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Abstract

Loop fusion is a program transformation that combines several
loops into one� It is used in parallelizing compilers mainly for in�
creasing the granularity of loops and for improving data reuse� The
goal of this report is to study� from a theoretical point of view�
several variants of the loop fusion problem � identifying polynomi�
ally solvable cases and NP�complete cases � and to make the link
between these problems and some scheduling problems that arise
from completely di	erent areas� We study� among others� the fusion
of loops of di	erent types� and the fusion of loops when combined
with loop shifting�

Keywords� Parallelization� loop fusion� loop distribution� complexity

R�sum�

La fusion de boucles est une transformation de programme qui
combine plusieurs boucles en une seule� Elle est utilis
e dans les
compilateurs�parall
liseurs� principalement pour augmenter la gra�
nularit
 des boucles et pour am
liorer la r
utilisation des donn
es�
Le but de ce rapport est d�
tudier d�un point de vue th
orique plu�
sieurs variantes du probl�me de fusion de boucles � en identiant
les cas solubles en temps polynomial et les cas NP�complets � et
d�
tablir le lien entre ces probl�mes et quelques probl�mes d�ordon�
nancement provenant de domaines compl�tement di	
rents� Nous

tudions notamment le probl�me de la fusion de boucles typ
es ainsi
que le probl�me de la fusion de boucles avec d
calage�
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Abstract

Loop fusion is a program transformation that combines several loops into one� It

is used in parallelizing compilers mainly for increasing the granularity of loops and for

improving data reuse� The goal of this report is to study� from a theoretical point of

view� several variants of the loop fusion problem � identifying polynomially solvable

cases and NP�complete cases � and to make the link between these problems and some

scheduling problems that arise from completely di�erent areas� We study� among others�

the fusion of loops of di�erent types� and the fusion of loops when combined with loop

shifting�

� Introduction

Loop fusion is a program transformation that collapses several loops into one� The resulting
program compaction and the corresponding increase in the size of the loop body has several
well�known impacts on the performances of a program ����� It was rst used to reduce the cost
of loop bound testing� It can also have a signicant impact on memory performance �registers
or cache� since it may put closer in time several variable reuses� Another interest is the
reduction of synchronizations when loops are to be distributed among di	erent computation
units� Loop fusion has also an indirect impact on performance due to the fact that many
useful optimizations are limited to basic blocks or perfectly nested loops� increasing the
size of the loop body gives more chance for common subexpression elimination� instruction
scheduling and software pipelining� nested loop optimizations� etc�

Loop fusion is not always legal since it may change the behavior of the program by in�
verting the execution order of dependent computations� The analysis of data dependences
species when the fusion is allowed� Furthermore� even if loop fusion is legal from an exe�
cution point of view� some loops may not be fused because they have a di	erent type� for
example if they have di	erent headers �lower and upper bounds� steps�� or because they are
going to be executed in di	erent manner �sequential or parallel loops�� The typed loop fusion
problem� introduced by McKinley and Kennedy ���� is to fuse typed loops� while respecting
dependences� so as to obtain a program with as few loops as possible� thereby achieving
maximal code compaction� Other objectives and other frameworks have been studied� es�
pecially synchronization minimization ��� �it is not exactly a loop fusion problem but it is
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closely related�� �non�typed� loop fusion for array contraction ���� loop fusion for maximal
reuse ����� loop fusion with loop shifting ���� etc�

The goal of this paper is to make a summary on the complexity of loop fusion problems�
mainly by showing that it has a strong relationship with the shortest common supersequence
�SCS� problem and with several scheduling problems� Thanks to this scheduling view on the
loop fusion problem� we give algorithms for polynomial cases that are conceptually simpler
than those proposed in the past� and we give an answer to open questions on the complexity
of loop fusion� most of them having been already solved for the SCS problem� which is a very
close problem� In particular� McKinley and Kennedy conjectured the typed fusion problem
to be polynomially solvable for a xed number of types� but it is actually NP�complete
starting from two types if some dependences may prevent fusion� starting from three types
otherwise� and polynomially solvable in all other cases�

The paper is organized as follows� In Section �� we give some examples where the loop
fusion problem arises and we state the loop fusion problem formally� In Section �� we show
in a unique framework how polynomially solvable cases can be solved by a simple graph
traversal� In Section �� we summarize NP�complete results for loop fusion alone� Section � is
devoted to the problem of loop fusion combined with loop shifting� This simple association
makes the problem immediately NP�complete� Conclusions are presented in Section ��

� Loop fusion� examples and problem de�nition

We rst give some examples to introduce various loop fusion problems�

��� Partial loop distribution and maximal parallelism

Let us try to maximally parallelize the following code �Example ��� i�e� to place each state�
ment in a parallel loop whenever this is possible� by performing loop distribution �the inverse
of loop fusion��

Example �

DO I���N

A�I� � ��A�I� � �

B�I� � C�I��� � A�I�

C�I� � C�I��� � G�I�

D�I� � D�I��� � A�I� � C�I���

E�I� � E�I��� � B�I�

F�I� � D�I� � B�I���

ENDDO
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Figure �� Dependence graph for Example ��
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The technique� proposed by Allen and Kennedy ���� is the following� First� data de�
pendences between statements are computed� dependences are separated into dependences
that occur between di	erent iterations of the loop �called loop carried dependences� and
dependences that occur inside the loop body �called loop independent dependences�� The
dependence graph for Example � is given in Figure �� loop independent dependences are
labeled �� loop carried dependences are labeled ��

Then� strongly connected components �SCCs� of the dependence graph are computed�
Each SCC corresponds in the parallelized code to a separated loop and this loop is marked
parallel if and only if the SCC does not contain any loop carried dependence� Finally� all
SCCs are totally ordered following the dependences between SCCs and the parallelized code
is generated following this total order� The code obtained by this procedure is given in
Figure �� for one particular total order� In this example� each vertex belongs to its own
SCC� and loops that compute arrays A� B and F are parallel� other loops are sequential�
But� how can we nd the program in Figure � that exposes the same parallelism but uses
the fewest number of loops� This problem is a particular case of the typed fusion problem
that we address in Proposition �� We call it the partial distribution problem�

DOPAR I���N

A�I� � ��A�I� � �

ENDDOPAR

DOSEQ I���N

C�I� � C�I��� � G�I�

ENDDOSEQ

DOPAR I���N

B�I� � C�I��� � A�I�

ENDDOPAR

DOSEQ I���N

E�I� � E�I��� � B�I�

ENDDOSEQ

DOSEQ I���N

D�I� � D�I��� � A�I� � C�I���

ENDDOSEQ

DOPAR I���N

F�I� � D�I� � B�I���

ENDDOPAR

Figure �� Parallelized code with maximal
loop distribution�

DOSEQ I���N

C�I� � C�I��� � G�I�

ENDDOSEQ

DOPAR I���N

A�I� � ��A�I� � �

B�I� � C�I��� � A�I�

ENDDOPAR

DOSEQ I���N

D�I� � D�I��� � A�I� � C�I���

E�I� � E�I��� � B�I�

ENDDOSEQ

DOPAR I���N

F�I� � D�I� � B�I���

ENDDOPAR

Figure �� Parallelized code with partial
loop distribution�

��� Minimization of synchronizations

Suppose now that the previous code obtained after maximal loop distribution is executed in
such a way that all sequential loops are executed by the same processor and that parallel loops
are cut among di	erent processes at run�time� Where do we have to insert synchronization
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barriers so that the resulting code is guaranteed to be correct at run�time� How many
synchronization barriers do we have to insert� In the previous example� the best solution
provided by Callahan�s algorithm �that we recall in Section �� is given in Figure �� Only
two barriers are needed� This is the synchonization minimization problem�

��� Loop fusion combined with loop shifting

Now suppose that we want to combine loop fusion and loop shifting �which consists in moving
statements by a few iterations� so as to perform maximal fusion� while preserving parallel
loops� Starting from the code of Figure �� we can also derive the code of Figure �� It is another
solution with four loops �the code of Figure � is a rst solution� but in which we shifted F
by one iteration so that it can now fuse with B� �In this example� the shift transformed the
loop carried dependence between B and F into a loop independent dependence�� In general�
we can fuse more loops with this combination� but how can we nd the minimal number of
loops� This problem is addressed in Section �� It is NP�complete�

DOSEQ I���N

C�I� � C�I��� � G�I�

ENDDOSEQ

DOPAR I���N

A�I� � ��A�I� � �

ENDDOPAR

BARSYNC

DOPAR I���N

B�I� � C�I��� � A�I�

ENDDOPAR

DOSEQ I���N

D�I� � D�I��� � A�I� � C�I���

ENDDOSEQ

BARSYNC

DOSEQ I���N

E�I� � E�I��� � B�I�

ENDDOSEQ

DOPAR I���N

F�I� � D�I� � B�I���

ENDDOPAR

Figure �� Code with synchronization barriers�

DOPAR I���N

A�I� � ��A�I� � �

ENDDOPAR

DOSEQ I���N

C�I� � C�I��� � G�I�

D�I� � D�I��� � A�I� � C�I���

ENDDOSEQ

DOPAR I�	�N

IF �I
	� B�I� � C�I��� � A�I�

IF �I�N� F�I��� � D�I��� � B�I�

ENDDOPAR

DOSEQ I���N

E�I� � E�I��� � B�I�

ENDDOSEQ

Figure �� Code obtained by combination
of loop fusion and loop shifting�

��� Problem formulation

We can now formulate the problem more formally� Once dependence analysis has been
performed and potential fusions have been identied� the relations between loops are repre�
sented by a directed acyclic graph G � �V�E � F �F� T � in which each loop of the program

�



corresponds to a vertex v � V of the graph� The mapping T from V to a set of types T
species the type T �v� of a vertex v� Edges in E are classied in precedence edges �edges
in F � and fusion�preventing edges �edges in F �� For simplifying the statements of the results
presented hereafter� all fusion�preventing edges e � �u� v� in F are supposed to be such that
T �u� � T �v��

A fusion partition is a partition of V into disjoint clusters� each cluster represents a set
of loops to be fused� The fused graph Gf is the graph induced by the partition of V � there
is an edge from a cluster c� to a cluster c� if there is an edge e � �u� v� � E such that
u � c� and v � c�� A fusion partition is legal if and only if the three following conditions are
satised�

Type constraint Two vertices of di	erent types can not belong to the same cluster�

Fusion�preventing constraint Two vertices connected by an edge in F can not belong to
the same cluster�

Precedence constraint The fused graph is acyclic�

Remarks�

� the rst constraint explains why we chose to call fusion�preventing edges only edges
that link two vertices of the same type� anyhow two vertices of di	erent types can not
be fused�

� the third constraint guarantees that the fused loops can be executed in some order and
that code generation is feasible� Figure ��d� illustrates what may happen without this
constraint� No execution of loops is feasible with the last partition�

a b c d

Figure �� �a� original graph� �b� and �c� two legal partitions� �d� a cyclic partition �illegal��

All fusion problems consist in nding a legal fusion partition that optimizes some given
criterion� the main problem addressed in this paper is the typed fusion problem in which the
objective is to minimize the number of clusters� thereby achieving maximal fusion�

Loop fusion can also be formulated as a scheduling problem� Indeed� since we are looking
for clusters that induce an acyclic graph� we can directly search for a totally ordered set of
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clusters� We are thus looking for a mapping C from V to the non negative integers N such
that the following conditions are satised�

Type constraint For all v � V and u � V� T �v� �� T �u�� C�v� �� C�u� ���

Precedence constraint For each edge e � �u� v� � F� C�v� � C�u� ���

Fusion�preventing constraint For each edge e � �u� v� � F� C�v� � C�u� � � ���

The typed fusion problem is to nd a mapping C for which maxfC�v� j v � V g is minimal�
When there is no fusion�preventing edges� this formulation is nothing but a single machine

problem� some tasks �the vertices v � V � have to be performed on a single machine in some
conguration �the type of v�� the goal is to minimize the number of switches from one
conguration to another one� Such a problem was addressed in ���� For example� vertices
can be communicated processes that run on one machine� the goal is to minimize the number
of context�switches� Another example is a traveling salesman who has to perform di	erent
operations in some partial order �the graph G� in di	erent towns �the types�� and who wants
to minimize the number of moves between towns�

When all edges between two vertices of same type are fusion�preventing� and when the
graph is a set of chains� the typed fusion problem is nothing but the shortest common
supersequence �SCS� problem ��� whose complexity has been widely studied� each chain
being interpreted as a string from the alphabet of types�

The typed fusion problem is an intermediate problem� some edges may or may not be
fusion�preventing�

� Simple loop fusion� polynomially solvable cases

All polynomially solvable loop fusion subproblems can be solved in the same framework�
with one traversal of a graph whose edges e have a weight w�e�� we can compute for each
vertex v the maximal weight W �v� of a path directed to v� Depending on the problem� we
will give a di	erent meaning to the value W �v�� We will also dene in di	erent ways the
weights of edges and the weights of paths of length � �and sometimes the graph itself�� but
in all cases� we will then use an algorithm of the form�

TRAVERSAL�G � �V�E�w�� �

�� Initialize W�v� for vertices v with no predecessor�

	� For all vertices v in topological order do


W�v� � Max�W�u� � w�e� where e � �u�v��

�

which can be implemented in O�jV j� jEj� steps�

��� Loop fusion with a single type

Here� the graph G is a graph G � �V�E � F �F � T � where T is a singleton� Therefore� there
is no type constraint� Only the precedence and the fusion�preventing constraints have to be
considered �Equations ��� and ����� which makes the problem obvious� Initialize W �v� to �
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if v has no predecessor in G and let w�e� � � if e � F � and w�e� � � otherwise� The value
W �v� computed by the algorithm traversal gives the rst cluster in which the vertex v
can be placed� In other words� loops can always been maximally fused in a greedy way� i�e�
as soon as possible with a scheduling terminology�

��� Synchronization minimization

The synchronization minimization problem is not exactly a fusion problem� but it is so
similar to the loop fusion problem with a single type that we mention it here� A greedy
approach is also clearly optimal� as it was observed by Callahan ���� For this problem� the
graph G � �V�E� T � is a DAG with two types S �for sequential� and P �for parallel� but
the goal is not to fuse loops �so� there is actually no type constraint as Equation ����� but
the goal is to place synchronization barriers between loops� assuming that parallel loops are
going to be distributed into di	erent processes while all sequential loops are going to be
executed by the same processor�

Denote byW �v� the minimal number of synchronization barriers that are required before
the execution of the loop corresponding to v� If v has no predecessor� then W �v� � �� Now
consider an edge e � �u� v�� If T �u� � T �v� � S� then no barrier is required between
u and v since v will be anyhow executed serially after u� we simply have to ensure that
W �v� � W �u�� thus we let w�e� � �� In all other cases� an additional barrier is required�
W �v� � W �u� � � and we let w�e� � �� Computing W for each vertex is done using one
graph traversal as before� Loops are generated by increasing value of W and one barrier is
generated each time W is incremented� The overall complexity is O�jV j� jEj��

Back to Example �

For deriving the code of Figure �� we consider the graph of Figure �� parallel vertices are in
black� sequential vertices are in white� integers close to edges are the weights w� W �C� and
W �A� are rst set to �� then W �B� �W �D� � �� and nally W �E� � W �F � � �� �

W(C) = 0

W(B) = 1

W(E) = 2

1

1 1 1

0
1 1

W(A) = 0

W(D) = 1

W(F) = 2

Barrier

Barrier

Figure �� Graph for synchronization minimization�

Other execution models are possible� for example� if sequential loops are not guaranteed
to be executed by the same processor� then we have to let w�e� � � for e � �u� v� even
if T �u� � T �v� � S� On the contrary� if we can guarantee that each pair of dependent
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iterations of two consecutive parallel loops will be executed by the same processor� then we
can let w�e� � � �loops could be fused�� This situation can appear in some cases when
generating code with the owner�computes rule �����

��� Loop fusion with two types and no fusion�preventing edges

Suppose that G � �V�E � F � F� T � is such that T � fS� Pg �only two types� and F is
empty �no fusion�preventing edges�� Then� any valid optimal fusion partition leads to a total
order on clusters of the form SPSPSP��� or PSPSPS���� The best solution is thus either
the best solution that starts with an S� or the best solution that starts with a P �

Let us try to nd the best solution that starts with an S� We rst nd a lower bound
for the cluster number W �v� in which v can be placed� If v has no predecessor� W �v� � �
if T �v� � S and W �v� � � if T �v� � P since we look for a solution that starts with an S�
For an edge e � �u� v� with T �u� �� T �v�� the type constraint imposes W �v� � W �u� � ��
we thus let w�e� � �� Otherwise� since there are no fusion�preventing edges� we just let
w�e� � �� The algorithm traversal computes W in O�jV j � jEj� steps� Furthermore�
W �v� is even when T �v� � S� and W �v� is odd when T �v� � P � Thus W is a valid total
order on clusters since it satises both the type constraint ��� �thanks to the parity property�
and the precedence constraint ���� the lower bound is therefore a valid solution�

Finding the best solution that starts with a P is done symmetrically� The best solution
�with no restriction on the starting type� is thus found by two calls of complexityO�jV j�jEj��

Example �

All examples given in ���� and ��� are examples with two types and no fusion�preventing
edges� they can thus be optimized in O�jV j � jEj� operations� The main example in ����
is depicted and solved in Figure �� numbers close to vertices �resp� edges� are the value of
W �resp� w�� clusters are in dashed curves� The optimal solution that starts with an S

�white vertices� has � clusters� the optimal solution that starts with a P �black vertices� has
� clusters� �

0 0
1

1
2

2

3 3

1 1 0

2 1

3

4 4

a b c

1 1 1

1

1
1

0

Figure �� �a� original graph for Example �� �b� starting with white� �c� starting with black�
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��� Ordered typed fusion

In order to approximate the general typed fusion problem� McKinley and Kennedy proposed
a heuristic called the ordered typed fusion� The principle is to rst maximally fuse loops of
a given type� then to maximally fuse loops of a second type taking into account what has
been done for the rst type� etc� This can also be done using the algorithm traversal as
we now explain�

This time� let us try to nd the smallest possible number of clusters for the type T � As
before� we look for a lower bound for the cluster numberW �v� in which a vertex v of type T
can be placed� For a vertex u of type T � �� T � the meaning of W �u� is the minimal number
of clusters of type T that have to be placed before u�

If v has no predecessor� we let W �v� � �� indeed� either T �v� � T and v can be placed
in the rst cluster of type T � or T �v� �� T and no cluster of type T is required before v� For
an edge e � �u� v� with T �u� � T � we let w�e� � � if e � F �fusion�preventing constraint��
or if T �v� �� T �type constraint�� In all other cases� we let w�e� � � since we count only the
number of clusters of type T � The algorithm traversal computesW in O�jV j� jEj� steps�
Then� we fuse all vertices v of type T with the same value W �v�� This can also be done in
O�jV j� jEj�� The resulting graph is acyclic since all edges are directed in increasing values
of W � it is thus a valid solution and it requires the minimal number of clusters of type T
since it is equal to the lower bound W �

Then� the same technique is applied for the second type and so on� The resulting overall
complexity is O�jT j�jV j� jEj�� where jT j is the number of types�

Back to Example �

Consider Example � again� It has two types� only one edge is fusion�preventing �marked
with a slash�� see Figure ��a�� The solution in Figure ��b� �resp� Figure ��c�� is the solution
when black �resp� white� is rst maximally fused� Figure �� �resp� Figure ��� depicts the
two steps when fusing black �resp� white� vertices rst� The solution obtained in Figure ��
corresponds to the code of Figure �� �

a b c

Figure �� �a� original graph� �b� solution when fusing black then white� �c� solution when
fusing white then black�
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Figure ��� �a� weighted graph for fusing black� �b� fusion of black� �c� weighted graph for
fusing white after black� �d� fusion of white�
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Figure ��� �a� weighted graph for fusing white� �b� fusion of white� �c� weighted graph for
fusing black after white� �d� fusion of black�

Note that another simple technique can be used to nd an approximation to the general
typed fusion problem� Let w�e� � � for each e � �u� v� such that T �u� �� T �v� or e � F � and
w�e� � � otherwise� initializeW to � for vertices with no predecessor� and computeW by the
algorithm traversal� We nd c � maxfW �v� j v � V g clusters� in each cluster all vertices
of di	erent types are not related� and all vertices of the same type can fuse� This leads to
a legal partition with at most cjT j clusters� Furthermore� c is a lower bound for the total
number of clusters� Finding a heuristic with performance ratio jT j is thus straightforward�

��� Typed fusion for a bounded number of chains

When the graph G � �V�E � F �F� T � is a set of d chains� then for each chain� we can rst
fuse all successive vertices of same type that are linked by a precedence edge �i�e� not fusion�
preventing�� We can thus assume� without loss of generality� that all edges between vertices
of same type are fusion�preventing� In this case� the typed fusion problem is now exactly the
shortest common supersequence �SCS� problem� The SCS gives the totally ordered set of
clusters and the correspondence between each chain and the SCS species in which cluster
a vertex can take place�

It is well�known that the SCS problem in this case can be solved in O��d
Qd

i�� ri� steps by
dynamic programming� where ri is the length of the i�th chain and d is the number of chains�
To say it di	erently� we can describe all possible solutions by a graph in a d�dimensional
space where each vector �x�� � � � � xd� with � � xi � ri corresponds to the fact that the rst xi
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vertices of the i�th chain have found their place in the SCS� and each edge �at most �d edges
leave each vertex� species how we can progress along chains� Then� the maximal fusion
�or the shortest common supersequence� is obtained by computing the shortest path from
the vector ��� � � � � �� to the vector �r�� � � � � rd�� once again by one graph traversal� Figure ��
illustrates this technique for two chains� In this example� the shortest path is unique �using
three diagonal edges�� so is the maximal fusion� The search can also be restricted to solutions
that progress maximally on each chain� In this case� some edges are super�uous and the
complexity reduces to O�d

Qd

i��
ri� �at most d edges leave each vertex��

a b

Figure ��� �a� the ��dimensional graph� �b� the shortest common supersequence�

� Typed loop fusion� NP�complete results

In ����� McKinley and Kennedy considered the problem of parallel and sequential code gen�
eration� i�e� a typed fusion problem with two types� To solve this problem� they proposed
the ordered typed fusion �that we addressed in Section ����� but they pointed out it was
not an optimal approach in general� In ���� they generalized the typed fusion problem to an
arbitrary number of types� which nds its application in the fusion of loops with di	erent
headers� By a reduction from the Vertex Cover problem� they proved the following�

Proposition � The typed fusion problem� i�e� the problem of maximal fusion with typed
loops� is NP�complete if the number of types is not �xed�

As they noticed� the number of types required by their reduction is equal to the number of
vertices in the Vertex Cover problem� Thus� Proposition � does not answer the initial fusion
problem of parallel and sequential loops� They conjectured the existence of a polynomial�
time algorithm for two types� We now prove that this is unfortunately not true�

Proposition � The problem of maximal fusion� in the presence of fusion�preventing edges�
is NP�complete starting from two types �and even for chains��
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Proof Suppose that T is a set with two types fS� Pg and that the graph G � �V�E �
F �F� T � is a set of chains such that all edges between two vertices of same type are fusion�
preventing� Then the typed fusion problem is exactly the SCS problem on a binary alphabet�
which has been proved NP�complete by R�ih� and Ukkonen ����� Each chain can indeed be
considered as a string on the binary alphabet f� � S� � � Pg� �

The proof in ���� is also a reduction from the Vertex Cover problem� It requires blocks
of � and blocks on � on each string� Therefore� this result does not address the typed fusion
problem when there are no fusion�preventing edges� As we explained in Section ���� when
there are no fusion�preventing edges and only two types� the problem is trivially solvable in
polynomial time� In ���� the problem is a scheduling problem that corresponds to the typed
fusion problem with no fusion�preventing edges� By replacing each letter x by the substring
xx where x is a new letter� Lofgren and al� easily showed that the problem is NP�complete
for �n types if the SCS problem is NP�complete for n letters� At this time� they use the
reduction of Maier ��� for which n � �� concluding that the problem is NP�complete for ��
types� With the result of R�ih� and Ukkonen� the same technique shows that the problem
is NP�complete for � types� The following proposition addresses the problem with 	 types�
�In ���� Lofgren and al� mentioned also that the problem was NP�complete for 	 types but
no proof was provided��

Proposition � The problem of maximal fusion� with no fusion�preventing edges� is NP�
complete starting from three types �even for chains��

Proof The proof in ���� is �� pages long� We just give here� for the curious reader� the
modications that are made compared to the original proof� �The proof presented here can
not be understood without the original one�� What we have to prove is that all modied
strings required in ���� for the reduction from Vertex Cover are strings� from an alphabet
with three letters� for which consecutive letters are di	erent �so that no fusion�preventing
edge is required�� In ����� t �resp� r� is the number of vertices �resp� edges� in the Vertex
Cover instance�

In ����� each string is a concatenation of substrings labeled E �for edge� and N �for node��
Each substring labeled N corresponds to �t� �� blocks of �� sometimes separated by one ��
and each substring labeled E corresponds to �r � �� blocks of �� sometimes separated by
two �� The key point is to notice that the separation by only one � is su�cient� We can
then modify the substrings in the following way� using a new letter a�

� each block of � is replaced by a block of �a�

� each block of � is replaced by a block of �a�

Doing so� no string can contain two identical consecutive letters� Now� let us check that the
arguments of the proof are exactly the same�

To make the proof checking simpler� we assume that in each substring �labeled E or N��
the number of blocks is the same� equal to c � � where c � max�t� r�� Furthermore� the
number of pairs ��a or �a� in each block is Kc �instead of 
c in ����� we will then choose
K � ��� Using the notations of ����� q is now equal to �Kc��c � 	c � 
� � ��c � �c� and
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if there is a vertex cover of size k� there is a SCS of size q � r � k� We now consider the
modications that have to be made on the seven successive lemmas in ����� Using R�ih� and
Ukkonen terminology� a solution has less than q � r � k threads� i�e� less than r � k � �c
extra threads �it is assumed k � t��

Lemma � The block N �j�N�m� contains �Kc�c��� ones� and there are only Kc�c�����c

ones between N
L

s and N
R

s � thus at least Kc�c� �� � �c � �c extra threads� a contradiction
if K � � and c � ��

Lemma � First� if the one in E�i�L is not to the left of N
L

s � then there remains at least

one block of �a of E�i�L to schedule �during� N
L

s � thus at least Kc� c � �c extra threads for
scheduling the zeros of this block� a contradiction if K � 	�

Then� if E�i�L has zeros and a that are not to the left of N
L

s � then an extra thread is

used to schedule the one in E�i�L and establish a correspondence between E�i�L and E
L
� It

remains to check what happens if we remove the thread that previously scheduled the one�
We now count the number of zeros until the end of E�i�L� using the notations of ����� there
are Kc�c� �� i� zeros in Si after the one� and Kch in Sh before the one� to compare with

the Kc�c���� c ones in E
L
N

L

s � if h � i� then Kc�h� i�� c � �c� a contradiction if K � 	�

Lemma � To prove �i�� when the zero is to the right of N � we count the number of ones
to the right of the thread �� Kc�c� �� � c ones in T and at least Kc�c � �� �Kc � � ones
in Si� thus at least Kc� �� c � �c extra threads� a contradiction if K � 	�

To prove �ii�� we rst check that N �j�� is the rightmost N�block of Si�� Otherwise� the
number of ones between � and �� is at least Kc�c����Kc for Si� and at most Kc�c���� c

for T � thus there are at least Kc � c � �c extra threads� a contradiction if K � 	� Then�
if j � j�� there are Kc�c � � � j�� ones between �� and � for Si�� and Kc�c � � � c � � � j�
ones between � and �� for Si� thus at least 	Kc�c � �� �Kc ones� while there are at most
	Kc�c � �� � �c for T � a contradiction when K � �� If j � j �� then there are at least
Kc�c� �� �Kc ones between �� and �� for Si and Si� � but only Kc�c� �� � �c for T � same
conclusion� This study was when E�i��R is not to the right of ER

s � Otherwise� counting the
ones between the rst of �� and �� to the last of �� and �� leads to �Kc�c� �� �Kc for the
two strings Si and Si�� but only �Kc�c � �� � �c for T �

Lemma  If the extra thread for the one in E�i�L is shared� then there is at least one block

of zeros scheduled by extra threads to the left of N
L

s � thus at least Kc � �c extra threads� a
contradiction if K � ��

Lemma 
 Only one extra thread is needed to build �� from ���

Lemmas 	 and � No change� �
Propositions �� �� and � still do not provide an answer to one of the most important

problems in practice� the partial distribution problem presented in Section ���� Indeed�
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when parallel loops and sequential loops come from the distribution of a single loop� then
sequential loops can always be fused back� just by retrieving the original semantics of the
program� Therefore� the problem of generating a code with as few loops as possible� and in
which each statement is in a parallel loop when possible� is a typed fusion problem� with two
types� but for which fusion�preventing edges can occur only between vertices of one the two
types �namely the parallel type�� We thus need to rene again the result of Proposition �
since the proof in ���� requires consecutive letters for both types� For that� we use a more
recent proof of the NP�completeness of the SCS problem proposed by Middendorf �����

Proposition � The problem of maximal fusion� in the presence of fusion�preventing edges�
is NP�complete starting from two types even if only one type is concerned with fusion�
preventing edges �even for chains��

Proof The reader can check that the proof of Theorem 	� in ���� requires only strings
with consecutive zeros and three non consecutive ones� For the partial distribution problem�
the zeros correspond thus to parallel loops with fusion�preventing edges between them� and
the ones correspond to sequential loops� �

� Loop fusion combined with loop shifting

We now recall the complexity of the fusion of parallel loops with uniform dependences when
combined with loop shifting� problem which was introduced in ���� Loop shifting is a pro�
gram transformation that consists in moving a statement along the iterations of a loop that
surrounds it� This combination nds its applications in parallelizing algorithms that use
�shifted�linear� schedules ���� For example� the code in Figure � was obtained by shifting
�backwards� the statement that computes the array F�

The problem is stated as follows� We are given a directed graph G � �V�E�w�� where
each vertex v � V corresponds to a parallel loop� and where each edge e has a weight w�e�
�the dependence distance�� An edge e is fusion�preventing if the dependence is not loop
independent �i�e� w�e� �� ��� If loop shifting is not considered� the problem of maximal
fusion is trivially polynomially solvable as explained in Section ���� dene G � �V�E�w�
where w�e� � � if w�e� � � and w�e� � � otherwise� then the minimal number of loops after
fusion is one plus the maximal weight of a path in G� When loop shifting is considered�
we are allowed to shift each vertex v by ��v� iterations so as to modify the dependence
distance and hope to fuse more loops� After the shift �� an edge e � �u� v� has a weight
w��e� � w�e� � ��v� � ��u�� if w��e� is now �� the edge is not fusion�preventing anymore�
The problem is thus to nd a shift � from V to Z such that the maximal weight of a path
in the graph G� is minimized� This problem has been proved �strongly� NP�complete in ����

Proposition � The problem of maximal fusion of parallel loops with uniform dependences
is strongly NP�complete when combined with loop shifting�
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Proof The proof is by reduction of the fusion problem from the UET�UCT scheduling
problem �Unitary Execution Time � Unitary Communication Time� that was proved NP�
complete in ����� �

An integer linear programming �ILP� formulation has also been proposed in ��� to solve
exactly the problem� The technique is to decouple the shift problem and the fusion problem�
the fusion problem is solved by ILP with additional constraints that guarantee a feasible
shift� Then� the shift itself is found by a simple graph traversal�

� Conclusion

The rst motivation of this paper was to characterize the complexity of the typed fusion
problem with a xed number of types� problem that was conjectured polynomially solvable
for two types by McKinley and Kennedy ���� We have shown that this was unfortunately
not the case� We have extended this result to a subcase that occurs very frequently in
practice� the problem of partial distribution� which is a typed fusion problem with two types
�parallel and sequential� where the sequential type can always fuse� This subproblem is also
NP�complete� Loop fusion is thus a di�cult problem even for simple objectives such as the
minimization of the the total number of loops or the maximization of data reuse �����

Variants of polynomially solvable cases seem also di�cult� as we illustrate with the prob�
lem of maximal fusion of a single type combined with loop shifting� Other extensions that
have a practical interest remain to be considered� for example� minimizing the number of
synchronization barriers is polynomially solvable� but what is the complexity of the typed
fusion problem when restricting to solutions that require the minimal number of synchroniza�
tion barriers� Another example is an optimized variant of the ordered typed fusion problem�
nding the minimal number of loops for a given type is polynomially solvable� but how can
we pick� among all solutions that minimize the number of loops for this type� a solution for
which a second type will be minimized� This is not exactly the �unordered� typed fusion
problem since there are examples for which the total number of loops is minimized by a
solution for which none of the types is independently minimized�

The consequence of this study is that loop fusion is hard �at least in theory�� From a
practical point of view� this justies the use of an exhaustive evaluation of solutions when
dealing with small code portions� in this case� more accurate performance models can then
be used for picking the right solution� However� when a compiler has to perform such an
optimization on larger codes� or even on small portions but too often� then heuristics have
to be used� a reasonable one seems to be the ordered typed fusion if code compaction is
the rst goal� McKinley and Kennedy also proposed a very simple heuristic for maximal
reuse ���� which has been shown useful on real code examples�
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