub-Smale model of computation, and that in
the bit model this problem is in AM (the Arthur-Merlin complexity class)
assuming the Generalized Riemann Hypothesis (GRH). The dimension of a
variety is the dimension of its largest irreducible component, and the dimen-
sions of smaller components may also be of interest (see for instance [18]).
In this paper we investigate the complexity of computing the dimensions of
irreducible components, or more generally of computing local dimensions of
constructible sets (given zyp € C* and a constructible set X C C", dimgz, X
is mindim(X NO), where the minimum is taken over all Zariski open sets O
containing zo; if X denotes the Zariski closure of X, this is also the largest
dimension of an irreducible component of X containing zy). We consider
both the classical model of computation and the Blum-Shub-Smale model.
For previous work on the algorithmic aspects of the decomposition of a vari-
ety into its irreducible components, see [6, 7, 8] (the first two papers assume
a bit model of computation), and [9] for the determination of isolated points.



The paper is organized as follows. In section 2 we recall some notions
from classical and algebraic complexity theory. In section 3 we give algo-
rithms for computing the Zariski closure of constructible sets and deciding
whether a given point is isolated in a constructible set. Consider the fol-
lowing “codimension problem” CODIM%: given a variety V C C", decide
whether V' has an an irreducible component of codimension at least d (i.e.,
of dimension < n — d). In section 4 we show that this problem is NPc-
complete for any fixed d. If V is defined by polynomial equations with
integer coefficients given in bits, the corresponding CODIM? problem is
NP-hard, and belongs to AM (assuming GRH). In section 5 we show that if
d is no longer fixed but is instead part of the input, the codimension prob-
lem is not likely to belong either to NP¢ or coNP¢. Indeed, in both cases
the classical polynomial-time hierarchy would collapse to its second level.
Along the way, we show that it is coNP-hard to decide whether a variety
has isolated points, and NP-hard to decide whether a system of homoge-
neous polynomial equations has a non-trivial solution. We also point out
that NP¢c = coNP¢ would imply the collapse of the polynomial hierarchy to
its second level. Section 5 ends with a few open problems. Finally, the re-
sults of section 4 are generalized to arbitrary constructible sets in section 6
(algebraic varieties are treated separately in section 4 because there is a
simpler algorithm in that case).

2 Complexity of Computations

We recall that P¢ denotes the class of problems of C*° which can be solved
in polynomial time in the Blum-Shub-Smale model of computation over the
complex numbers [3]. Roughly speaking, a problem A C C* is in P if there
is an algorithm which on any input z € C" can decide whether z € A in a
number of arithmetic operations and equality tests which is polynomial in
n. More background on this model of computation can be found in [2, 5, 17].

We also recall that A is in NP if there exists a polynomial p(n) and
a problem B € Pc such that for all z € C", z € A if and only if there
exists y € CP(™ such that (zy,...,Zn,y1,. .. »Yp(n)) € B. One can define the
higher levels of the polynomial hierarchy over C in a similar way (they will
not be used in this paper).

As in the classical case, there are natural NPc-complete problems.
Perhaps the simplest example is Hilbert’s Nullstellensatz (HN¢): decide
whether a system of polynomial equations in several complex variables has
a solution. If we consider only polynomial equations with integer coefficients
given in bits, the corresponding problem (call it HN) is known to be in the
classical complexity class AM if we assume that the generalized Riemann
hypothesis is true [12]. AM is a randomized version of NP which is located
in the second level of the polynomial hierarchy (i.e., NP C AM C IIy).



There is also a notion of randomization over C: a problem A C C* is
said to be in BPP¢ if there exists a polynomial p(n) and a problem B € P¢
such that for all z € C*, z € A if and only if the set of y € CP(") such
that (z1,...,%n,Y1,---,Ypn)) € B is Zariski dense in (™) | However, the
situation seems to be dramatically different from the classical case:

Proposition 1 BPP¢ = P¢.

For a proof see [15], where a stronger result is established: generic quantifiers
can be eliminated in polynomial time even in front of existential quantifiers
(i.e., AM, = NP¢ in the terminology of that paper; polynomial-time elim-
ination is in fact possible in front of first-order formulas with a bounded
number of quantifier alternations).

3 Isolated Points

We assume that a constructible set X C C" is given as a union of basic con-
structible sets X1, ..., X,,. Each X; is described by a system of polynomial
equalities of inequalities:

fi,l(x) = 03 N afi,si (ZE) = 03 gi,l(x) 7& 03 - Gigt; (ZE) 7& 0. (1)

All polynomials are given in dense representation. In the sequel, D > 3 is
an upper bound on the degrees of the polynomials defining X.

We now give an algorithm (essentially due to Giusti and Heintz) for
computing the Zariski closure of X. This algorithm describes X as a union
of intersections of zero sets of polynomials (there is one term in the union
for each X;).

Theorem 1 For every fized integer n > 0, the Zariski closure X of X can
be computed in polynomial time.

Proof. Since the closure of a union is the union of closures, we may assume
that X is basic constructible. We therefore assume that X is described by
a system of polynomial equalities and inequalities:

fi(z) =0,..., fs(x) = 0; g(z) #0.

Note that if there are several inequalities g1 (z) # 0,...,g:(z) # 0 in the
system, they can be replaced by g(z) # 0 where g is the product of the g;’s.
Now we follow closely Giusti and Heintz ([8], Proposition 4.2.5), working
out the bounds in greater detail. Let V = {z € C*; fi(z) =0,..., fs(z) =
0}, W = {z € C"; g(z) = 0}, and let E’ be the finite-dimensional vector
space of polynomials f € Clzy,...,z,] such that there exist polynomials
Piy...,Ps € Clzn,. .., zy] satisfying deg(p; f;) < D™(D™ + 2D + 1) and

fog”" =Y pifi (2)
=1



We claim that E' defines the Zariski closure of X. This will yield the
desired algorithm since we can compute a basis of E’ by linear algebra, and
the polynomials of this basis will then define X.

In order to prove the claim, we first show that X C V(E'), where V (E')
is the algebraic set defined by E'. Since V(E') is closed, it suffices to show
that X C V(E'). Let € X and f € E'. Since fi(x) =--- = fs(x) =0 and
g(x) # 0, it follows from (2) that f(z) = 0. Since this holds for an arbitrary
f € E', we conclude that x € V(E').

Let us now establish the converse inclusion V(E') C X. By Proposition
3 from [11], X can be defined by n + 1 polynomials f{,..., fr . of degree
bounded by deg(X), and deg(X) < deg(V') < D™ (the first inequality comes
from the fact X is a union of irreducible components of V, and the second
from Bezout’s theorem). Since each f; vanishes on V — W, the product f}g
vanishes on V, and by the effective Nullstellensatz [16] there exist polyno-
mials pq,...,ps with deg(p;f;) < D™(D™ + D + 1) and an integer k < D"
such that

(fj9)F = pifi
i=1

This can be rewritten as:
S
frgP" =" gP" Fpifi,
i=1

and since deg(g”" ~*p;f;) < D™(D™+ D+ 1)+ D"*! we conclude that fj'-lc €
E'. Hence f; vanishes on V(E'). Since this holds for all j = 1,...,n +1,
we conclude that V(E') C X. This completes the proof of the claim, and of
the theorem. O

In the above proof, the coefficients of g = [[,.,-, gi can be computed from
the coefficients of the g;’s by computing iteratively [, g; for j from 2 to
t. This takes polynomial time since the number of variables is fixed (indeed,
the number of monomials in g and in all intermediate products is bounded
by (D 1E;“")) The fact that products of polynomials in a constant number of
variables can be computed efficiently is also used in the proofs of Theorem 2
and Theorem 9.

We say that a point 2y € C” is isolated in X if there exists a Zariski
open set O containing zy such that (X — {zo}) N O = 0, or equivalently if
20X — {zo}. Note that if z( is not isolated in X, this does not necessarily
implies that zg € X. Of course, we say that X has an isolated point if there
exists a point xyp € X such that zg is isolated in X.

Corollary 1 For every fixed integer n > 0 the following problem can be
solved in polynomial time: given a point xg € C" and a constructible set
X C C", decide whether g is isolated in X.



Proof. Compute Y = X — {z(} with the algorithm of Theorem 1, and
decide whether zp € Y. Since X is given as a union of m basic constructible
Xty Xy, X — {20} = Uy<jcrn(Xi —{z0}) can be written under the same
form by noticing that X; — {zy} is the union of the n basic constructible
sets X; N{z; # zo;} (1 <j <n)where zg1,...,z0, are the coordinates of
xo. O

Note that the algorithms of Theorem 1 and Corollary 1 run in single expo-
nential time when the dimension n is not fixed (this fact will not be used in
the rest of the paper). When X is an algebraic variety, Giusti and Heintz [8]
have shown that all equidimensional components (and in particular the iso-
lated points) can be computed in single exponential time. Their algorithm
is non-uniform. They have further studied the complexity of computing
isolated points in [9].

4 NPc-Completeness for Varieties

An instance of CODIM% consists of a variety V' C C" defined by a system

fi(z)=0,..., fs(z) =0 (3)

of polynomial equations. Again, we assume that all polynomials are given
in dense representation. An instance is positive if V has an irreducible
component of codimension at least d.

Theorem 2 For every d > 0, CODIM% is NPc-complete.

It will be clear from the proof that this result remains true even if we allow
unions of sets of the form (3) as inputs (of course a union of algebraic sets is
an algebraic set, but performing the corresponding transformation explicitly
may be expensive).

For the bit model of computation we have the following result.

Corollary 2 For every d > 0, CODIM? is NP-hard and if we assume the
Generalized Riemann Hypothesis, CODIM? is in AM.

The NP-hardness of CODIM? follows from the same reduction as in the
complex model of computation (see below for the details of the complex
case). The second part of Corollary 2 is a direct consequence of Theorem 2
and of a general fact ([15], Theorem 5.6).

Theorem 3 Assuming GRH, the boolean part of NP¢ is included in AM.

The proof goes roughly as follows. Let A be a boolean problem in NP¢.
We can assume that the corresponding complex machine is parameter-free
by the elimination result of [13]. It is thus possible to reduce A to HN



in polynomial time in the bit model (this follows basically from the NPc-
completeness of HN¢). Since HN € AM under GRH (see the long version
of [12]), the same is true of A.

Note that if we only want to apply this result to CODIM¢Y, the elimi-
nation result of [13] is not needed since the NP¢ algorithm for CODIM%
exhibited in the proof of Theorem 2 is parameter-free.

The NPc-hardness of CODIM% follows from a simple reduction from
HN¢ to CODIME. To decide whether a system of the form (3) is satisfiable,
we introduce d new variables x,1,...,Z,q. The variety of C"*? defined
by

fi(z) =0,..., fs(x) = 0,2p41 =0,...,Zpyqa =0
is a positive instance of CODIMZ if and only if (3) is satisfiable (indeed, the
empty set does not have any irreducible component). If you are uncomfort-
able with proofs that rely too heavily on the properties of the empty set,
write down a system of equations for the variety

{fl(x) :0,...,fs(513) =0,2zn+1 :07---7$n+d:0}u{$n+d: 1}7

and you will be convinced that CODIMZ is NPc-hard for d > 2.
The proof that CODIM% € NP¢ relies on the Dimension Theorem, a,
classical result from algebraic geometry ([10], Chapter 1, Proposition 7.1).

Theorem 4 Let U,V C C" be two irreducible varieties of dimension p and
q, respectively. Any irreducible component of U NV has dimension at least
p+q—mn.

This implies in particular that U NV has dimension at least p + ¢ — n if
Unv #0.

Proposition 2 Let V C C" be a nonempty variety. The following proper-
ties are equivalent:

(i) There exists an affine subspace E of dimension > d such that VN E
has an isolated point.

(ii) There exists an affine subspace E of dimension d such that V N E has
an isolated point.

(113) V' has an irreducible component of codimension > d.

Proof. We first show that (i) implies (ii). Let E be an affine subspace of
dimension > d such that V N E has an isolated point xzy. Let F' be any d-
dimensional subspace of E going through xq. This point is a fortiori isolated
in VNF.

Next, we show that (ii) implies (iii), or rather that the negation of (iii)
implies the negation of (ii). Let Vj,...,V, be the irreducible components



of V, and d; = dimVj;. If d; > n — d + 1 then by the Dimension Theorem
the components of V; N E are of dimension at least 1. It follows that if (ii)
does not hold, V N F is a (possibly empty) union of irreducible varieties of
dimension at least 1, and therefore has no isolated point.

Finally, to see that (iii) implies (i) let V; be a component of dimension
d; < n —d, and E a sufficiently “generic” affine subspace of dimension
n — d;. Then V; N E is finite and nonempty, and moreover for any j # 1,
(ViNnE)N(V;NE) = B (the genericity of E implies directly the first assertion,
and also implies the second assertion if we observe that dim(V; NVj) < d;
by the irreducibility of V;). Therefore the elements of V; N E are isolated in
VNE. O

Proof of Theorem 2. The NP algorithm for CODIM% is based on the equiv-
alence between (ii) and (iii) in Proposition 2: we guess an affine subspace E
of dimension d and decide with the algorithm of Corollary 1 whether VN E
has an isolated point. More precisely, we guess a,v1,...,vq € C" and check
(in polynomial time) that £ = a 4+ Vect(vy,...,v4) has dimension d. Then
we obtain a system of equations for V N E in d variables A\1,..., A\g by per-
forming the substitution z = a + 2?21 Aivi in (3). Verifying that V N E
has an isolated point requires only polynomial time since the dimension d
is fixed. This completes the proof of Theorem 2 since we have already seen
that CODIMY is NPc-hard. O

5 Unrestricted Codimension

A most natural question is whether the codimension problem remains in
NP if d is no longer fixed, but rather is part of the input. We shall give
strong evidence that this CODIM¢ problem is unlikely to be in NP¢ or in
coNP¢.

Proposition 3 If CODIM¢ € coNP¢ then NP¢ = coNP¢.

Proof. CODIM¢ is NPc-hard since its restrictions CODIM% are hard. If a
NPc-hard problem is in coNP¢, this implies that NP¢ = coNP¢. O

Proposition 3 can be regarded in its own right as fairly strong evidence that
CODIM¢¢coNP¢, but consider the following.

Proposition 4 If NPc = coNP¢ then (assuming the generalized Riemann
hypothesis) the standard polynomial hierarchy collapses at its second level.

Proof. Let A C {0,1}* be any (standard) coNP problem. Considered as a
problem of C*, A is also coNP¢. This problem is therefore in the boolean
part of NP¢ if NP¢ = coNP¢. We conclude by Theorem 3 that coNP C AM
if NPc = coNP¢. This is known to imply ¥2 =I1? [4, 1]. O



The evidence that CODIMc¢&NP¢ is almost as strong.

Theorem 5 If CODIM¢ € NP¢ then (assuming the generalized Riemann
hypothesis) the standard polynomial hierarchy collapses at its second level.

For the proof, we need to introduce several problems of independent interest.
An instance of ISO¢ consists of a variety V' defined by a system of polynomial
equations as in (3). The instance is positive if V' has an isolated point.

If the f;’s are now in Z[X1, ..., X,] instead of C[X1,...,X,] (and have
their coefficients given in bits), we obtain the boolean problem ISO.

An instance of HoN¢ consists of a system of s homogeneous polynomial
equations f; =0,..., fs =0 in n+ 1 variables x1,...,z,41. The instance is
positive if the f;’s have a non-trivial common zero in C".

By restricting again to polynomials with integer coefficients, we obtain
the boolean problem HsN.

Theorem 6 HyN is NP-hard and ISO is coNP-hard.

Proof. The coNP-hardness of ISO follows immediately from the NP-hardness
of HoN. Indeed, a variety defined by a system of homogeneous polynomials
has an isolated point (namely, the origin) if and only if these polynomials
do not have a non-trivial common zero (i.e., a common zero different from
the origin).

It remains to show that HoN is NP-hard. This is done by a reduction
from the NP-complete problem BOOLSYS. An instance of this problem is
a system of equations in n boolean variables Xi,...,X,,. Each equation is
of the form X; = T'rue, X; = - X;, or X; = X;V X;.. An instance is positive
if it has a satisfying assignment.

Let BS be an instance of BOOLSYS. We shall construct an instance
HS of HyN in n + 1 variables zy, ..., z,41 such that BS is satisfiable if and
only if HS has a non-trivial solution. There are two group of equations in
HS. The first group is made of the n equations z? = z2_; (1 < i < n).
Each equation in the second group is associated to an equation in BS in

the following manner. For each equation in BS of the form X; = True
the equation z; = —x,41 is in HS. To an equation of the form X; = -X;
we associate the equation x; = —z;, and finally to an equation of the form

X; = X, V X} we associate the equation
4o, xpy1 = (:Ej + :Ek)2 + 2:L‘n+1(:L‘j + xp) — 4:L‘%H_1.

From a system of s boolean equations in n variables we therefore obtain a
system of s +n homogeneous equations in n + 1 variables. Assume that BS
has a satisfying assignment (X1, ..., X,,). It is straightforward to check that
for any xp,4+1 # 0, if we set x; = —xp+1 when Xj is true and z; = 2,1 when
X; is false, (z1,...,%p+1) is a non-trivial solution of HS.



Conversely, assume now that HS has a non-trivial solution

(1,...,Zpt1). From the equations in the first group we see that x,11
must be non-zero, and that each z; must be equal to —z,41 or to zp41.
Set X; = True if ; = —xp41, and X; = False if ; = z,41. It is again

straightforward to check that (Xi,...,X,) is a solution of BS. Since HS
can be constructed from BS in polynomial time, we have shown that HoN
is NP-hard. O

The above proof shows that if we consider only systems of polynomial
equations of degree at most 2, the corresponding restrictions of HoN and
ISO remain NP-hard and coNP-hard. It turns out that the first part of
Theorem 6 can be generalized to arbitrary fields. More precisely, for any
field K (of any characteristic) we can consider the problem HoN(K): decide
whether a systems of homogeneous equations in n variables (with integer
coefficients given in bits) has a solution in K.

Theorem 7 HyoN(K) is NP-hard for every field K.

Proof. One can see that the proof of Theorem 6 is valid for any field of char-
acteristic different from two. Let us therefore assume that K is of character-
istic two. In this case, we have to do a variation on the proof of Theorem 6.
The n equations of the form ? = 22 | in HS are replaced by z7 = ;zp41.
An equation in BS of the form X; = True is “simulated” by z; = z,11 in
HS. X; = X is simulated by x; = 2; + 41, and finally X; = X; V X}, is
simulated by:
77 = 2T + Tni (5 + 25).

Assume that BS has a satisfying assignment (X1, ..., X,). It is straightfor-
ward to check that for any x,; # 0, if we set z; = z,11 when Xj is true

and z; = 0 when Xj is false, (z1,...,Z,41) is a non-trivial solution of HS.
Conversely, assume now that HS has a non-trivial solution
(x1,...,Zpt1). From the first n equations in HS we see that z,,; must

be non-zero, and that each x; must be equal to 0 or to x,+1. Set X; = True
if x; = xp11, and X; = False if z; = 0. It is again straightforward to check
that (X1,...,X,) is a solution of BS. Since HS can be constructed from
BS in polynomial time, we have shown that HoN(K) is NP-hard. O

Proof of Theorem §. If CODIM¢ € NP¢ then ISO € NP¢ as well since this
problem is just the restriction of CODIM¢ obtained by setting d = n. If
CODIM¢ € NPg, ISO is therefore in the boolean part of NP¢. Since ISO is
coNP-hard, we conclude as in the proof of Proposition 3 that coNP C AM,
and the polynomial hierarchy collapses (under GRH). O

The same (or simpler) arguments show that by restricting CODIM¢ to poly-
nomials with integer coefficients given in bits, we obtain a problem which is
neither in NP nor coNP, unless NP = coNP.



While CODIM¢ does not seem to lie in the lower levels of the complex
polynomial hierarchy, it is not known whether it belongs to that hierarchy
at all. Membership to PHc is in fact open for ISO¢, and it is also unknown
whether the boolean problem ISO belongs to the standard polynomial hier-
archy. Finally, it is not known whether HoN¢ is NP¢-complete.

6 Local Dimensions for Constructible Sets

The goal of this section it to prove the following result.

Theorem 8 For any fized integer d > 0 the following problem is NPc-
complete: given a constructible set X C C", decide whether there exists a
point zoy € X such that dimy, X <n —d.

Proof. NP¢ hardness is already known from Theorem 2. Here is a NP¢
algorithm for this problem: guess zy € C", verify that zop € X and that
dim,;, X < n —d. By Theorem 9 below, the verification can indeed be
performed in polynomial time. O

It is not difficult to construct examples of constructible sets for which the
NP algorithm of Theorem 2 fails. As in Corollary 2, it follows from Theo-
rem 8 that for systems with integer coefficients given in bits, the codimension
problem for constructible sets is in AM for any fixed d.

The sequel is devoted to the proof of Theorem 9. Let Y C C¢ be a
constructible set defined by polynomial (in)equations with coefficients in a
finitely generated field K C C. We will use the following characterization of
dimension: dimY is the largest transcendence degree over K of any sequence
y = (y1,-..,yq) such that y € Y.

Theorem 9 For every integer d > 0, the following problem is in Pc:
Given a constructible set X C C" and a point o € C*, decide whether
dim, X <n —d.

The proof relies on the following fact.

Theorem 10 Let xzg be a point of C" and let X C C" be a constructible
set. The two following properties are equivalent.

(i) For a generic d-dimensional linear space E, x is isolated in X N (zo+

(11) dimg, X <n —d.

The proof of Theorem 10 breaks naturally into two parts. We may assume
without loss of generality that x¢ is the origin of C".

10



Proposition 5 Let Y be a constructible subset of C*. If dimY < n —d
and d < p < n, then dim Y NE < p—d for E in a dense set of p-
dimensional linear spaces (in particular, Y N E is finite for E in a dense set
of d-dimensional linear spaces).

Proof. There is nothing to prove if Y is finite. Let us therefore assume that
dimY > 1, and let K be the subfield of C generated by the parameters of
Y. It suffices to show that if A is a (n —p) X n matrix with coefficients that
are algebraically independent over K, dim (Y N {Az = 0}) < p —d. This
follows from the fact that if ay,...,a, are algebraically independent over K,

dim(Y N{a1z1 + -+ + apz, = 0}) <dimY.

This fact is a direct consequence of the characterization of dimension in
terms of transcendence degree and of Lemma 1 below. O

Lemma 1 Assume that a1x1+- - -+a,z, = 0 where the a;’s are algebraically
independent over K, and x has transcendence degree r > 0 over K. Then
x = (x1,...,%y) has transcendence degree at most r — 1 over K(a).

Proof. Assume for instance that z1,...,z, is a transcendence base of K (x)
over K. As the a;’s are not algebraically independent over K(z) (be-
cause = # 0), they are not algebraically independent over K(z1,...,z,)
either. Hence x1,...,2, are not algebraically independent over K (a), and
tr.degg (o) K () = tr.degp (o) K (z1,...,2;) <r. O

Proof of Theorem 10. As mentioned previously, we assume that zy = 0. If
dim,;, X < n — d there exists a Zariski-open set O containing zy such that
dimX N O < n —d. Applying Proposition 5 to Y = X N O, we see that
X NONE is finite for E in a dense set of d-dimensional linear spaces. For
such an FE, zg is isolated in X N O N E and this point is therefore isolated
in X N E. This shows that (ii) implies (i).

Conversely, assume now that dim,, X > n —d + 1. Then there exists an
irreducible variety V and a strict closed subset W C V such that zg € V,
VAW C X and dimV > n —d+ 1. Let E be a generic d-dimensional linear
space. By the dimension theorem, z( lies on an irreducible component V'
of VN E of dimension at least dimV + d — n. Using now the genericity of
E, we see from Proposition 5 that dim W N E < dimW +d —n < dimV".
Since V' \ (W N E) C X N E, we conclude that for every Zariski open set
O containing zg, dim(X N E) N O > dimV’ > 1, and in particular zg is not
isolated in X N E. O

We are now ready for the proof of Theorem 9.
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Proof. We will in fact describe a BPP¢ algorithm deciding whether
dim,, X < n —d. By Proposition 1, this probabilistic algorithm can be
converted into a deterministic algorithm.

The BPP¢ algorithm is as follows: we take random vectors vy,...,vq €
C" and apply Theorem 10 to E = Vect(vy,...,vq). A system of
(in)equations for X N (z¢g + E) in d new variables A,...,\; is obtained

by performing the substitution z = z¢ + Zgzl A;v; in the systems of the
form (1) defining X. This takes polynomial time since d is fixed. By Corol-
lary 1, deciding whether z is isolated in X N (xo + E) also takes polynomial
time for the same reason. O
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