
HAL Id: hal-02101859
https://hal-lara.archives-ouvertes.fr/hal-02101859v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Functions Computable with a Fused-mac
Sylvie Boldo, Jean-Michel Muller

To cite this version:
Sylvie Boldo, Jean-Michel Muller. Some Functions Computable with a Fused-mac. [Research Report]
LIP RR-2004-41, Laboratoire de l’informatique du parallélisme. 2004, 2+10p. �hal-02101859�

https://hal-lara.archives-ouvertes.fr/hal-02101859v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Some Functions Computable with a Fused-mac

Sylvie Boldo ,
Jean-Michel Muller

Septembre 2004

Research Report No 2004-41

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Some Functions Computable with a Fused-mac

Sylvie Boldo , Jean-Michel Muller

Septembre 2004

Abstract
The fused multiply accumulate instruction (fused-mac) that is available on
some current processors such as the Power PC or the Itanium eases some cal-
culations. We give examples of some floating-point functions (such as ulp(x)
or Nextafter(x, y)), or some useful tests, that are easily computable using a
fused-mac. Then, we show that, with rounding to the nearest, the error of a
fused-mac instruction is exactly representable as the sum of two floating-point
numbers. We give an algorithm that computes that error.

Keywords: Floating-point arithmetic, fused multiply accumulate, computer arithmetic

Résumé
L’instruction “fused-mac” (multiplication-addition regroupées), qui est dispo-
nible sur certains processeurs récents comme le Power PC ou l’Itanium faci-
lite certains calculs. Nous donnons ici quelques exemples de fonctions vir-
gule flottante (comme ulp(x) ou Nextafter(x, y)), ou de tests, qui sont facile-
ment implantables avec un fused-mac. Nous montrons ensuite qu’en arrondi
au plus proche, l’erreur d’une instruction fused-mac est exactement représen-
table comme somme de deux nombres virgule flottante. Nous donnons un
algorithme calculant cette erreur.

Mots-clés: Arithmétique virgule flottante, multiplieur-additionneur, arithmétique des
ordinateurs

Some Functions Computable with a Fused-mac 1

1 Introduction

The fused multiply accumulate instruction (fused-mac) is available on some current processors
such as the IBM Power PC or the Intel/HP Itanium. That instruction computes an expression
ax + b or more generally ±ax ± b with one final rounding error only. This makes it possible to
perform correctly rounded division using Newton-Raphson division [17, 7, 16] (the main idea
behind that is that if q approximates x/y with enough accuracy, then the remainder x − yq will
be exactly computed with a fused-mac, allowing to correct the quotient estimation). Also, this
makes evaluation of scalar products and polynomials faster and, generally, more accurate than
with conventional (addition and multiplication) floating-point operations. This is important,
since scalar products appear everywhere in linear algebra, and since polynomials are very often
used for approximating functions.

It has been known for three decades [9] that (assuming rounding to nearest) the error of a
floating point addition or a floating-point multiplication in a given format is exactly representable
as a floating-point number of the same format. This is also true for the remainder of a division or
a square root with any rounding mode [2, 3]. A natural question arises: is there a similar property
for the fused-mac operation?

Also, expert floating-point programming sometimes requires the evaluation of functions such
as Nextafter(x, y), or the successor of a given floating-point number, or (for error estimation),
ulp(x). We may also, for some calculations, need to know if the last mantissa bit of a number is
a zero [4]. These various functions can always be computed at a low level, using masks and in-
teger arithmetic: this results in software that is not portable, and sometimes quite slow, since the
corresponding calculations are not performed in the floating-point pipeline. With conventional
arithmetic, designing portable software for these functions is feasible [5] but might be costly. We
aim at showing that the availability of a fused-mac instruction facilitates portable yet efficient
implementation of such functions.

2 Definitions and notations

Define Mn as the set of exponent-unbounded, n-bit mantissa, binary FP numbers (with n ≥ 1),
that is: Mn =

{
M × 2E , 2n−1 ≤ M ≤ 2n − 1,M,E ∈ Z

}
∪ {0}. It is an “ideal” system, with no

overflows or underflows. We will show results in Mn. These results will remain true in actual
systems that implement the IEEE-754 standard [6, 1], provided that no overflows or underflows
do occur. The mantissa of a nonzero element M × 2E of Mn is the number m(x) = M/2n−1, its
integral mantissa, noted Mx is M and its corresponding exponent, noted ex is E.

We assume that the reader is familiar with the basic notions of floating-point (FP, for short)
arithmetic: rounding modes, ulps, See [10] for definitions. In the following ◦(t) means t
rounded to the nearest even.

3 Previous results and preliminary properties

We will use the 2sum and Fast2Sum algorithm, presented below. These algorithms do not require
the availability of a fused-mac. They make it possible to compute the error of a floating-point
addition exactly, represented by a FP number. The first one [14, 18] only assumes a and b are
normalized FP numbers (i.e., elements of Mn).

Some Functions Computable with a Fused-mac 2

Property 1 (2Sum Algorithm) Let a, b ∈ Mn. Define x and y as

x = ◦(a + b)
b′ = ◦(x− a)
a′ = ◦(x− b′)
εb = ◦(b− b′)
εa = ◦(a− a′)
y = ◦(εa + εb)

We have:

• x + y = a + b exactly;

• |y| ≤ 1
2ulp(x).

If we know in advance that |a| ≥ |b| (as a matter of fact, it suffices to have ea ≥ eb), a much
faster algorithm can be used [9, 14]:

Property 2 (Fast2Sum Algorithm) Let a, b ∈ Mn, with |a| ≥ |b|. Define x and y as

x = ◦(a + b)
b′ = ◦(x− a)
y = ◦(b− b′)

We have:

• x + y = a + b exactly;

• |y| ≤ 1
2ulp(x).

Although we have presented these properties assuming a radix-2 number system, it is worth
being noticed that the 2Sum algorithm (property 1) works in any radix≥ 2, and that the Fast2Sum
algorithm (property 2) works in radices 2 and 3. And yet, rounding to nearest is mandatory:
with “directed” roundings it is possible [14] to exhibit cases where the difference between the
computed value of a + b and the exact value cannot be exactly expressed as a FP number.

The 2Sum algorithm satisfies the following property, that will be needed in Section 5.

Property 3 If (x, y) = 2Sum(a, b) then |y| ≤ |b|.

Proof. x is the FP number that is closest to (a + b). This implies that x is closer to (a + b) than a.
Hence, |(a + b)− x| = |y| is smaller than |(a + b)− a| = |b|. �

A well known and useful property of the fused-mac instruction, noticed by Karp and Mark-
stein [13], is that it allows to very quickly compute the product of two FP numbers x and y exactly,
expressed as the sum of two FP numbers u and v. More precisely,

Property 4 (Fast2Mult Algorithm) Let a, b ∈ Mn. Define x and y as

x = ◦(ab)
y = ◦(ab− x)

we have:

• x + y = ab exactly;

• |y| ≤ 1
2ulp(x).

Without a fused-mac, computing x and y is possible, but requires much more computation [9]
(the mantissas of x and y are splitted, then partial products are computed and summed up).

Some Functions Computable with a Fused-mac 3

4 Basic functions computable with a fused-mac

4.1 Checking if the last mantissa bit of some number is a zero

Brisebarre, Muller and Raina [4] have suggested an algorithm for division by a constant that
works when the last bit of the divisor mantissa is a zero. Checking that condition is easily done
with a fused-mac.

Property 5 (Algorithm IsEven) The following algorithm on x checks if the last mantissa bit of x is a
zero.

α = ◦(3x)
β = ◦(α− 2x)
IsEven = (β = x)

One may notice that the same algorithm also works with the usual (addition and multiplica-
tion) floating-point instructions. The availability of a fused-mac, here, only saves one operation.

4.2 Checking if a number is a power of 2.

The following algorithm requires storage of the constant

C = 2n − 1.

Of course, C ∈ Mn: it is exactly representable as a floating-point number.

Property 6 (Algorithm IsAPowerOf2) The following algorithm on x returns “true” if x is a power of
2.

yh = ◦(xC)
y` = ◦(xC − yh)
IsAPowerOf2 = (y` = 0).

Proof if x is not a power of 2 then Mx has at least a prime factor different from 2, thus MxC
is of the form P2α, where P is odd and larger than 2n. Hence P cannot be exactly representable
with n bits, hence yh 6= xC, hence y` 6= 0. �

Important remark The above given algorithm works in the “ideal” set Mn, which means that
with “real world” floating-point arithmetic it will work provided that no overflow or underflow
occur. To minimize the risk of overflow/underflow, one should choose

C = (2n − 1)/(2n),

instead of the previously given constant. The proof will be the same, overflow will never occur,
and underflow will occur only where x is a subnormal FP number.

4.3 Floating-point successors

There are several notions of “floating-point successor” that can be defined. The IEEE-754 stan-
dard for FP arithmetic1 [1] recommends (but does not require) the availability of the function
Nextafter . Nextafter(x, y) returns the next representable neighbor of x in the direction to-
ward y. If x = y, then the result is x without any exception being signaled. If either x or y is a
NaN, then the result is a NaN. Overflow is signaled when x is finite but Nextafter(x, y) is infinite;
underflow is signaled when the result is subnormal or zero. Cody and Coonen [5] provide a
portable C version of that function.

Let us show how such a function can be implemented using fused-mac instructions. First,
define the following four functions.

1See http://754r.ucbtest.org/standards/754.txt

http://754r.ucbtest.org/standards/754.txt

Some Functions Computable with a Fused-mac 4

Definition 1 The successor of a FP number x, denoted x+ is the smallest FP number larger than x. The
predecessor x− of x is the largest FP number less than x. The symmetrical successor of x, denoted
succ(x) is x− if x < 0, and x+ if x > 0. The symmetrical predecessor pred(x) of x is x+ if x < 0 and
x− if x > 0.

The following algorithm will use the constant

s = 2−n + 2−2n+1.

Notice that s ∈ Mn. Even on “real life” floating-point systems, s will be representable: on
all floating-point systems of current use, the number of mantissa bits is less than the absolute
value of the smallest exponent. This is required by the IEEE-854 Standard for Floating-Point
arithmetic [12], that says that (Emax − Emin)/n shall exceed 5 and should exceed 10, and that
bEmax+Emin+1 should be the smallest integral power of b, where b is the radix.

Property 7 Computation of succ(x) If n ≥ 2, then

succ(x) = ◦(x + sx)

Proof Assume 2e ≤ x < 2e+1 (i.e., the exponent of x is e). Since, in that case, succ(x) = x+2e−n+1

and ulp(x) = 2e−n+1, to show that ◦(x + sx) is equal to succ(x) it suffices to show that

x + 2e−n < x + sx < x + 3× 2e−n

(i.e., that x + sx is within 1/2ulp from succ(x)).
Thus, it suffices to show that

2e−n < sx < 3× 2e−n. (1)

Since x ≥ 2e, sx > 2e−n. Since x < 2e+1, sx < 2(1+2−n+1)2e−n, which is less than 3.2e−n as soon
as n ≥ 2. �

Property 7 shows that succ(x) can be computed with one fused-mac only.

Function pred(x) is also computable with one fused-mac only. The proof is very similar to
that of Property 7.

Property 8 Computation of pred(x) If n ≥ 2, then

pred(x) = ◦(x− sx)

Now, from functions succ and pred, one can very easily compute functions Nextafter, x+ and
x−:

Property 9
x+ = ◦(x + s|x|)
x− = ◦(x− s|x|)

Nextafter(x, y) =

 x+ if y > x
x if y = x
x− if y < x

Important remark: although we have proven these algorithms assuming an ideal FP arithmetic
with unbounded exponents, they work well with “real life” arithmetic. From the definition of
succ(x), underflow is impossible. Also, if |x| is equal to the largest representable FP number, then
on a machine compliant with the IEEE 754 standard, ±∞ (depending on the sign of x) will be
returned2, which is the right answer. If x is a NaN, then the fused-mac operation will return

2This is due to the definition of rounding to the nearest: the standard specifies that An infinitely precise result with
magnitude at least 2Emax(2− 2−n) shall round to∞ with no change in sign.

Some Functions Computable with a Fused-mac 5

a NaN. Hence, our algorithm for succ(x) is always correct, unless x is a subnormal number.
Function pred(x) cannot generate an overflow, correctly propagates NaNs, and correctly signal
underflows, however, it does not work correctly if x is a subnormal number: that (rare) case
should be handled separately.

If we use rounding to nearest, then the availability of a fused-mac instruction is mandatory
for designing such algorithms. For example:

Property 10 Apart from the “toy case” n ≤ 2, there is no constant C ∈ Mn such that ◦(xC) always
equals succ(x).

Proof: Suppose that there exists C ∈ Mn such that ◦(xC) always equals succ(x). Assume 1 ≤ x <
2 (the other cases are easily deduced from this one). This implies

x + 2−n ≤ Cx ≤ x + 3.2−n.

Hence,
2−n ≤ (C − 1)x ≤ 3.2−n

for any x ∈ Mn, 1 ≤ x < 2. For x = 1, this implies C ≥ 1 + 2−n. Since the smallest element
of Mn larger than or equal to 1 + 2−n is 1 + 2−n+1, we then have C ≥ 1 + 2−n+1. And yet,
for x equal to the largest element of Mn less than 2 (i.e., 2 − 2−n+1), C ≥ 1 + 2−n+1 implies
(C − 1)x ≥ 2−n+1(2− 2−n+1) = 4.2−n− 2−2n+2. Therefore, in that case, (C − 1)x > 3.2−n, unless
n ≤ 2. �

This may be different with other rounding modes. For instance, if rounding towards zero
Z(x) is used, then Z(xσ) returns pred(x) for any x ∈ Mn, with σ = 1− 2−n. And yet, in practice,
changing the rounding mode may be quite time consuming: this is why an algorithm that works
in the default mode (i.e., round-to-nearest) is preferable.

4.4 Function ulp(x)

Function ulp (unit in the last place) is very frequently used for expressing the accuracy of a
floating-point result. Several definitions have been given(see [11] for a discussion on that topic),
they differ near the powers of 2. If we use as a definition, when x is a FP number:

ulp(x) = |x|+ − |x|

then one can compute function ulp through the following sequence

y = ◦(x + sx)
ulp = |y − x|

where s is the same constant as in Section 4.3. If we define ulp(x) as

ulp(x) = |x| − |x|−

then function ulp is computed through

y = ◦(x− sx)
ulp = |y − x|

The two functions differ only when x is a power of 2. The first one is compatible with Goldberg’s
definition [10] (which is given for real numbers, not only for floating-point ones), the second is
compatible with Kahan’s one3 and Harrison’s one [11] (they differ for real numbers but coincide
on FP numbers).

3Kahan’s definition is: ulp(x) is the gap between the two finite floating-point numbers nearest x , even if x is one of
them (But ulp(NaN) is NaN .)

Some Functions Computable with a Fused-mac 6

5 Computing the error term of a fused-mac

We require here that n ≥ 3. The correcting term cannot be a single FP number, even in rounding to
the nearest. We will therefore compute two FP numbers such that their sum is the exact correcting
term of the fused-mac.

5.1 The algorithm ErrFmac

Property 11 (Algorithm ErrFmac) Let a, x, y ∈ Mn. Define r1, r2 and r3 as

r1 = ◦(ax + y)
(u1, u2) = Fast2Mult(a, x)
(α1, α2) = 2Sum(y, u2)
(β1, β2) = 2Sum(u1, α1)
γ = ◦(◦(β1 − r1) + β2)
(r2, r3) = Fast2Sum(γ, α2)

we have:

• ax + y = r1 + r2 + r3 exactly;

• |r2 + r3| ≤ 1
2ulp(r1);

• |r3| ≤ 1
2ulp(r2).

Figure 1 gives the idea behind the algorithm: we want to exactly add the 3 FP numbers y, u1

and u2. This is usually difficult, but as we know the correct answer (r1) thanks to the fused-mac
computation, we just have to get the two error terms. We first compute the “small” error, namely
α2. Then the other terms u1 and α1 are bigger than this value and can be combined with r1 into
a single value γ.

r1

β1 β2

α1

u1

γ

u2

y

α2

r2 r3

Figure 1: Intermediate values of the ErrFmac algorithm.

5.2 Proof of the correctness of the ErrFmac algorithm

If γ = ◦(◦(β1− r1) + β2) is equal to (β1− r1) + β2, then r1 + r2 + r3 = r1 + γ + α2 = r1 + β1− r1 +
β2 + α2 = u1 + α1 + α2 = u1 + u2 + y = y + ax. If this equality holds, we easily also have that
|r2 + r3| ≤ 1

2ulp(r1) and |r3| ≤ 1
2ulp(r2).

Some Functions Computable with a Fused-mac 7

There is left to prove that β1 − r1 and (β1 − r1) + β2 are in Mn. If they are, then they are
exactly computed and the algorithm is correct. To guarantee that a value v is in Mn, we just have
to find an exponent e such that v2−e is an integer and |v2−e| < 2n. There may exist more than
one suitable e, but the existence of one is enough. We split the proof into two subcases.
If we have β2 = 0,

α1 α2

β1

r1

u1

Figure 2: Intermediate values of of the ErrFmac algorithm when β2 = 0.

Figure 2 reminds the compared positions of the FP numbers involved. As β2 = 0, we have
left to prove that β1 − r1 is in Mn. If β1 = 0, then this is correct. Let us assume that β1 6= 0. We
then know that r1 = ◦(β1 + α2) as β2 = 0.

But we also have that |α2| ≤ 1
2ulp(α1) from Property 1 and that |α2| ≤ |u2| ≤ 1

2ulp(u1) from
Property 3 and by definition β1 = ◦(u1 + α1). This means that |α2| � |β1|. More precisely, we
either have:

• the general case: |β1| ≥ 4 |α2|;

• the special case where β1 is a result of a near-total cancellation: β1 = 2min(eu1 ,eα1) and
|β1| ≥ 2 |α2|.

In the general case, we are in the conditions of Sterbenz’s theorem [19]: r1 and β1 share the
same sign and

|r1| ≤ |β1 + α2|
1− 2−n

≤ 5
4

1
1− 2−n

|β1| ≤ 2 |β1|

|r1| ≥ |β1 + α2|
1 + 2−n

≥ 3
4

1
1 + 2−n

|β1| ≥
1
2
|β1|

In the special case, we have 4 |α2| > |β1| ≥ 2 |α2|. As β1 is a power of 2, we know that
eβ1 − 1 ≤ er1 ≤ eβ1 , so er1 is a suitable exponent for β1 − r1 and

|β1 − r1|2−er1 = |β1 − ◦(β1 + α2)|2−er1

≤
(

1
2
ulp(r1) + |α2|

)
2−er1

≤ 1
2

+ |β1|2−er1−1

≤ 1
2

+ (2n − 1)2er1+1−er1−1 < 2n.

If we have β2 6= 0,
Figure 3 reminds the compared positions of the FP numbers involved. In the general case, we

have here that β1 = r1, then of course β1 − r1 = 0 and (β1 − r1) + β2 = β2 are in Mn. If not, as
β2 6= 0, the only possibility for β1 = ◦(β1 + β2) not to be equal to ◦(β1 + β2 + α2) = r1 is that
either |β2| = 1

2ulp(β1) or β2 = − 1
4ulp(β1) if β1 is a power of 2.

Some Functions Computable with a Fused-mac 8

r1

β1 β2

α1 α2

u1

Figure 3: Intermediate values of of the ErrFmac algorithm when β2 6= 0.

We also deduce that the exponent of r1 and of β1 differ from at most 1. Lastly, we know that
|α2| ≤ |β2| ≤ 2eβ1−1. The value min(er1 , eβ1) is a suitable exponent for β1 − r1 and

|β1 − r1|2−min(er1 ,eβ1) = |β1 − ◦(β1 + β2 + α2)|2−min(er1 ,eβ1)

≤
(

1
2
ulp(r1) + |β2|+ |α2|

)
2−min(er1 ,eβ1)

≤
(
2er1−1 + 2eβ1−1 + 2eβ1−1

)
2−min(er1 ,eβ1) ≤ 4

So β1 − r1 ∈ Mn as n ≥ 3. There is left to prove that (β1 − r1) + β2 = u1 + α1 − r1 is in Mn.
We know that eβ1 + 1 ≥ er1 ≥ eβ1 − 1 and that β2 is either 2eβ1−1 or 2eβ1−2, so eβ1 − 2 is a suitable
exponent for (β1 − r1) + β2 and

|(β1 − r1) + β2|2−eβ1+2 = |u1 + α1 − ◦(u1 + α1 + α2)|2−eβ1+2

≤
(

1
2
ulp(r1) + |α2|

)
2−eβ1+2

≤
(
2er1−1 + 2eβ1−1

)
2−eβ1+2 ≤ 6

So (β1 − r1) + β2 ∈ Mn as n ≥ 3. �

5.3 With other rounding modes

Such correcting terms for the fused-mac are only representable when the rounding is to the near-
est. For example, when rounding up, if a = x = 2n−1 and y = 24n then ax+y = 24n+22n−2n+1+1
and therefore r1 must be strictly greater than 24n so r1 = 4(ax + y) = 24n + 23n+1. So r2 + r3

should be exactly equal to −23n+1 + 22n − 2n+1 + 1 that cannot be represented as the sum of two
FP numbers in Mn.

5.4 Cost of the algorithm

The basic cost of the algorithm is 20 cycles, but this can be tremendously reduced.
The first enhancement is when we know that |y| ≥ |ax| or that |y| ≥ |u1|. Then, the first 2Sum

is useless as α1 = y and α2 = u2. This is typically the case in range reduction [8, 15].
The second enhancement is to get rid of the final Fast2Sum: this means that the result will not

be compressed. It means that we only have:

• ax + y = r1 + r2 + r3 exactly;

• |r2 + r3| ≤ 1
2ulp(r1);

• r2 = 0 or |r2| > |r3|.

Some Functions Computable with a Fused-mac 9

The last enhancement is if the processor can use several floating-point units (FPUs) in parallel.
There are indeed several computations that can be done either at the same time or at consecutive
steps in a pipe-line, as there is no dependence between them. For example, the computations of
a′ and εb in the 2Sum algorithm (Property 1) can be done in parallel.

If 3 FPUs are available, the algorithm only costs 12 cycles. The tasks given to each processor
are given in Figure 4. More FPUs are useless to speed up the algorithm.

u1 u2 α1

β1r1

P1

P2

P3

α2 r2

β2

γ r3

Figure 4: Task repartition when 3 FPUs are available.

If only 2 FPUs are available, the algorithm costs 14 cycles. The tasks given to each processor
are shown in Figure 5.

u1 u2 α1

β1r1

P1

P2

α2

β2

r2γ r3

Figure 5: Task repartition when 2 FPUs are available.

The following table gives the cost of the ErrFmac algorithm depending on the conditions
(number of FPUs, final compression and knowledge that the inequality |y| ≥ |ax| holds):

Cost (in cycles) 1 FPU 2 FPUs 3 FPUs
Given algorithm 20 14 12
Without the final compression 17 11 9
When |y| ≥ |ax| 14 10 10
When |y| ≥ |ax| and without compression 11 7 7

6 Conclusion

We have shown that the fused-mac instruction makes it possible to implement efficiently and in
a portable way many functions that are useful for expert floating-point programming. We also
have shown that the error of a fused-mac operation in a given format is exactly representable
as a sum of two floating-point numbers of the same format. We have given a fast and portable
algorithm that returns that error. We can take advantage of this algorithm for implementing a
very accurate range reduction.

References

[1] American National Standards Institute and Institute of Electrical and Electronic Engineers.
IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard, Std 754-1985, New
York, 1985.

[2] G. Bohlender, P. Kornerup, D. W. Matula, and W. Walter. Semantics for exact floating-point
operations. In P. Kornerup and D. W. Matula, editors, Proceedings of the 10th IEEE Symposium
on Computer Arithmetic, pages 22–26, Grenoble, France, June 1991. IEEE Computer Society
Press, Los Alamitos, CA.

[3] Sylvie Boldo and Marc Daumas. Representable correcting terms for possibly underflowing
floating point operations. In Jean-Claude Bajard and Michael Schulte, editors, Proceedings

Some Functions Computable with a Fused-mac 10

of the 16th Symposium on Computer Arithmetic, pages 79–86, Santiago de Compostela, Spain,
2003.

[4] N. Brisebarre, J.-M. Muller, and S. Raina. Accelerating correctly rounded floating-point divi-
sion when the divisor is known in advance. IEEE Transactions on Computers, 53(8):1069–1072,
August 2004.

[5] W. J. Cody and J. T. Coonen. Algorithm 722: Functions to support the IEEE standard for
binary floating-point arithmetic. ACM Transactions on Mathematical Software, 19(4):443–451,
December 1993.

[6] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski, J. Palmer,
F. N. Ris, and D. Stevenson. A proposed radix-and-word-length-independent standard for
floating-point arithmetic. IEEE MICRO, 4(4):86–100, August 1984.

[7] M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein. Correctness proofs outline for
newton-raphson based floating-point divide and square root algorithms. In Koren and Ko-
rnerup, editors, Proceedings of the 14th IEEE Symposium on Computer Arithmetic (Adelaide, Aus-
tralia), pages 96–105, Los Alamitos, CA, April 1999. IEEE Computer Society Press.

[8] D. Defour, P. Kornerup, J.-M. Muller, and N. Revol. A new range reduction algorithm. In
Proc. 35th Asilomar Conference on Signals, Systems, and, Pacific Grove, California, November
2001.

[9] T. J. Dekker. A floating point technique for extending the available precision. Numerische
Mathematik, 18:224–242, 3 1971.

[10] D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–47, March 1991.

[11] J. Harrison. A machine-checked theory of floating-point arithmetic. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Logics: 12th
International Conference, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages
113–130, Nice, France, September 1999. Springer-Verlag.

[12] American National Standards Institute, Institute of Electrical, and Electronic Engineers. Ieee
standard for radix independent floating-point arithmetic. ANSI/IEEE Standard, Std 854-1987,
New York, 1987.

[13] Alan H. Karp and Peter Markstein. High-precision division and square root. ACM Transac-
tions on Mathematical Software, 23(4):561–589, December 1997.

[14] D. Knuth. The Art of Computer Programming, 3rd edition, volume 2. Addison Wesley, Reading,
MA, 1998.

[15] R.-C. Li, S. Boldo, and M. Daumas. Theorems on efficient argument reduction. In Bajard and
Schulte, editors, Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH16),
pages 129–136. IEEE Computer Society Press, June 2003.

[16] P. Markstein. Ia-64 and Elementary Functions : Speed and Precision. Hewlett-Packard Profes-
sional Books. Prentice Hall, 2000. ISBN: 0130183482.

[17] P. W. Markstein. Computation of elementary functions on the IBM risc system/6000 proces-
sor. IBM Journal of Research and Development, 34(1):111–119, January 1990.

[18] 0. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.

[19] P. H. Sterbenz. Floating point computation. Prentice-Hall, Englewood Cliffs, NJ, 1974.

	1 Introduction
	2 Definitions and notations
	3 Previous results and preliminary properties
	4 Basic functions computable with a fused-mac
	4.1 Checking if the last mantissa bit of some number is a zero
	4.2 Checking if a number is a power of 2.
	4.3 Floating-point successors
	4.4 Function ulp(x)

	5 Computing the error term of a fused-mac
	5.1 The algorithm ErrFmac
	5.2 Proof of the correctness of the ErrFmac algorithm
	5.3 With other rounding modes
	5.4 Cost of the algorithm

	6 Conclusion

