Alain Darte
email: alain.darte@ens-lyon.fr

On the complexity of loop fusion

Keywords: Parallelization, loop fusion, loop distribution, complexity R Parall lisation, fusion de boucles, distribution de boucles, complexit

Loop fusion is a program transformation that combines several loops into one. It is used in parallelizing compilers mainly for increasing the granularity of loops and for improving data reuse. The goal of this report is to study, from a theoretical point of view, several variants of the loop fusion problem identifying polynomially solvable cases and NP-complete cases and to make t h e l i n k between these problems and some scheduling problems that arise from completely di erent areas. We study, among others, the fusion of loops of di erent t ypes, and the fusion of loops when combined with loop shifting.

Introduction

Loop fusion is a program transformation that collapses several loops into one. The resulting program compaction and the corresponding increase in the size of the loop body has several well-known impacts on the performances of a program 15]. It was rst used to reduce the cost of loop bound testing. It can also have a signi cant impact on memory performance (registers or cache) since it may put closer in time several variable reuses. Another interest is the reduction of synchronizations when loops are to be distributed among di erent computation units. Loop fusion has also an indirect impact on performance due to the fact that many useful optimizations are limited to basic blocks or perfectly nested loops: increasing the size of the loop body gives more chance for common subexpression elimination, instruction scheduling and software pipelining, nested loop optimizations, etc.

Loop fusion is not always legal since it may c hange the behavior of the program by inverting the execution order of dependent computations. The analysis of data dependences speci es when the fusion is allowed. Furthermore, even if loop fusion is legal from an execution point of view, some loops may not be fused because they have a di erent type, for example if they have di erent headers (lower and upper bounds, steps), or because they are going to be executed in di erent manner (sequential or parallel loops). The typed loop fusion problem, introduced by McKinley and Kennedy 7], is to fuse typed loops, while respecting dependences, so as to obtain a program with as few loops as possible, thereby a c hieving maximal code compaction. Other objectives and other frameworks have been studied, especially synchronization minimization 3] (it is not exactly a loop fusion problem but it is closely related), (non-typed) loop fusion for array c o n traction 5], loop fusion for maximal reuse 10], loop fusion with loop shifting 2], etc.

The goal of this paper is to make a summary on the complexity o f l o o p f u s i o n p r o b l e m s , mainly by showing that it has a strong relationship with the shortest common supersequence (SCS) problem and with several scheduling problems. Thanks to this scheduling view on the loop fusion problem, we g i v e algorithms for polynomial cases that are conceptually simpler than those proposed in the past, and we g i v e an answer to open questions on the complexity of loop fusion, most of them having been already solved for the SCS problem, which i s a v ery close problem. In particular, McKinley and Kennedy conjectured the typed fusion problem to be polynomially solvable for a xed number of types, but it is actually NP-complete starting from two t ypes if some dependences may prevent fusion, starting from three types otherwise, and polynomially solvable in all other cases.

The paper is organized as follows. In Section 2, we g i v e some examples where the loop fusion problem arises and we state the loop fusion problem formally. In Section 3, we s h o w in a unique framework how polynomially solvable cases can be solved by a simple graph traversal. In Section 4, we summarize NP-complete results for loop fusion alone. Section 5 is devoted to the problem of loop fusion combined with loop shifting. This simple association makes the problem immediately NP-complete. Conclusions are presented in Section 6.

Loop fusion: examples and problem de nition

We r s t g i v e some examples to introduce various loop fusion problems.

Partial loop distribution and maximal parallelism

Let us try to maximally parallelize the following code (Example 1), i.e. to place each statement in a parallel loop whenever this is possible, by performing loop distribution (the inverse of loop fusion).

2

The technique, proposed by Allen and Kennedy 1], is the following. First, data dependences between statements are computed: dependences are separated into dependences that occur between di erent iterations of the loop (called loop carried dependences) and dependences that occur inside the loop body (called loop independent dependences). The dependence graph for Example 1 is given in Figure 1, loop independent dependences are labeled 0, loop carried dependences are labeled 1.

Then, strongly connected components (SCCs) of the dependence graph are computed. Each SCC corresponds in the parallelized code to a separated loop and this loop is marked parallel if and only if the SCC does not contain any loop carried dependence. Finally, all SCCs are totally ordered following the dependences between SCCs and the parallelized code is generated following this total order. The code obtained by this procedure is given in Figure 2, for one particular total order. In this example, each v ertex belongs to its own SCC, and loops that compute arrays A, B and F are parallel, other loops are sequential. But, how can we nd the program in Figure 3 that exposes the same parallelism but uses the fewest number of loops? This problem is a particular case of the typed fusion problem that we address in Proposition 4. We call it the partial distribution problem.

Minimization of synchronizations

Suppose now that the previous code obtained after maximal loop distribution is executed in such a w ay that all sequential loops are executed by the same processor and that parallel loops are cut among di erent processes at run-time. Where do we h a ve to insert synchronization barriers so that the resulting code is guaranteed to be correct at run-time? How m a n y synchronization barriers do we h a ve to insert? In the previous example, the best solution provided by Callahan's algorithm (that we recall in Section 3) is given in Figure 4. Only two barriers are needed. This is the synchonization minimization problem.

Loop fusion combined with loop shifting

Now suppose that we w ant t o c o m bine loop fusion and loop shifting (which consists in moving statements by a few iterations) so as to perform maximal fusion, while preserving parallel loops. Starting from the code of Figure 2, we can also derive the code of Figure 5. It is another solution with four loops (the code of Figure 3 is a rst solution) but in which w e shifted F by one iteration so that it can now fuse with B. (In this example, the shift transformed the loop carried dependence between B and F into a loop independent dependence). In general, we can fuse more loops with this combination, but how c a n w e nd the minimal number of loops? This problem is addressed in Section 5. It is NP-complete.

Problem formulation

We can now f o r m ulate the problem more formally. Once dependence analysis has been performed and potential fusions have been identi ed, the relations between loops are represented by a directed acyclic graph G = (V E= F F T) in which e a c h loop of the program corresponds to a vertex v 2 V of the graph. The mapping T from V to a set of types T speci es the type T(v) of a vertex v. Edges in E are classi ed in precedence edges (edges in F) a n d fusion-preventing edges (edges in F). For simplifying the statements of the results presented hereafter, all fusion-preventing edges e = (u v) in F are supposed to be such that T(u) = T(v).

A fusion partition is a partition of V into disjoint clusters: e a c h cluster represents a set of loops to be fused. The fused graph G f is the graph induced by the partition of V : there is an edge from a cluster c 1 to a cluster c 2 if there is an edge e = (u v) 2 E such that u 2 c 1 and v 2 c 2 . A fusion partition is legal if and only if the three following conditions are satis ed: Type constraint Two v ertices of di erent t ypes can not belong to the same cluster. Fusion-preventing constraint Two v ertices connected by an edge in F can not belong to the same cluster.

Precedence constraint The fused graph is acyclic.

Remarks:

the rst constraint explains why w e c hose to call fusion-preventing edges only edges that link two v ertices of the same type: anyhow t wo v ertices of di erent t ypes can not be fused. the third constraint guarantees that the fused loops can be executed in some order and that code generation is feasible. All fusion problems consist in nding a legal fusion partition that optimizes some given criterion: the main problem addressed in this paper is the typed fusion problem in which t h e objective is to minimize the number of clusters, thereby a c hieving maximal fusion.

Loop fusion can also be formulated as a scheduling problem. Indeed, since we are looking for clusters that induce an acyclic graph, we can directly search for a totally ordered set of clusters. We a r e t h us looking for a mapping C from V to the non negative i n tegers N such that the following conditions are satis ed:

Type constraint For all v 2 V and u 2 V T(v

) 6 = T(u)) C(v) 6 = C(u) (1) Precedence constraint For each e d g e e = (u v) 2 F C(v) C(u) (2)
Fusion-preventing constraint For each edge e = (u v) 2 F C(v) C(u) + 1 (3) The typed fusion problem is to nd a mapping C for which maxfC(v) j v 2 V g is minimal.

When there is no fusion-preventing edges, this formulation is nothing but a single machine problem: some tasks (the vertices v 2 V) h a ve to be performed on a single machine in some con guration (the type of v): the goal is to minimize the number of switches from one con guration to another one. Such a problem was addressed in 8]. For example, vertices can be communicated processes that run on one machine, the goal is to minimize the number of context-switches. Another example is a traveling salesman who has to perform di erent operations in some partial order (the graph G) in di erent t o wns (the types), and who wants to minimize t h e n umber of moves between towns.

When all edges between two v ertices of same type are fusion-preventing, and when the graph is a set of chains, the typed fusion problem is nothing but the shortest common supersequence (SCS) problem 6] whose complexity has been widely studied, each c hain being interpreted as a string from the alphabet of types.

The typed fusion problem is an intermediate problem: some edges may o r m a y not be fusion-preventing.

Simple loop fusion: polynomially solvable cases

All polynomially solvable loop fusion subproblems can be solved in the same framework: with one traversal of a graph whose edges e have a w eight w(e), w e can compute for each vertex v the maximal weight W(v) of a path directed to v. Depending on the problem, we will give a di erent meaning to the value W(v). W e will also de ne in di erent w ays the weights of edges and the weights of paths of length 0 (and sometimes the graph itself), but in all cases, we will then use an algorithm of the form:

TRAVERSAL(G = (V,E,w)) {
1. Initialize W(v) for vertices v with no predecessor. 2. For all vertices v in topological order do: W(v) = Max{W(u) + w(e) where e = (u,v)} } which can be implemented i n O(jV j + jEj) steps.

Loop fusion with a single type

Here, the graph G is a graph G = (V E= F F T) where T is a singleton. Therefore, there is no type constraint. Only the precedence and the fusion-preventing constraints have t o b e considered (Equations (2) and (3)), which m a k es the problem obvious. Initialize W(v) to 0 if v has no predecessor in G and let w(e) = 1 if e 2 F, a n d w(e) = 0 otherwise. The value W(v) computed by the algorithm traversal gives the rst cluster in which the vertex v can be placed. In other words, loops can always been maximally fused in a greedy way, i . e . as soon as possible with a scheduling terminology.

Synchronization minimization

The synchronization minimization problem is not exactly a fusion problem, but it is so similar to the loop fusion problem with a single type that we m e n tion it here. A greedy approach is also clearly optimal, as it was observed by Callahan 3]. For this problem, the graph G = (V E T) is a DAG with two t ypes S (for sequential) and P (for parallel) but the goal is not to fuse loops (so, there is actually no type constraint as Equation (1)), but the goal is to place synchronization barriers between loops, assuming that parallel loops are going to be distributed into di erent processes while all sequential loops are going to be executed by the same processor.

Denote by W(v) the minimal number of synchronization barriers that are required before the execution of the loop corresponding to v. I f v has no predecessor, then W(v) = 0 . N o w consider an edge e = (u v). If T(u) = T(v) = S, then no barrier is required between u and v since v will be anyhow executed serially after u: w e simply have to ensure that W(v) W(u), t h us we let w(e) = 0 . In all other cases, an additional barrier is required, W(v) W(u) + 1 and we let w(e) = 1 . Computing W for each v ertex is done using one graph traversal as before. Loops are generated by increasing value of W and one barrier is generated each time W is incremented. The overall complexity i s O(jV j + jEj).

Back to Example 1

For deriving the code of Figure 4, we consider the graph of Figure 7 Other execution models are possible: for example, if sequential loops are not guaranteed to be executed by the same processor, then we h a ve t o l e t w(e) = 1 for e = (u v) even if T(u) = T(v) = S. On the contrary, i f w e can guarantee that each pair of dependent iterations of two consecutive parallel loops will be executed by the same processor, then we can let w(e) = 0 (loops could be fused). This situation can appear in some cases when generating code with the owner-computes rule 12].

Loop fusion with two t ypes and no fusion-preventing edges

Suppose that G = (V E = F F T) is such t h a t T = fS Pg (only two t ypes) and F is empty (no fusion-preventing edges). Then, any v alid optimal fusion partition leads to a total order on clusters of the form SPSPSP:::or P S P S P S : : : . The best solution is thus either the best solution that starts with an S, or the best solution that starts with a P.

Let us try to nd the best solution that starts with an S. W e rst nd a lower bound for the cluster number W(v) in which v can be placed. If v has no predecessor, W(v) = 0 if T(v) = S and W(v) = 1 if T(v) = P since we look for a solution that starts with an S. For an edge e = (u v) with T(u) 6 = T(v), t h e t ype constraint imposes W(v) W(u) + 1 , we t h us let w(e) = 1 . Otherwise, since there are no fusion-preventing edges, we just let w(e) = 0 . The algorithm traversal computes W in O(jV j + jEj) steps. Furthermore, W(v) is even when T(v) = S, a n d W(v) is odd when T(v) = P. T h us W i s a v alid total order on clusters since it satis es both the type constraint (1) (thanks to the parity property) and the precedence constraint (2): the lower bound is therefore a valid solution.

Finding the best solution that starts with a P is done symmetrically. The best solution (with no restriction on the starting type) is thus found by t wo calls of complexity O(jV j+jEj).

Example 2

All examples given in 10] and 7] are examples with two t ypes and no fusion-preventing edges, they can thus be optimized in O(jV j + jEj) operations. The main example in 10] is depicted and solved in Figure 8, numbers close to vertices (resp. edges) are the value of W (resp. w), clusters are in dashed curves. The optimal solution that starts with an S (white vertices) has 4 clusters, the optimal solution that starts with a P (black v ertices) has 5 clusters.

Ordered typed fusion

In order to approximate the general typed fusion problem, McKinley and Kennedy proposed a heuristic called the ordered t y p ed fusion. The principle is to rst maximally fuse loops of a given type, then to maximally fuse loops of a second type taking into account what has been done for the rst type, etc. This can also be done using the algorithm traversal as we n o w explain. This time, let us try to nd the smallest possible number of clusters for the type T. A s before, we l o o k f o r a l o wer bound for the cluster number W(v) in which a v ertex v of type T can be placed. Fo r a v ertex u of type T 0 6 = T, the meaning of W(u) is the minimal number of clusters of type T that have to be placed before u.

If v has no predecessor, we let W(v) = 0 : indeed, either T(v) = T and v can be placed in the rst cluster of type T, o r T(v) 6 = T and no cluster of type T is required before v. F or an edge e = (u v) with T(u) = T, w e let w(e) = 1 if e 2 F (fusion-preventing constraint), or if T(v) 6 = T (type constraint). In all other cases, we l e t w(e) = 0 since we count only the number of clusters of type T. The algorithm traversal computes W in O(jV j+jEj) steps. Then, we fuse all vertices v of type T with the same value W(v). This can also be done in O(jV j + jEj). The resulting graph is acyclic since all edges are directed in increasing values of W: i t i s t h us a valid solution and it requires the minimal numb e r o f c l u s t e r s o f t ype T since it is equal to the lower bound W.

Then, the same technique is applied for the second type and so on. The resulting overall complexity i s O(jT j(jV j + jEj)) where jT j is the number of types.

Back to Example 1

Consider Example 1 again. It has two t ypes, only one edge is fusion-preventing (marked with a slash), see Figure 9(a). The solution in Figure 9(b) (resp. Figure 9(c)) is the solution when black (resp. white) is rst maximally fused. Figure 10 (resp. Figure 11) depicts the two steps when fusing black (resp. white) vertices rst. The solution obtained in Figure 10 corresponds to the code of Figure 3. Note that another simple technique can be used to nd an approximation to the general typed fusion problem. Let w(e) = 1 for each e = (u v) such t h a t T(u) 6 = T(v) or e 2 F, a n d w(e) = 0 otherwise, initialize W to 1 for vertices with no predecessor, and compute W by t h e algorithm traversal. W e nd c = m a x fW (v) j v 2 V g clusters, in each cluster all vertices of di erent t ypes are not related, and all vertices of the same type can fuse. This leads to a legal partition with at most cjT j clusters. Furthermore, c is a lower bound for the total number of clusters. Finding a heuristic with performance ratio jT j is thus straightforward.

Typed fusion for a bounded number of chains

When the graph G = (V E= F F T) is a set of d chains, then for each c hain, we can rst fuse all successive v ertices of same type that are linked by a precedence edge (i.e. not fusionpreventing). We c a n t h us assume, without loss of generality, that all edges between vertices of same type are fusion-preventing. In this case, the typed fusion problem is now exactly the shortest common supersequence (SCS) problem. The SCS gives the totally ordered set of clusters and the correspondence between each c hain and the SCS speci es in which cluster a v ertex can take place.

It is well-known that the SCS problem in this case can be solved in O(2 d Q d i=1 r i) steps by dynamic programming, where r i is the length of the i-th chain and d is the number of chains. To s a y i t d i e r e n tly, w e can describe all possible solutions by a graph in a d-dimensional space where each v ector (x 1 : : : x d) with 0 x i r i corresponds to the fact that the rst x i vertices of the i-th chain have found their place in the SCS, and each edge (at most 2 d edges leave e a c h v ertex) speci es how w e can progress along chains. Then, the maximal fusion (or the shortest common supersequence) is obtained by computing the shortest path from the vector (0 : : : 0) to the vector (r 1 : : : r d), once again by one graph traversal. Figure 12 illustrates this technique for two c hains. In this example, the shortest path is unique (using three diagonal edges), so is the maximal fusion. The search can also be restricted to solutions that progress maximally o n e a c h c hain. In this case, some edges are super uous and the complexity reduces to O(d Q d i=1 r i) (at most d edges leave e a c h v ertex). 4 Typed loop fusion: NP-complete results

In 10], McKinley and Kennedy considered the problem of parallel and sequential code generation, i.e. a typed fusion problem with two t ypes. To s o l v e this problem, they proposed the ordered typed fusion (that we addressed in Section 3.4), but they pointed out it was not an optimal approach in general. In 7], they generalized the typed fusion problem to an arbitrary number of types, which nds its application in the fusion of loops with di erent headers. By a reduction from the Vertex Cover problem, they proved the following:

Proposition 1 The typed fusion problem, i.e. the problem of maximal fusion with typed loops, is NP-complete if the number of types is not xed. As they noticed, the numberof types required by their reduction is equal to the numberof vertices in the Vertex Cover problem. Thus, Proposition 1 does not answer the initial fusion problem of parallel and sequential loops. They conjectured the existence of a polynomialtime algorithm for two t ypes. We n o w prove that this is unfortunately not true.

Proposition 2 The problem of maximal fusion, in the presence of fusion-preventing edges, is NP-complete starting from two types (and even for chains).

Proof Suppose that T is a set with two t ypes fS Pg and that the graph G = (V E = F F T) is a set of chains such that all edges between two v ertices of same type are fusionpreventing. Then the typed fusion problem is exactly the SCS problem on a binary alphabet, which has been proved NP-complete by R ih and Ukkonen 14]. Each c hain can indeed be considered as a string on the binary alphabet f0 = S 1 = Pg.

The proof in 14] is also a reduction from the Vertex Cover problem. It requires blocks of 0 and blocks on 1 on each string. Therefore, this result does not address the typed fusion problem when there are no fusion-preventing edges. As we explained in Section 3.3, when there are no fusion-preventing edges and only two t ypes, the problem is trivially solvable in polynomial time. In 8], the problem is a scheduling problem that corresponds to the typed fusion problem with no fusion-preventing edges. By replacing each letter x by the substring xx where x is a new letter, Lofgren and al. easily showed that the problem is NP-complete for 2n types if the SCS problem is NP-complete for n letters. At this time, they use the reduction of Maier 9] for which n 5, concluding that the problem is NP-complete for 10 types. With the result of R ih and Ukkonen, the same technique shows that the problem is NP-complete for 4 types. The following proposition addresses the problem with 3 types. (In 8], Lofgren and al. mentioned also that the problem was NP-complete for 3 types but no proof was provided.) Proposition 3 The problem of maximal fusion, with no fusion-preventing edges, is NPcomplete starting from three t y p es (even for chains).

Proof The proof in 14] is 10 pages long. We j u s t g i v e here, for the curious reader, the modi cations that are made compared to the original proof. (The proof presented here can not be understood without the original one.) What we h a ve t o p r o ve is that all modi ed strings required in 14] for the reduction from Vertex Cover are strings, from an alphabet with three letters, for which consecutive letters are di erent (so that no fusion-preventing edge is required). In 14], t (resp. r) is the number of vertices (resp. edges) in the Vertex Cover instance.

In 14], each string is a concatenation of substrings labeled E (for edge) and N (for node). Each substring labeled N corresponds to (t + 1) blocks of 1, sometimes separated by one 0, and each substring labeled E corresponds to (r + 1) blocks of 0, sometimes separated by two 1. T h e k ey point is to notice that the separation by o n l y o n e 1 is su cient. We c a n then modify the substrings in the following way, using a new letter a: To make the proof checking simpler, we assume that in each substring (labeled E or N), the number of blocks is the same, equal to c + 1 where c = m a x (t r). Furthermore, the number of pairs (1a or 0a) in each b l o c k i s Kc(instead of 7c in 14], we will then choose K = 4). Using the notations of 14], q is now equal to 2Kc(4c + 3 c + 7) + (2 c + 2 c) and when parallel loops and sequential loops come from the distribution of a single loop, then sequential loops can always be fused back, just by retrieving the original semantics of the program. Therefore, the problem of generating a code with as few loops as possible, and in which each statement is in a parallel loop when possible, is a typed fusion problem, with two types, but for which fusion-preventing edges can occur only between vertices of one the two types (namely the parallel type). We t h us need to re ne again the result of Proposition 2 since the proof in 14] requires consecutive letters for both types. For that, we use a more recent proof of the NP-completeness of the SCS problem proposed by Middendorf 11].

Proposition 4 The problem of maximal fusion, in the presence of fusion-preventing edges, is NP-complete starting from two types even if only one type i s c oncerned with fusionpreventing edges (even for chains).

Proof The reader can check that the proof of Theorem 3:6 in 11] requires only strings with consecutive zeros and three non consecutive o n e s . F or the partial distribution problem, the zeros correspond thus to parallel loops with fusion-preventing edges between them, and the ones correspond to sequential loops.

Loop fusion combined with loop shifting

We n o w recall the complexity of the fusion of parallel loops with uniform dependences when combined with loop shifting, problem which w as introduced in 2]. Loop shifting is a program transformation that consists in moving a statement along the iterations of a loop that surrounds it. This combination nds its applications in parallelizing algorithms that use shifted-linear schedules 4]. For example, the code in Figure 5 was obtained by shifting (backwards) the statement that computes the array F .

The problem is stated as follows. We are given a directed graph G = (V E w), where each v ertex v 2 V corresponds to a parallel loop, and where each edge e has a weight w(e) (the dependence distance). An edge e is fusion-preventing if the dependence is not loop independent (i.e. w(e) 6 = 0). If loop shifting is not considered, the problem of maximal fusion is trivially polynomially solvable as explained in Section 3.1: de ne G = (V E w) where w(e) = 0 if w(e) = 0 and w(e) = 1 otherwise, then the minimal number of loops after fusion is one plus the maximal weight of a path in G. When loop shifting is considered, we are allowed to shift each v ertex v by (v) iterations so as to modify the dependence distance and hope to fuse more loops. After the shift , a n e d g e e = (u v) has a weight w (e) = w(e) + (v) ; (u): i f w (e) is now 0, the edge is not fusion-preventing anymore. The problem is thus to nd a shift from V to Z such that the maximal weight of a path in the graph G is minimized. This problem has been proved (strongly) NP-complete in 2].

Proposition 5 The problem of maximal fusion of parallel loops with uniform dependences is strongly NP-complete when combined with loop shifting.

Proof The proof is by reduction of the fusion problem from the UET-UCT scheduling problem (Unitary Execution Time -Unitary Communication Time) that was proved NPcomplete in 13].

An integer linear programming (ILP) formulation has also been proposed in 2] to solve exactly the problem. The technique is to decouple the shift problem and the fusion problem: the fusion problem is solved by ILP with additional constraints that guarantee a feasible shift. Then, the shift itself is found by a simple graph traversal.

Conclusion

The rst motivation of this paper was to characterize the complexity o f t h e t yped fusion problem with a xed number of types, problem that was conjectured polynomially solvable for two t ypes by McKinley and Kennedy 7]. We h a ve s h o wn that this was unfortunately not the case. We h a ve extended this result to a subcase that occurs very frequently in practice, the problem of partial distribution, which i s a t yped fusion problem with two t ypes (parallel and sequential) where the sequential type can always fuse. This subproblem is also NP-complete. Loop fusion is thus a di cult problem even for simple objectives such a s t h e minimization of the the total number of loops or the maximization of data reuse 10].

Variants of polynomially solvable cases seem also di cult, as we illustrate with the problem of maximal fusion of a single type combined with loop shifting. Other extensions that have a practical interest remain to be considered: for example, minimizing the number of synchronization barriers is polynomially solvable, but what is the complexity o f t h e t yped fusion problem when restricting to solutions that require the minimal numberof synchronization barriers? Another example is an optimized variant of the ordered typed fusion problem:

nding the minimal number of loops for a given type is polynomially solvable, but how c a n we pick, among all solutions that minimize the number of loops for this type, a solution for which a s e c o n d t ype will be minimized? This is not exactly the (unordered) typed fusion problem since there are examples for which the total number of loops is minimized by a solution for which n o n e o f t h e t ypes is independently minimized. The consequence of this study is that loop fusion is hard (at least in theory). From a practical point of view, this justi es the use of an exhaustive e v aluation of solutions when dealing with small code portions: in this case, more accurate performance models can then be used for picking the right solution. However, when a compiler has to perform such a n optimization on larger codes, or even on small portions but too often, then heuristics have to be used: a reasonable one seems to be the ordered typed fusion if code compaction is the rst goal. McKinley and Kennedy also proposed a very simple heuristic for maximal reuse 10] which has been shown useful on real code examples.

Figure 1 :

 1 Figure 1: Dependence graph for Example 1.

Figure 3 :

 3 Figure 2: Parallelized code with maximal loop distribution.

Figure 4 :

 4 Figure 4: Code with synchronization barriers.

Figure 6 (Figure 6 :

 66 Figure 6: (a) original graph, (b) and (c) two legal partitions, (d) a cyclic partition (illegal).

Figure 7 :

 7 Figure 7: Graph for synchronization minimization.

Figure 8 :

 8 Figure 8: (a) original graph for Example 2, (b) starting with white, (c) starting with black.

Figure 9 :Figure 10 :Figure 11 :

 91011 Figure 9: (a) original graph, (b) solution when fusing black then white, (c) solution when fusing white then black.

Figure 12 :

 12 Figure 12: (a) the 2-dimensional graph, (b) the shortest common supersequence.

 each block o f 1 is replaced by a b l o c k o f 1a. each block o f 0 is replaced by a b l o c k o f 0a. Doing so, no string can contain two i d e n tical consecutive letters. Now, let us check that the arguments of the proof are exactly the same.

Acknowledgments

I w ould like t o g i v e special thanks to Lucian Finta and Francis Sourd for helpful comments and references on the shortest common supersequence problem and on related scheduling problems.

if there is a vertex cover of size k, there is a SCS of size q + r + k. W e n o w consider the modi cations that have to be made on the seven successive lemmas in 14]. Using R ih and Ukkonen terminology, a solution has less than q + r + k threads, i.e. less than r + k < 2c extra threads (it is assumed k < t).

Lemma 1 The block N j]N m] contains 2Kc(c+1)ones, and there are only Kc(c+1)+2 c ones between N L s and N R s , t h us at least Kc(c + 1) ; 2c 2c extra threads, a contradiction if K 2 and c 1.

Lemma 2 First, if the one in E i] L is not to the left of N L s , then there remains at least one block o f 0a of E i] L to schedule during N L s , t h us at least Kc; c 2c extra threads for scheduling the zeros of this block, a contradiction if K 3.

Then, if E i] L has zeros and a that are not to the left of N L s , then an extra thread is used to schedule the one in E i] L and establish a correspondence between E i] L and E L . I t remains to check what happens if we remove the thread that previously scheduled the one. We n o w c o u n t t h e n umber of zeros until the end of E i] L : using the notations of 14], there are Kc(c + 1 ; i) zeros in S i after the one, and Kchin S h before the one, to compare with the Kc(c + 1) + c ones in E L N L s : i f h > i , t h e n Kc(h ; i) ; c 2c, a contradiction if K 3.

Lemma 4 To p r o ve (i), when the zero is to the right o f N, w e c o u n t the number of ones to the right of the thread : Kc(c + 1) + c ones in T and at least Kc(c + 1) + Kc+ 1 ones in S i , t h us at least Kc+ 1 ; c 2c extra threads, a contradiction if K 3.

To prove (ii), we rst check that N j 0] is the rightmost N-block o f S i 0 . Otherwise, the number of ones between and 3 is at least Kc(c+ 1) + Kcfor S i 0 and at most Kc(c+ 1) + c for T, t h us there are at least Kc; c 2c extra threads, a contradiction if K 3. Then, if j < j 0 , there are Kc(c + 1 + j 0) ones between 1 and for S i 0 , a n d Kc(c + 1 + c + 1 ; j) ones between and 4 for S i , t h us at least 3Kc(c + 1) + Kcones, while there are at most 3Kc(c + 1) + 2 c for T, a contradiction when K 4. If j > j 0 , then there are at least Kc(c + 1) + Kcones between 2 and 3 for S i and S i 0 , but only Kc(c + 1) + 2 c for T, same conclusion. This study was when E i 0] R is not to the right o f E R s . Otherwise, counting the ones between the rst of 1 and 2 to the last of 3 and 4 leads to 2Kc(c + 1) + Kcfor the two strings S i and S i 0 , but only 2Kc(c + 1) + 2 c for T. Propositions 1, 2, and 3 still do not provide an answer to one of the most important problems in practice: the partial distribution problem presented in Section 2.1. Indeed,