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Abstract
In this paper, we consider static scheduling techniques for heterogeneous
systems, such as clusters and grids. We successively deal with minimum
makespan scheduling, divisible load scheduling and steady-state schedul-
ing. Finally, we discuss the limitations of static scheduling approaches.

Keywords: static scheduling, clusters, grids, makespan, divisible load, steady-state

Résumé

Nous faisons un tour d’horizon des techniques d’ordonnancement sta-
tiques pour plateformes hétérogenes, comme les grappes et les grilles de
calcul. Nous nous intéressons successivement aux heurisitiques pour la
minimisation du temps d’exécution total, aux méthodes d’allocation de
taches infiniment divisibles, et & I'obtention du meilleur régime perma-
nent pour des problemes de grande taille. Enfin, nous discutons brieve-
ment des limitations de toutes ces techniques statiques.

Mots-clés: ordonnancement, grappes de calcul, méthodes statiques
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1 Introduction

Scheduling computational tasks on a given set of processors is a key issue for high-performance
computing. Although a large number of scheduling heuristics have been presented in the
literature, most of them target only homogeneous resources. However, future computing
systems, such as the computational grid, are most likely to be widely distributed and strongly
heterogeneous. In this paper, we consider the impact of heterogeneity on the design and
analysis of static scheduling techniques: how to enhance these techniques to efficiently address
cluster and grid computing?

We begin with a brief review of scheduling heuristics designed to minimize the total sched-
ule length, or makespan (Section 2). Next we sketch the divisible load approach in Section 3.
We proceed to steady-state scheduling in Section 4. Finally, we discuss the limitations of
static scheduling approaches in Section 5, and we state some concluding remarks in Section 6.

2 Minimum makespan scheduling

2.1 Framework

The traditional objective of scheduling algorithms is the following: given a task graph and
a set of computing resources, find a mapping of the tasks onto the processors, and order
the execution of the tasks so that: (i) task precedence constraints are satisfied; (ii) resource
constraints are satisfied; and (ii) a minimum schedule length is provided.

Task graph scheduling is usually studied using the so-called macro-dataflow model, which
is widely used in the scheduling literature: see the survey papers [NT93, [SHK95! [C.ILL95]
[ERALIY) and the references therein. This model was introduced for homogeneous proces-
sors, and has been (straightforwardly) extended for heterogeneous computing resources. In a
word, there is a limited number of computing resources, or processors, to execute the tasks.
Communication delays are taken into account as follows: let task 7" be a predecessor of task
T’ in the task graph; if both tasks are assigned to the same processor, no communication
overhead is paid, the execution of T" can start right at the end of the execution of T'; on the
contrary, if 7" and 7" are assigned to two different processors P; and P;, a communication
delay is paid. More precisely, if P; finishes the execution of T" at time-step ¢, then P; cannot
start the execution of 7" before time-step t + comm(T,T", P;, P;), where comm(T,T", P;, P;)
is the communication delay, which depends upon both tasks 7" and T" and both processors P,
and P;. Because memory accesses are typically one order of magnitude cheaper than inter-
processor communications, it makes good sense to neglect them when T" and T” are assigned
to the same processor.

However, the major flaw of the macro-dataflow model is that communication resources
are not limited. First, a processor can send (or receive) any number of messages in paral-
lel, hence an unlimited number of communication ports is assumed (this explains the name
macro-dataflow for the model). Second, the number of messages that can simultaneously cir-
culate between processors is not bounded, hence an unlimited number of communications can
simultaneously occur on a given link. In other words, the communication network is assumed
to be contention-free, which of course is not realistic as soon as the processor number exceeds
a few units.
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2.2 Communication-aware models from the literature

Communication-aware models restrict the use of communication links in various manners. In
the model proposed by Sinnen and Sousa [SSO0TDl [SSOTal [SS0Tc], the underlying communi-
cation network is no longer fully-connected. There are a limited number of communication
links, and each processor is provided with a routing table which specifies the links to be used
to communicate with an other processor (hence the routing is fully static). The major mod-
ification is that at most one message can circulate on one link at a given time-step, so that
contention for communication resources is taken into account.

Similarly, Hollermann et al. [HHLV97] and Hsu et al. [HLLRO0] target networks of proces-
sors and introduce the following model: each processor can either send or receive a message at
a given time-step (bidirectional communication is not possible); also, there is a fixed latency
between the initiation of the communication by the sender and the beginning of the reception
by the receiver. This model is rather close to the one-port model discussed below.

Several other papers impose restrictions on the communication resources, e.g. Tan et

al. [TSALA7], Orduna et al. [OSDOT] and Roig et al. [RRSF01].

2.3 The one-port model

In this model, at a given time-step, any processor can communicate with at most another
processor in both directions: sending to and receiving from another processor. The model
also assumes communication/computation overlap. Note that several communications can
occur in parallel, provided that they involve disjoint pairs of sending/receiving processors,
which nicely models switches like Myrinet that can implement permutations [CS99], or even
multiplexed bus architectures [HX98].

Several variants could be considered: no communication/computation overlap, uni-directional
communications, or even a combination of both restrictions. But the full-overlap one-port
model seems closer to the actual capabilities of modern processors, and we strongly advocate
its use when targeting heterogeneous clusters.

Figure 1: Task graph for the example: all weights (nodes and communications) are equal to
1.

Serializing communications performed by the processors has a dramatic impact on the
scheduling makespan. Consider the simple fork graph represented in Figure 1. Assume five
same-speed processors and a fully homogeneous network, and suppose that task weights and
communication costs are all equal to 1. In the macro-dataflow model, vy and the first two
children v; and vy are assigned to processor Fy. One of the remaining children vs, vy, vs
and vg is assigned to each remaining processor. Py executes task vy at time-step 0; then F
can perform all the four communications in parallel at time-step 1. The total makespan is
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then equal to 3. In the one-port model, the same allocation of tasks to processors leads to a
makespan at least 6: 1 for the parent task, 4 for the four messages to be sent sequentially, and
1 for the last task to be executed. One optimal solution is to assign three children tasks to
Py and one remaining child task to a distinct processor (which makes one processor useless),
for a makespan equal to 5. It is clear that communications from the parent node to the
children has become the bottleneck. Of course, we could use larger task graphs and greater
communication costs to come up with arbitrarily large differences in the makespans.

The one-port model turns out to be computationally even more difficult than the macro-
dataflow model: scheduling a simple fork graph with an unlimited number of homogeneous
processors is NP-hard [BBR02]. Note that this problem has polynomial complexity in the
macro-dataflow model [GY93]; we have to resort to fork-join graphs to get NP-completeness
in the macro-dataflow model [CJLLI5].

2.4 Heuristics

An impressive list of scheduling heuristics has been proposed in the literature for the macro-
dataflow model with a limited number of homogeneous processors. More recently, several
heuristics have been introduced to deal with different-speed processors, including the mini-
mum Partial Completion Time static priority (PCT) heuristic [MS98], the Best Imaginary
Level (BIL) heuristic [OH96], the Critical Path on a Processor (CPOP) heuristic [THW99],
the Generalized Dynamic Level (GDL) heuristic [SLI3] and the Heterogeneous Earliest Finish
Time (HEFT) heuristic [THW99]. Among these heuristics, HEFT is a natural extension of
list-scheduling heuristics to cope with heterogeneous resources. More in particular, HEFT
builds upon the old Modified Critical Path heuristic [GY92] and use bottom levels to assign
priorities to tasks.

HEFT has been extended in to fulfill the constraints of the one-port model.
Furthermore, a new heuristic was introduced in [BBR0Z], whose main characteristic is a
better load-balancing at each decision step. This is achieved by considering a chunk of several
ready tasks rather than a single one; the idea is to allocate to each processor a number of the
tasks in the chunk whose overall processing time is proportional to its computing power.

Replacing the macro-dataflow by the one-port model is a first step towards designing
realistic scheduling heuristics for heterogeneous clusters. However, such heuristics strongly
depend upon an accurate knowledge of the whole task graph before execution, and they
tend to require a precise estimation of the task and communication weights, which may limit
their applicability to very regular problems arising from dense linear algebra, digital signal
processing or multi-media applications.

3 Divisible load scheduling

3.1 Framework

The concept of divisible jobs has been introduced and widely studied by Robertazzi et
al. [BHRO94, [CRLOO, BGMRI6]. A divisible job is a job that can be arbitrarily split
in a linear fashion among any number of processors. This corresponds to a perfectly parallel
job: any sub-task can itself be processed in parallel, and on any number of processors. Such
applications include the processing of large data files, Kalman filtering, and are a perfect
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testbed to understand the impact of realistic communication models, since the solution is
trivial under the macro-dataflow model.

Robertazzi et al. studied the case of a bus (with homogeneous communication costs,
heterogeneous computation costs and at most one communication at a given time step on
the bus) in [SRLI8], the case of a tree of processors (with homogeneous communication and
computation costs, using the one-port model) in [BHRI7], and the case of a star (heteroge-
neous communication and computation costs, one-port model) in [CRLO0. In this section,
we present their main results for bus and star architectures.

The notations used through this section are the following:

«; denotes the fraction of workload assigned to processor P;, Vi (3, o = 1).

e w; denotes the inverse of the processing speed of processor P;, normalized so that o;w;
denotes the time required by P; to process its load fraction.

e ¢; denotes the inverse of the communicating speed between processor P; and the orig-
inating processor, normalized so that «;c; denotes the time required to transmit to P;
its load fraction. In the case of a bus, ¢; = ¢, Vi.

e T; denotes the time elapsed before P; begins its processing. Thus, Ty = max;(T; + a;w;)
denotes the overall computational time.

3.2 Case of a bus

In general, two main problems are to be solved for dispatching divisible jobs. The first problem
is to determine in which order the work should be sent to the different processors. Since the
bus communication medium can handle only one communication at a given time step, the
solution is as depicted in Figure 2. Once the communication order has been determined, the
second problem is to decide how much work should be allocated to each processor P;. The
final objective is to minimize the makespan.

In the case of a bus, the solution is surprisingly simple. First, one can prove that all
the processors must finish their work at the same time (i.e. T; + cyw; = Ty, Vi). Indeed,
otherwise, some work could be transferred from a busy processor to an idle one in order to
reduce T'y. Thus, the following system of equation holds,

Ty —T; = awy, Vi<i<n
Tig1—T; = ajpic Vi<i<n-—1

if data is sent successively to P, ..., P,. Closed forms can be obtained for both the «;’s and
Ty. These closed form are rather complicated, although the method for obtaining them is
elementary, and we refer the reader to [SRLIE| to find the actual algebraic expressions. The
surprising and interesting point is that the overall computational time 7y does not depend
upon the order chosen for sending data to the different processors, so that the ordering
P, ..., P, is in fact optimal.

Therefore, closed forms for the optimal solution can be derived when the communication
medium is a bus.
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Figure 2: Pattern of a solution for dispatching the load of a divisible job.

3.3 Case of a star

The case of an heterogeneous star is discussed in [CRLO0]. The solution can again be depicted
as in Figure 2, with proper ¢; values for each processor P; (so that a;c is changed into a;¢;).
The results are less satisfying than in the case of the bus. Indeed, the main known result is
that if data is sent to the different processors in a given order (say, again, P;,..., P,), then
closed forms can be obtained for both the «;’s and T;. Unfortunately, the formal proof of the
result stating that all the processors must finish their work at the same time does not hold in
the heterogeneous case. Moreover, T’y strongly depends on the communication ordering, and
to the best of our knowledge, the optimal communication ordering is not known.

As a conclusion, we point out that even with this very simple application model, on a
very common architecture (a star of heterogeneous processors), deriving optimal solutions is
very difficult. One interesting problem would consist in considering both initial and back
communications, so as to model an application where results have to be sent back to the
originating processor. The problem is open, but we expect it to be challenging in this case,
since two permutations (for initial and back communications) are to be determined.

4 Steady-state scheduling

In this section we deal with large problems. In this context an absolute minimization of the
total execution time is not really required. Indeed, deriving asymptotically optimal schedules
is more than enough to ensure an efficient use of the architectural resources. In a word, the
idea to reach asymptotic optimality is to relax the problem: (i) neglect the initialization and
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clean-up phases, and concentrate on steady-state operation; (ii) derive an optimal steady-state
scheduling using linear programming; (iii) prove the asymptotic optimality of the associated
schedule. We give two examples of this approach below: packet routing, and mixed task/data
parallelism.

4.1 Packet routing

The packet routing problem is the following: let G = (V, E) be a non-oriented graph modeling
the target architectural platform, and consider a set of same-size packets to be routed through
the network. Each packet is characterized by a source node (where it initially resides) and a
destination node (where it must be located in the end). For each pair of nodes (vg,v;) in G,
let nyg; be the number of packets to be routed from vy to v;. Let

P ={(k,1) € V% ny #0}.

Bertsimas and Gamarnik [BG99] introduce a scheduling algorithm which is asymptotically
optimal when n = Z(k,l)e’P ng; — +00. So to speak, temporal constraints have been removed
in this algorithm: it is never written than a packet must have reached a node before leaving
it.

Consider an arbitrary scheduling and let mfjl be the number of packets circulating from vy,
to v; and using the edge (the communication link) between v; and vj, V(7,5) € E, Y(k,l) € P.
The time needed to circulate a packet on any edge is assumed to be constant (equal to 1), but
at most one packet can circulate on one edge at a given time-step. We obtain the following
relazed linear program:

MINIMIZE Cax,
SUBJECT TO

((1) > (ki)EE Tt = np V(k,l) e P
(2) Xiiner T = nk V(k,1) € P
(3) ZJ:( kl = Zr,(i,r)eE :L‘z% V(kvl) €P, Vi#k,dl
(4) Cijj = Z(k l)eP ] V(i,j) € B
(5) CZ < Cmax; V(’L,j) ekl
k(G)z{?jzo, Ci; >0, Y(k,1) €P, (i,j) € E

The first two equations state that the number of packets of type (k,[) that leave node k
and reach node [ is ng;. Equation (3) is the conservation law (conservation of the number
of packets) at node 7. Equation (4) defines the total occupation time of edge (i,7)., and
equation (5) states that all these occupation times minor the makespan Cp,ax. Note that all
temporal constraints have been left out, hence the name relazed.

The solution of this linear program with O(|E||P|) rational variables and O(|V'||P| + |E|)
constraints can be obtained in polynomial time. The complexity does not depend on n, the
total number of packets, which justifies its use when n is large. Now, to construct the actual
scheduling, we split the execution into phases, and we reproduce a “rounded” version of the
relaxed solution during each phases. Let Q be the length of a phase (to be determined later)
and let

o 9

iJ LKMJ’ V(k,l) € Pa (Za]) € Ea
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be the number of packets (rounded from below) of type (k,[) which circulate on the edge
(,7) during Q time-steps in the relaxed problem. The algorithm proposed in [BG99] is the
following;:

Input Compute the optimal value Chyax from the relaxed linear program.

Step 1 During each phase [IQ, (I + 1)§2], where | = 0,..., [%] — 1, and for each edge
(i,7) € E, circulate on the edge as many packets of type (k,[) as available in node 7 at
time €2, but no more than ai—“jl.

Step 2 At time-step T = [%] Q, all the packets that have not been fully routed are handled
sequentially.

It can be proven that at time-step

Cl’l’l ax

( CmaX|P|
Q

+ 12+ |B|[V|(—22

+ 1P|+ 9Q),
all the packets have successfully been routed. The proof sketch is as follows. First the previous
scheduling is shown feasible (during each phase, all the packets can indeed be transmitted).

Next, at the end of Step 1, whose length is not larger than (C?“Za" + 1), the number of packets

that have nor reached their destination is bounded by |E |(Cm""T"‘P| + |P| + ). These packets
are routed sequentially on a path of length at most |V'|, hence the duration of Step 2 is not
larger than |E||V|(C‘“T"|P‘ + |P| 4+ Q). If we choose Q of the order of v/Cpax, the makespan
of the schedule is Chax + O(v/Chax), hence the asymptotic optimality.

4.2 Mixed task/data parallelism

We consider here applications that consist of a suite of identical, independent problems to
be solved. In turn, each problem consists of a set of tasks, with dependences between these
tasks. A typical example is the repeated execution of the same algorithm on several distinct
data samples: the task graph of the algorithm is executed several times, one for each prob-
lem instance. The application is executed using the master-slave paradigm: one particular
processor holds (or produces) all the data that is initially needed. Tasks (or more precisely
data files associated to them) are distributed to, and executed by, the other processors (the
slaves). Note that different copies of the same task type (corresponding to different problem
instances) may well be executed by different processors.

The objective is to derive an efficient scheme for the distribution and the scheduling of
the tasks to the processors. We use the following notations (see Figure 3):

e The task graph is G = (T, C). Each vertex T} represents a task type to be executed, and
each edge (Ty — T;) represents a communication between two tasks, and is weighted
by datay;, the volume of communication to be exchanged (think of each edge as been
associated to a file of type (k,[) to by sent from T} to Tj).

e The platform graph is G’ = (P, L). Vertices represent computing resources and edges
represent communication links. Each edge in L is weighted c; j, the time needed to
transfer one data unit on the link from P; to P;.
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Figure 3: The application/architecture framework.

e The time needed to execute (any copy of) task T} on processor P; is w;j. The time
needed to communicate one file of type (k,[) (related to the edge from T} to 7; in
the task graph) along the communication link from P; to P; in the platform graph is
Cij X datak,l

e We use the full-overlap one-port model of Section 2.3: at a given time-step, a processor
can simultaneously execute a task, receive a message (at most one) and send a message
(at most one).

This model is quite general, and deriving a minimum makespan schedule is hopeless. As
in Section 4.1, we introduce a relaxed problem, which characterizes the optimal steady-state
operation, i.e. the maximal throughput (total number of tasks executed per time-unit). We
use the following notations:

e s(P;, Pj, Ty, T;) is the fraction of time spent each time-unit by P; to send to P; data
involved by the edge (T}, T;) of the task graph. Similarly, Sent(P;, P;, Ty, T;) is the
number of data files of this type sent along the edge (F;, P;) per time-unit, with
s(P;, P;, Ty, T;) = Sent(P;, Pj, Ty, T;) * datay * ¢; ;.

e «(P;,T) is the fraction of time spent each time-unit by P; to compute tasks of type
Ty. Similarly, Cons(P;, T)) is the number of tasks of this type consumed by P; each
time-unit, with «(F;, T) = Cons(F;, Ty) * wi, k.

e Finally, we add two fictitious tasks Thegin and Teng to the task graph. Thegin is the
predecessor of all input tasks in G (tasks without any predecessor in G). The execution
time of Ti,egin by any processor is equal to 0, and the communication volume along any
edge from Tegin to an input task is also 0. Similarly, Tenq is the successor of all output
tasks in G.

Let Pps be the master processor, and let n(P;) be the set of the neighbors of P; in the
platform graph. The following linear program summarizes the equations governing the activity
of the processors and of the communication links within one time-unit, as well as conservation
laws for each task file and each data file type:
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MaxmmIzE Y, Cons(P;, Tena),

SUBJECT TO

(1) Vi, VE, 0 < a(P,Ti) <

(2) Viajakala 0< ( Tkaﬂ) <1

(3) Vi, j, k, 1, s(B;, P; Tk,Tl) = Sent(P;, P;, Tj;, T}) * datay * ¢;
(4) Vi, k, (R,Tk) Cons(P;, Ty,) * wi, k

(5) Vi, Yopien(py) 2o(kpyec $(Fi Py, T, 1) < 1

(6) Vi, ZP en(P, )Z(k nec $(Pj; Pi, T, Tp) < 1

(7) Vi, ZTkeT (F)lka) <1

(8) Vi, Cons(F)iaTbegin) =0

(9) Viajaka (-PMP TkaTEND) =0

(10) Vi, k,1, ZP en(P, Sent(Pj,PZ,Tk,Tl) + Cons(P;, Ty) =

ZP en(P, Sent(PzaPy,Tk,Tz) + Cons(P;, T;)
(]_].) V’L,k‘ ?é begin,l, ZPjEn (Puns) Sent(PJ,Pms,Tk,Tl) + C()ns(Pms’Tk) —
EPjen(Pms)(Sent(Pmsa P;, Ty, T;) + Cons(Pus, T})

The objective function is equal to the number of copies of task Ti,q4 executed per time-step.
Because of the dependences, the availability of a copy of T,,q means that the whole task graph
instance has been executed. Equations (5) states that the fraction of time spent by P; to send
tasks cannot exceed 1; sending is sequential in the one-port model, hence the summation
on the neighbors. Equation (6) is the counterpart for receptions, as well as equation (7) for
computations. Equation (10), and its variant equation (11) for the master processor, is the
most important: consider a given processor P;, and a given edge (T,7T;) in the task graph.
During each time unit, P; receives from its neighbors a given number of files of type (T}, T}).
Processor P; itself executes some tasks T}, thereby generating as many new files of type
(Tk,T;). What does happen to these files? Some are sent to the neighbors of P;, and some are
consumed by P; to execute tasks of type T;: we derive equation (10), which really applies to
the steady-state operation. At the beginning of the operation of the platform, only input tasks
are available to be forwarded. Then some computations take place, and tasks of other types
are generated. At the end of this initialization phase, we enter the steady-state: during each
time-period in steady-state, each processor can simultaneously perform some computations,
and send /receive some other tasks. This is why equation (10) is sufficient, we do not have to
detail which operation is performed at which time-step.

Finally, we have derived a linear program whose complexity is polynomial in |T'|, |C|, |P|
and |L|, and does not depend upon the number of problems (task graphs) to deal with. In
this case, deriving a practical scheduling is easier than in Section 4.1. Having computed the
solution of the linear program, we derive the time period 7" by computing the least common
multiple of all denominators of the rational variables: we obtain an interval of length T' during
which the number of tasks executed and transmitted is an integer constant. Using a sequential
initialization phase to feed the processors, and a sequential clean-up phase to process the very
last tasks, we derive an asymptotically optimal schedule. More precisely, the number of tasks
executed by this schedule is optimal, up to a constant that only depends upon the task graph
and platform graph, not upon the total number of tasks. See [BBLR0Z, for further
details.
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5 Limitations of static scheduling

We have surveyed three useful techniques when targeting heterogeneous clusters:

e Replacing the macro-dataflow model by the one-port model is a first step towards de-
signing realistic scheduling heuristics.

e Assuming a perfectly divisible load greatly simplifies the task allocation problem.

e Dealing with steady-state operation instead of makespan minimization is a nice way to
circumvent the computational complexity of scheduling problems while deriving efficient
(often asympotically optimal) scheduling algorithms.

However, several problems remain to be addressed. We classify them into the following
two categories: acquiring a good knowledge of the platform graph, and running extensive
experiments or simulations.

5.1 Knowledge of the platform graph

Is it realistic to assume that all the information concerning the task graph is available from
the very beginning of the scheduling? For some applications, tasks are only known on-line,
as the computation progresses. But there are regular problems (e.g. a two-dimensional FFT,
or a dense LU solver) for which the whole division into tasks, and the dependences between
the tasks, is known a priori. For such problems, the structure of the task graph (nodes and
edges) only depends upon the application, not upon the target platform. Problems arise
from the weights, i.e. the estimation of the execution times and of the communication times.
For instance, critical path scheduling relies on a precise knowledge of all these parameters
to assign the next ready task to the adequate computing resource. Even the steady-state
scheduling of independent tasks requires some static knowledge of the architecture.

A classical answer to this problem is borrowed from a simple paradigm used in dynamic
strategies, namely “use the past to predict the future”, i.e. use the currently observed speed of
computation of each machine and of each communication link to decide for the next distribu-
tion of work [Ber99]. There are too many parameters to accurately predict the actual speed
of a machine for a given program, even assuming that the machine load will remain the same
throughout the computation [CZL97]. The situation is even worse for communication
links, because of unpredictable contention problems.

When deploying an application on a platform, the idea is thus to divide the scheduling into
phases. During each phase, all the machine and network parameters are collected and his-
togrammed, using a tool like NWS [WSH99]. This information will then guide the scheduling
decisions for the next phase.

Moving from heterogeneous clusters to computational grids will cause further problems.
Even discovering the characteristics of the surrounding computing resources may prove a
difficult task, despite the availability of tools like IDMaps and Global Network Position-
ing [EL1F01), INZOT] or Effective Network View [SBW99)]. Still, even in the favorable case
where the target platform graph has been well identified and is relatively stable, schedulers
face two major difficulties: (i) providing an accurate modeling of the hierarchical structure of
the platform and (ii) designing scheduling algorithms that are well-suited to this hierarchical
structure. Overcoming these two difficulties will be a challenging task for the forthcoming
years.
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5.2 Experiments versus simulations

Real experiments on the target platform are often involved to test or to compare heuristics.
However, on a distributed heterogeneous platform, such experiments are technically difficult
to drive, because of the genuine instability of the platform. For example, wide-area links are
often shared with Internet traffic from other applications, and their performance is not as
constant and reliable as the one of a dedicated cluster of workstations. In a word, it is almost
impossible to guarantee that a platform which is not dedicated to the experiment, will remain
exactly the same between two tests, thereby forbidding any meaningful comparison.

Simulations are then used to replace real experiments, so as to ensure the reproducibility
of measured data. Being faster than real experiments, simulations will enable to test the
algorithms in a variety of conditions. A key issue is the possibility to run the simulations
against a realistic environment. The main idea of trace-based scheduling is to record the
platform parameters today, and to simulate the algorithms tomorrow, against the recorded
data: even though it is not the current load of the platform, it is realistic, because it represents
a fair summary of what happened previously.

A good example of a trace-based simulation tool is SIMGRID [Cas0I]], a toolkit providing
a set of core abstractions and functionalities that can be used to easily build simulators for
specific application domains and/or computing environment topologies. SIMGRID performs
event-driven simulation. The most important component of the simulation process is the
resource modeling. The current implementation assumes that resources have two performance
characteristics: latency (time in seconds to access the resource) and service rate (number of
work units performed per time unit). SIMGRID provides mechanisms to model performance
characteristics either as constants or from traces. This means that the latency and service
rate of each resource can be modeled by a vector of time-stamped values, or trace. Traces
allow the simulation of arbitrary performance fluctuations such as the ones observable for real
resources. In essence, traces are used to account for potential background load on resources
that are time-shared with other applications/users. SIMGRID has been successfully used
to evaluate scheduling strategies for parameter sweep applications over the computational
grid [CLZB00]. An extension of SIMGRID to decentralized schedulers and realistic platforms
is currently under development [LL02].

6 Conclusion

The difficulty of scheduling for clusters and grids should not be underestimated. Data de-
composition, task allocation and load balancing were known to be difficult problems in the
context of classical parallel architectures. They become extremely difficult in the context of
heterogeneous clusters, not to mention grid computing platforms. If the platform is not stable
enough, or if it evolves too fast, dynamic schedulers are the only option. Otherwise, there
is always the opportunity to inject some static knowledge into dynamic schedulers. Future
work will decide whether this opportunity is a niche (the pessimistic answer) or whether it
encompasses a wide range of applications (the expected answer!).
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