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Abstract

Certified computation of the sign of the determinant of a matrix or compu-
tation of the determinant itself are a challenge for both numerical and exact
methods. We survey the complexities of existing methods to solve these prob-
lems when the input is an n X n matrix A with integer entries. We study the
bit complexities of the algorithms asymptotically in n and in the norm of A.
Existing approaches rely either on numerical approximate computations, on
exact computations or even on both types of arithmetic in combination.

Keywords: Determinant, bit complexity, integer matrix, approximate
computation, exact computation, randomized algorithm.

Résumé

Calculer le signe du déterminant d’une matrice ou calculer le déterminant lui-
méme est une question importante aussi bien pour les approches numériques
que pour les approches exactes. Nous proposons un tour d’horizon des com-
plexités des méthodes pour résoudre ces problémes quand la matrice en entrée
est une matrice n x n a coeflicients entiers. Nous regardons les complexités
binaires asymptotiquement en n et en la norme de A. Les approches existantes
reposent sur des calculs numériques approchés, sur des calculs exacts ou méme

sur 'utilisation combinée des deux types d’arithmétiques.

Mots-clés: Déterminant, matrice d’entiers, calcul approché,
calcul exact, algorithme probabiliste.
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Abstract. Certified computation of the sign of the determinant of a matrix or computation of the
determinant itself are a challenge for both numerical and exact methods. We survey the complexities
of existing methods to solve these problems when the input is an n X n matrix A with integer entries.
We study the bit complexities of the algorithms asymptotically in n and in the norm of A. Existing
approaches rely either on numerical approximate computations, on exact computations or even on
both types of arithmetic in combination.

1 Introduction

Computing the sign or the value of the determinant of an n x n matrix A is a classical problem.
Numerical methods are usually focused on computing the sign via an accurate approximation of
the determinant. Among the applications are important problems of computational geometry that
can be reduced to the determinant question; the reader may refer to [11, 12, 9, 10, 46, 43] and to the
bibliographies therein. In symbolic computation, the problem of computing the exact value of the
determinant is addressed for instance in relation with matrix normal forms problems [41, 28, 23, 51]
or in computational number theory [16].

In this paper we survey the known major results for computing the determinant and its sign and
give the corresponding references. Our discussion focuses on theoretical computational complexity

IThis material is based on work supported in part by the National Science Foundation under grants Nrs. DMS-
9977392, CCR-9988177, and CCR-0113121 (Kaltofen) and by the Centre National de la Recherche Scientifique,
Actions Incitatives No 5929 et Stic LinBox 2001 (Villard).
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aspects. For an input matrix A € Z™*™ with infinity matrix norm ||Al|, we report worst case bit

complexities in terms of n and ||A4||. If a;; denotes the integer in row ¢ and column j of A then
| All = maxi<i<pn >oj—, |aij| and any entry in A has bit length bounded by

min {8 |a;;| < 27,8 > 1} <1+log (||| +1).
1<i,5<n

In algebraic complexity—i.e. when counting the number of operations in an abstract domain
D—we refer to Baur and Strassen about the link between matrix multiplication and determinant
computation [52, 53, 7]. See also the link with matrix powering and the complexity class GapL
following Toda, Vinay, Damm and Valiant as explained in [3], for example. We may also mention
Valiant’s theorem that the determinant is universal for formulas [54].

For integer matrices, computing the sign of the determinant is—a priori—an easier problem
than computing its value. We will try to identify the differences between these two problems
even if it is not known whether the two complexities are asymptotically different in the worst
case. Numerical methods must deal with conditionedness that influences the precision of the
computations. Symbolic methods are confronted with intermediate coefficient growth and with the
invariant structure of the matrix that directly influence the costs. We will see which techniques
can be used to obtain algorithms sensitive to these conditions. Consequently, the bit complexities
we give are either worst case bounds or bounds depending on some additional properties. This will
imply discussion on algorithms that adapt to certain favorable situations, i.e., on classes of input
matrices that require much lower running time than the worst case inputs.

The lowest known exponent of n in the bit complexity of the sign or of the determinant is
decreasing. In particular, for the determinant this bit complexity is known to be below the algebraic
complexity times the maximum bit size of the output (see [33, 24, 36] and section 6). This
has motivated this survey to focus on the sequential time complexity rather on other aspects
such as memory resources, parallel time or practical considerations. We will discuss deterministic
and randomized algorithms. The usage of random bits leads to Monte Carlo algorithms where
the answer is with controllably high probability correct but not certified (known to be correct);
and to Las Vegas algorithms where the answer is always correct and produced quickly with high
probability.

The paper is organized as follows. Section 2 recalls classical approximate and exact results
about the determinant. Section 3 discusses the sign computation using numerical methods based
on floating point numbers. The complexity, because of the precision required for intermediate
values, is quite directly driven by the condition number. A typical problem is to have algorithms
sensitive to this quantity. Symbolic algorithms on integers frequently rely on Chinese remaindering.
We will see in section 4 that this first exact approach with randomization allows to be sensitive
to the size of the determinant. The same approach may also be reduced to constant precision
computations for determining the sign. In sections 5 and 6 we will focus on other exact methods.
Existing fast algorithms fall into two categories. The first category takes advantage of linear system
solution, a problem whose bit worst case complexity is currently lower than the complexity of the
determinant. The second category relies on Krylov-Lanczos-Wiedemann approaches combined
with “baby-steps, giant-steps” strategy to control the integer size growth and hence the cost. In
particular, section 5 will deal with the Smith normal form which somehow currently “expresses” the
difference between binary system solution and determinant. Section 6 is concerned with improved
worst case bounds and presents the known asymptotically fastest algorithms. Section 7 will then
briefly consider computations on sparse numbers with a different model of computation. The last
section includes a conclusion along with a discussion of previous results.
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We will use that the cost of multiplying two arbitrary n X n matrices over a ring R costs
O(n¥) operations in R. Using standard multiplication gives w = 3 while asymptotically fast matrix
multiplication allows w = 2.376 [19] and special exponents if the input matrices are rectangular [18,
32]. The bit complexity of multiplying two [-bit integers or floating point numbers will be O(I?)
using the straightforward algorithm or O™ (I) with a fast algorithm [48]. Here and in the following,
for any exponent e;, O~ (n®) denotes O(n°*(logn)¢?) for some constant exponent e;. Unless
specified we will use the classical cubic algorithm for the matrix multiplication and the essentially
linear FFT-based one for the numbers. Our model of computation is a random access machine
under the logarithmic cost criterion [2, Section 1.3]. The algorithms discussed here should be also
implementable on a multi-tape Turing machine, perhaps with a poly-logarithmic slow-down. The
worst case bit cost for computing the sign of the determinant of an n x n matrix A with infinity
norm ||A[| will be denoted by S, jj4||, the worst case bit cost for computing the determinant will
be Dy, 4. Hence we have S, ja| < Dy, a)- For adaptive algorithms (see definition 3.1) these
functions will be bounded by quantities other than n and ||4||, e.g., the size of the determinant,
the condition number, the orthogonal defect or the number of invariant factors, in which case we
shall write the matrix as an argument, namely Sy, ||4)(4), Dy, jjaj|(4).

2 Classical results on sign and determinant computation

In constant precision computation, the condition number of the determinant plays a central role.
Following Higham [31, Problem. 13.15], for such a number we may take:

IOg COHddetA = lOg max |ai7j (A_l)i7j|
2,]
[Ty llaisll2
< tog (Lol ) 1)

thus the logarithm of the condition number may be as large as O™~ (nlog || A||). For error estimation
we can use the numerical rule of thumb [31, p. 10]:

forward error S condition number x backward error

and take the logarithm on both sides. The consequence is the well known fact that if one uses a
constant precision arithmetic, the output precision on the determinant satisfies:

precision S logcondgesA + log(backward error).

For accurate computations (with low relative error for certifying the sign) on badly conditioned
matrices (having small determinants for instance) this implies that it is potentially necessary to
compute with O™~ (nlog ||A]|) bit numbers. We assume that the logarithm of the backward error—
say for computing the determinant from a LU or a QR decomposition—is in O(log® n + log||A||)
for some « [31, Chapter 9]. With a matrix decomposition using O(n?) arithmetic operations the
bit cost for the sign is thus bounded as

Spja) £ 0~ (0 -nlog||All) = O~ (n* log || Al). (2)

This theoretical formula may be of weak interest numerically. As soon as a family of matrices with
a small condition number and an algorithm ensuring a small backward error are considered, the
asymptotic bit cost is say in O~ (n?log||A]|).
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In symbolic computation, most of the difficulties in reducing the complexity are governed by
the size of the determinant. We know by Hadamard’s inequality [29, Theorem 16.6] that

log|det A| < (n/2)logn + nlog ||A]|,

therefore, the determinant may have up to O™~ (nlog || A||) digits. A detailed analysis of the average
accuracy of Hadamard’s bound can be found in [1]. Once a bound is found, the determinant can
be computed by a Gaussian elimination with the sizes of the intermediate integers controlled by
exact division or more sophisticatedly by Bareiss’s method [6]. Another approach [25, 13] is to use
matrix arithmetic modulo primes and Chinese remaindering (on this technique see [2, Theorem 8.9]
or [8, Problem 4.2]). The classical associated cost for the exact computation of the determinant,
including a fast reduction of the matrix entries modulo the different primes, is [29, Chapter 5]:

Dy, < O~ (n* -nlog|lA]]) < O™ (n' log | Al]). (3)

If fast matrix multiplication is available these estimates can be decreased. Fast multiplication can
be plugged into block algorithms, we refer to Demmel and Higham [21] or Higham [31, Chap-
ter 22| for numerical approaches. For algebraic and symbolic aspects we refer to Bini and Pan [8,
Chapter 2]. The bit cost for computing the determinant is

Dy ja) < O~ (0 log [|Al]) < O(n**"log||Al)).

Remark 2.1 A sub-problem of the computation of the sign or of the determinant is to determine
whether a matriz is invertible or not—whether the determinant is nonzero or not. This can be done
by testing singularity modulo a randomly chosen prime number p. If p is chosen in a sufficiently
large set (large with respect to n and log||Al|), this leads to a randomized Monte Carlo algorithm
(non certified) for testing singularity using O~ (n3loglog ||A||+n?log||A||) bit operations. One can
choose p in a set of primes having O(logn + loglog ||A||) bits (see, e.g., [30, Section 3.2]). This
technique may also be applied to Monte Carlo rank computations and is related to the randomization
of section 4. A singularity certificate based on system solution will be given in remark 5.1. O

3 Numerical computation of the sign

As opposed to using exact arithmetics, specialized algorithms based on floating point operations
have been intensively studied to compute the sign of algebraic expressions in general and of the
determinant in particular. As seen above, a small precision may give a correct answer for special
classes of matrices or on the average but a high precision is needed in the worst case. An interesting
problem is to conceive of adaptive algorithms that automatically take into account these variations
of the precision.

We shall attempt a definition of this algorithm design paradigm.

Definition 3.1 An algorithm is adaptive (input-sensitive, output-sensitive, introspective) if its
complezity is asymptotically below its worst case complexity for a non-trivial subset of its inputs.
O

Important examples are Lenstra’s elliptic curve integer factorization algorithm or Zippel’s sparse
polynomial interpolation algorithm. Others utilize a so-called “early termination” test. We will
discuss early termination for Chinese remaindering in section 4.

One of the first specialized numerical method for the determinant, which adapts the mantissa
length of floating point numbers, is due to Clarkson [15] (see also [11, 12]). His algorithm works
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in two steps. From the input matrix A, the first step is to accurately compute a matrix B which
columns are “more orthogonal” than those of A. The process iteratively follows the Gram-Schmidt
orthogonalization but remains in a lattice and keep the sign of the determinant unchanged. For
a better comparison with the exact methods, it is interesting to note that this process uses ideas
from the Lenstra, Lenstra and Lovasz basis reduction algorithm [38]. Using good properties of
B, especially a low orthogonality defect (see (4)), the second step then computes the sign of the
determinant by LU decomposition. The first step asks to compute on numbers with at most
log||A|| + O(n) bits [12]. The arithmetic cost depends on the orthogonality defect of A defined by

_ il ais I

Similarly to the condition number, the defect is in O~ (nlog||A||). When A is invertible, the defect
bounds the number of iterations of the first step of the algorithm. The overall cost is given by

Sn,ja(4) < O™((n® +n’log A(4)) - (n + log [|Al])). (5)

We may notice that using remark 2.1, the invertibility can be easily tested. Using the generalization
of Bronnimann et Yvinec [11, 12], even for singular matrices the bit cost satisfies:

Snjla < O (n' log [|A]| + n* log® [|Al]). (6)

The first step of Clarkson’s approach is output sensitive since its cost depends on the magnitude
of the determinant. Favorable inputs are matrices with “not too small” determinants, for instance
with

log A(A) = O(n). (7)

In these cases the algorithm requires only O~ (n* + n3log||A||) bit operations. From (1), this
corresponds to matrices such that the condition number satisfies log condget A = O(n+log ||A]]) and
not Q(nlog||A||) as in the worst case. Along the same lines, the lattice algorithm of Bronnimann
et Yvinec [12] generalizes to high dimensions the method of Avnaim et al. [4] for dimensions 2
and 3. Its complexity is analogous to (6).

To have a better complexity for well conditioned matrices, arithmetic filtering has been much
studied especially for algebraic geometry problems (see the introduction). The idea is to rapidly
evaluate the sign of the determinant using fast floating point computations and then to certify
the sign using an error bound or some other fast certificate [27, 44, 37, 43]. Existing filters /
certificates rely on computed or estimated round-off errors and distances to singular matrices. In
particular, evaluations of latter distances with a machine epsilon ¢ = O(logn) allows the filters
in [37, 43] to work correctly for well conditioned matrices. If the condition number is small—
say logcondges4 = O(logn)—then the rank is certified using O~ (n®log||A||) operations. More
generally, with a singularity test as in remark 2.1 and as suggested by Pan in [43, p. 715], by
repeatedly doubling the precision this leads to the theoretical bound

Sna(4) <O~ (n3 - (log condget A + 10g||A||)) < ON(n4 log||Al])- (8)

As one could naturally expect this is highly sensitive to the condition number.
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4 Chinese remaindering

Approaches based on computations modulo a collection of primes together with the reconstruction
of integers using Chinese remaindering, are common in symbolic computation. In a way analogous
to numerical algorithms that are sensitive to the condition number, Chinese remaindering leads to
exact algorithms that are sensitive to the size of the determinant. Here and in subsequent sections
the techniques need randomizations. The idea to ensure sensitivity is to compute residues of the
determinant modulo primes and to reconstruct the integer value of the determinant “on the fly”
(via Newton’s method, mixed radix representations). Once the reconstructed value remains stable
for a relatively small number of consecutive primes then the determinant is correct with constant
probability on any input. The corresponding bit cost is:

D4 < 0~ (n®log | det A|loglog||Al| + n* log | A|| + log? | det(A)]). 9)

About this early termination technique the reader may refer to the detailed study of Brénnimann
et al. [10] and to that of Emiris [26] for remarks on success probabilities. Even if the output is
not certified (Monte Carlo algorithm), this will give very good results especially for small determi-
nants [10, Tables 2 & 3]. The log? | det(A)| term in (9) could be reduced by doubling the number
of moduli in each Chinese remainder update before checking if the result changes.

For the computation of the sign only, the authors of [10] also propose an implementation
of Chinese remaindering with constant precision numbers such as usual floating point ones (via
Lagrange’s method). The technique generalizes the one in [5] for integer division. However, in sign
computations, the integer reconstruction is not the bottleneck and theoretical costs here remain
bounded as in (3).

5 Exact determinant and linear system solution

The first type of fast exact algorithms for computing the determinant tries to exploit Cramer rules
and the relations between system solution and determinant computation. Either using an algebraic
model or for worst case bit complexities it remains an open question whether linear system solution
is asymptotically a strictly easier problem than determinant computation [7, p. 328]. At this time,
the known worst case cost for solving a linear system exactly over the rationals is strictly smaller
than the one for computing the determinant. We refer to the p-adic system solution proposed
by Moenck and Carter [39] then by Dixon [22] and improved by Mulders and Storjohann [40,
Section. 5.1.2]. The bit complexity for solving Az = b with b € Z™ and ||b|| < ||A4|| is bounded by

Ly a) < O~ (n® log]|Al]). (10)
Further, as shown by Storjohann [49], fast matrix multiplication techniques can be used and give:
Lpja) < O™ (n* log||Al]). (11)
Hence exact system solution in the worst case has the asymptotic cost of numerical determinant
computation for well conditioned matrices (see section 2). Pan has proposed, in [42, Appendix]
and in [45], a way to compute the determinant of A using denominators of solutions to random

systems:

Az =b, barandom vector. (12)
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Since the cost of system solution is low, this idea should represent a gain. However, under the
influence of the invariant structure of the matrix —the Smith normal form [41]—the gain does not
appear directly in the worst case. As experimentally studied by Abbott et al. [1] the gain is clear
on the average and in some propitious cases. Abbott et al. proceed in two phases. The first one
solves several random systems (12) to compute a large divisor o of the determinant. The second
phase finds the missing factor (det A)/o using classical Chinese remaindering. With (10), the two
phases lead to the bit cost bound

T ag .
Do) < 0~ (- (1og izt b o ay) ) (13)
This is (3) in the worst case. Similarly to the discussion in section 3, advantageous cases are those
of matrices leading to large |o|. For random matrices, heuristic arguments in [1, Assumption 1]
(see also some related expected values in [24, Section 6]) give

Hi:l || a’i,* || — O(n)

log o]

This may be compared to (7). For such matrices the cost becomes O~ (n* + n?log? ||A||). Using
randomization, one can go further on sensitivity aspects. Indeed [1, Section 4], when solution
vectors x are vectors of reduced rational fractions then
- - det A n
o| s, and log iz [l ai | =log A(A) + log [ det 4] + log Sn (14)
o] Sn o]
where s, is the largest invariant factor of A (largest nonzero diagonal entry of the Smith form).
The term in log(sy/|o|) introduced by (14) in the cost (13) is limited to O(1) [1, Lemma 1]. The
term in A(A) can be avoided by the early termination randomized strategy seen in section 5. This
leads to a Monte Carlo algorithm with cost;:

Do) <0~ (n*- (10T s 1og 1) ) (15)
n

This may now be directly compared to the cost bound (8), the structural parameter (det A)/sy,

plays a role analogous to condgesA in the numerical computations. For random integer matrices

with log||A]] > 3logn, where the entries are uniformly distributed, the expected value of s,, is

det A (by [24, Corollary 6.3] the expected of the number of nontrivial diagonal entries of the Smith

form is one) thus the average cost for computing the determinant satisfies:

E(Dpja) <O~ (n* - log || A]]) . (16)
using a randomized Monte Carlo algorithm.

Remark 5.1 System solution also provides a certificate for matriz singularity. Following re-
mark 2.1 we work with a random prime p. Without loss of generality we assume that the input
matriz A has rank r modulo p and that its leading r X r principal minor A, is nonzero modulo p.
With high probability, v is also the rank of A over Q and if r < n then the vector u solution to

Aru = A(l,...,r),r+1 (17)

should be a vector in the nullspace of A. The singularity certificate computes r modulo p, solves
the system (17) over Q and check whether Au = 0. i
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6 Exact determinant: better worst case bounds
All previously seen algorithms have bit costs bounded like
bit cost < arithmetic cost x output maximum size (18)

with approximate equality always attained in the worst case. We are going to see two different ideas
that actually lead to much lower worst case complexities. Even by plugging into the straightforward
cubic matrix multiplication algorithm those new algorithms bring the exponent of n below 4.

A first solution is, again, to take advantage of linear system solution and to look at the Smith
normal form. Using arguments similar to those of previous section and from [24, Section 2], several
system solutions with random right side vectors are sufficient to compute the largest entry s, of
the Smith normal form of A. The use of system solution can be generalized to computing the
whole determinant by applying the same technique iteratively to perturbations of A [56]. This
approach—initially proposed for computing the characteristic polynomial of a sparse matrix—is
developed in the integer case by Eberly et al. [24]. The resulting randomized Monte Carlo algorithm
is sensitive to the size of the determinant and to a parameter ¢(A4), the number of distinct invariant
factors, which characterizes the Smith form. The number of distinct invariant factors satisfies

$(4) = O(V| det A]) < O~ (v/nlog||Al]).

Together with (10), the corresponding cost is (see [24]):

Dpjjaj(4) < 0~ ($(A) -n’log|l4]]) < O~(y/|det A| - n’log || Al]) (19)
< 0~ (n*®log" || A)).

We may notice that the same bound is valid for computing both the determinant and the Smith
normal form. It may not be so surprising that the bit complexity of computing the latter form
is similar to the complexity of computing the determinant. Another variant based on system
solution has been design for taking advantage of fast matrix multiplication [24]. The determinant
is computed as the product of large invariant factors—using denominators of system solutions—
and of smaller invariant factors—using a direct algorithm for the Smith form [50]). Using (11) for
the bit cost of system solution the methods of [24, Section 5] lead to:

Dy, jay < O~ (Vi -n®log"? [|Al]) < O (> log" || A])).
Since ¢(A) is small on the average [24, Corollary 6.3]:
E(¢) = O(logn), (20)

which shows that (16) was already established using (19).

To overcome the product (18), the Smith form approach has focused on the parameter ¢(A).
Another strategy has been applied earlier on polynomial matrices by Kaltofen [33] and can be
carried over in the integer matrix case. The idea is to perform a large amount of precomputation
with shorter integers by an application of Shanks’s “baby-steps, giant-steps” principle to Wiede-
mann’s determinant algorithm [57]. The number of arithmetic operations on integers of length
O~ (nlogl|4||) is sufficiently reduced and one obtains a Las Vegas (certified) randomized algorithm
with

Dy jiaj < O~ (V- (n®log || A[])) < O™ (n®*log || Al]) (21)
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bit complexity [33, 36]. Unlike in Kaltofen’s 1992 paper, the integer matrix case requires random-
ization. The algorithm has a Chinese-remainder based implementation and can be made sensitive
to |det A|. For instance, if log|det A| = O(n'="log]|A]|), where 0 < 1 < 1, the Monte Carlo
running time in bit operations is [35]

Dy 4 (4) < O~ (\/log[det A[ - Tog [[A[] - n*) = O~ (n*2~ log ||A])). (22)

With asymptotically fast rectangular matrix product procedures, the cost of the algorithm be-
comes [33]:

Dy jay < O~ (n*% log || Al]). (23)

As initially conceived, the approach also leads to similar bounds for the division-free complexity
of the determinant over an abstract commutative ring R. The determinant of a matrix in R™*"
can be computed in

Dy.r < O™ (n*?) (24)

additions, substractions and multiplications in R (without divisions) or in O(n3°%) ring operations

if a fast matrix product is employed. The previously known division-free determinant complexity
was using Strassen’s technique for division removal [53]. Similarly to (3) or (18), the best known
cost over R had been the product O~ (n“*!) of an arithmetic cost times a size (degree of the
determinant of a degree one matrix polynomial).

By preconditioning the input matrix (in an algebraic sense [57, 14]), Wiedemann’s algorithm
first reduces the problem of computing the determinant to the problem of computing the minimum
polynomial. Then the latter polynomial is computed & la Krylov-Lanczos. Kaltofen and Villard
obtain improvements on (21) and (23) by introducing block projections during the Krylov-Lanczos
step (see [17, 34, 55] on these aspects). Blocking further reduces the operation count on large
numbers and leads to the cost

Dy jay < O~ (n*T/ log | Al])

with straightforward arithmetics or, using fast polynomial arithmetic including the half GCD
algorithm on matrix polynomials, to [36]:

Dy ja < O~ (0> 1og || Al]). (25)

The same asymptotic bounds in n work for the division-free determinant complexity. Asymptoti-
cally fast square and rectangular matrix multiplication can also be exploited and gives

Dy g < 0> log||Al)

for the worst case bit complexity of the Las Vegas randomized computation of the determinant.

7 Matrices of sparse numbers

Especially in numerical computation, rather than studying the complexity with respect to log || 4|,
on may consider for modelling the size of the entries of A, a mantissa size s, and an exponent size e,.
Following Priest [47] and using sparse high precision numbers, in the course of the algorithms the
numbers are represented as list of pairs (mantissa, exponent). The length of such lists may be
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arbitrary large and the cost of an arithmetic operation +, —, X in this set of numbers is polynomial
in the size of the operands. Under this model, the problem of the determinant is addressed by
Demmel and Koev in [20]. The complexity classes are different than those of the “classical” model
we have considered in previous sections. Indeed, the algorithms we have seen so far all require
exponential time. Taking for instance e, = loglog||A||, all the cost functions we have seen have
the form nF(2°)! for some integers k& and . Also notice that the straightforward method which
computes the determinant using recursive minor expansions would have a cost polynomial in s,
and e, but exponential in n. Hence the question if left open to know whether it is possible to
accurately compute the determinant—and thus its sign—in time polynomial in s,, e, and n [20,
Section 12].

The general answer is not known but the answer is yes for a class F of matrices whose de-
terminant (viewed as a polynomial in the entries of A) admits a special factorization (see [20,
Theorem 3]). This class includes a significant range of structured matrices. In terms of the bit
complexity model, the study proves that the cost of accurate computations on those matrices is
related to loglog || A|| rather than to log||A||. In particular one has

Sp,|a| = polynomial (n,loglogcond A) = polynomial (n,loglog [|A]|)

where Sn,“ 4|l is the sign complexity for input matrices in F.

8 Discussion

Focusing on the exponents of n, we recapitulate the different complexities in Table 1 below. Con-
cerning the worst case exponent of n, the record value has been progressing from 4 to 3 + % (with
classical matrix multiplication). It is natural to hope for further evolutions independently of the
choice of the underlying arithmetic. Do the estimates (10) and (11) obtained for the bit complexity
of system solution apply to the complexity of the sign or of the determinant?

Apart from worst case situations, the heuristic arguments of [1] and the analysis of [24] show that
Pan’s linear system based approach is the symbolic companion piece to numerical results. Indeed,
to the numerical sign estimate O~ (n®log || A]|) for well conditioned matrices somehow corresponds
the symbolic determinant estimate O™ (n3 log || A||) for small values of ¢(A). However, one can also
possibly identify here a difference between sign and determinant computation. A small condition
number does not seem to imply a small number ¢(A) of distinct invariant factors and vice versa.
Another advantageous situation for exact computations is the case of small determinants where
Chinese remaindering performs very well. One wonders if eventually no bad, i.e., supercubic, worst
case inputs are left.

Missing aspects in this paper concern memory complexity, practical costs (log factors are hidden
in our soft-O notation) and discussions for particular classes of matrices such as structured or sparse
ones. We have seen that computing the determinant of an integer matrix has strong links with
computing the Smith normal form. For matrix polynomials, this shows that further studies may
also involve links with eigenvalues problems such as the characteristic polynomial and the Frobenius
normal form.
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could be the case when computing the values of other polynomials, for instant, resultants.

Table 1. Bit complexities of the sign and of the determinant.
Exponents of n in O™ functions for A € Z™*™ with w = 3 and b = log || A4]|.

Method Worst case Propitious case
Class. numerical — (2) n*b n®b
Class. exact — (3) n*b —
Certified sign (n® + n®log A(A)) - (n +b)
Sn,HAH(A) - (5) n4b + n3b2 Tl4 + TL3b
Filters n® - (log condger A + b)
Sn,HAH(A) - (8) TL4b n3b
Chinese remainders n® -log | det A| - logb + n’b
DnaHAH - (9) TL4b TL3 logb+n2b
Linear systems n® - (log(| det A|/|sn|) + b)
Dn,||A|| - (15) TL4b n3b
Smith form #(A) -n3b < \/log[det A] - n®b
Dyay — (19), (20) n*5p'5 E(D, a)) £ n%b
Division-free - (25), (22) n3+1/5p \/blog|det A] - n®

11

We conclude that in the case of the determinant speedup can be achieved by exploiting the
interplay of the algebraic structure with the bits of the intermediately computed integers. Such
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