
HAL Id: hal-02101854
https://hal-lara.archives-ouvertes.fr/hal-02101854

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of loop fusion
Alain Darte

To cite this version:
Alain Darte. On the complexity of loop fusion. [Research Report] LIP RR-1998-50, Laboratoire de
l’informatique du parallélisme. 1998, 2+17p. �hal-02101854�

https://hal-lara.archives-ouvertes.fr/hal-02101854
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 8512

SPI

On the complexity of loop fusion

Alain Darte October ����

Research Report No RR�������

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip�ens�lyon�fr



On the complexity of loop fusion

Alain Darte

October ����

Abstract

Loop fusion is a program transformation that combines several
loops into one� It is used in parallelizing compilers mainly for in�
creasing the granularity of loops and for improving data reuse� The
goal of this report is to study� from a theoretical point of view�
several variants of the loop fusion problem � identifying polynomi�
ally solvable cases and NP�complete cases � and to make the link
between these problems and some scheduling problems that arise
from completely di	erent areas� We study� among others� the fusion
of loops of di	erent types� and the fusion of loops when combined
with loop shifting�

Keywords� Parallelization� loop fusion� loop distribution� complexity

R�sum�

La fusion de boucles est une transformation de programme qui
combine plusieurs boucles en une seule� Elle est utilis
e dans les
compilateurs�parall
liseurs� principalement pour augmenter la gra�
nularit
 des boucles et pour am
liorer la r
utilisation des donn
es�
Le but de ce rapport est d�
tudier d�un point de vue th
orique plu�
sieurs variantes du probl�me de fusion de boucles � en identi
ant
les cas solubles en temps polynomial et les cas NP�complets � et
d�
tablir le lien entre ces probl�mes et quelques probl�mes d�ordon�
nancement provenant de domaines compl�tement di	
rents� Nous

tudions notamment le probl�me de la fusion de boucles typ
es ainsi
que le probl�me de la fusion de boucles avec d
calage�

Mots�cl�s� Parall
lisation� fusion de boucles� distribution de boucles� complexit




On the complexity of loop fusion

Alain Darte

E�mail� Alain�Darte�ens�lyon�fr

October ����

Abstract

Loop fusion is a program transformation that combines several loops into one� It

is used in parallelizing compilers mainly for increasing the granularity of loops and for

improving data reuse� The goal of this report is to study� from a theoretical point of

view� several variants of the loop fusion problem � identifying polynomially solvable

cases and NP�complete cases � and to make the link between these problems and some

scheduling problems that arise from completely di�erent areas� We study� among others�

the fusion of loops of di�erent types� and the fusion of loops when combined with loop

shifting�

� Introduction

Loop fusion is a program transformation that collapses several loops into one� The resulting
program compaction and the corresponding increase in the size of the loop body has several
well�known impacts on the performances of a program ����� It was 
rst used to reduce the cost
of loop bound testing� It can also have a signi
cant impact on memory performance �registers
or cache� since it may put closer in time several variable reuses� Another interest is the
reduction of synchronizations when loops are to be distributed among di	erent computation
units� Loop fusion has also an indirect impact on performance due to the fact that many
useful optimizations are limited to basic blocks or perfectly nested loops� increasing the
size of the loop body gives more chance for common subexpression elimination� instruction
scheduling and software pipelining� nested loop optimizations� etc�

Loop fusion is not always legal since it may change the behavior of the program by in�
verting the execution order of dependent computations� The analysis of data dependences
speci
es when the fusion is allowed� Furthermore� even if loop fusion is legal from an exe�
cution point of view� some loops may not be fused because they have a di	erent type� for
example if they have di	erent headers �lower and upper bounds� steps�� or because they are
going to be executed in di	erent manner �sequential or parallel loops�� The typed loop fusion
problem� introduced by McKinley and Kennedy ���� is to fuse typed loops� while respecting
dependences� so as to obtain a program with as few loops as possible� thereby achieving
maximal code compaction� Other objectives and other frameworks have been studied� es�
pecially synchronization minimization ��� �it is not exactly a loop fusion problem but it is

�



closely related�� �non�typed� loop fusion for array contraction ���� loop fusion for maximal
reuse ����� loop fusion with loop shifting ���� etc�

The goal of this paper is to make a summary on the complexity of loop fusion problems�
mainly by showing that it has a strong relationship with the shortest common supersequence
�SCS� problem and with several scheduling problems� Thanks to this scheduling view on the
loop fusion problem� we give algorithms for polynomial cases that are conceptually simpler
than those proposed in the past� and we give an answer to open questions on the complexity
of loop fusion� most of them having been already solved for the SCS problem� which is a very
close problem� In particular� McKinley and Kennedy conjectured the typed fusion problem
to be polynomially solvable for a 
xed number of types� but it is actually NP�complete
starting from two types if some dependences may prevent fusion� starting from three types
otherwise� and polynomially solvable in all other cases�

The paper is organized as follows� In Section �� we give some examples where the loop
fusion problem arises and we state the loop fusion problem formally� In Section �� we show
in a unique framework how polynomially solvable cases can be solved by a simple graph
traversal� In Section �� we summarize NP�complete results for loop fusion alone� Section � is
devoted to the problem of loop fusion combined with loop shifting� This simple association
makes the problem immediately NP�complete� Conclusions are presented in Section ��

� Loop fusion� examples and problem de�nition

We 
rst give some examples to introduce various loop fusion problems�

��� Partial loop distribution and maximal parallelism

Let us try to maximally parallelize the following code �Example ��� i�e� to place each state�
ment in a parallel loop whenever this is possible� by performing loop distribution �the inverse
of loop fusion��

Example �

DO I���N

A�I� � ��A�I� � �

B�I� � C�I��� � A�I�

C�I� � C�I��� � G�I�

D�I� � D�I��� � A�I� � C�I���

E�I� � E�I��� � B�I�

F�I� � D�I� � B�I���

ENDDO

�

B

AC

D

E F

1

1
0

1

0

1

0
1

0

1

Figure �� Dependence graph for Example ��

�



The technique� proposed by Allen and Kennedy ���� is the following� First� data de�
pendences between statements are computed� dependences are separated into dependences
that occur between di	erent iterations of the loop �called loop carried dependences� and
dependences that occur inside the loop body �called loop independent dependences�� The
dependence graph for Example � is given in Figure �� loop independent dependences are
labeled �� loop carried dependences are labeled ��

Then� strongly connected components �SCCs� of the dependence graph are computed�
Each SCC corresponds in the parallelized code to a separated loop and this loop is marked
parallel if and only if the SCC does not contain any loop carried dependence� Finally� all
SCCs are totally ordered following the dependences between SCCs and the parallelized code
is generated following this total order� The code obtained by this procedure is given in
Figure �� for one particular total order� In this example� each vertex belongs to its own
SCC� and loops that compute arrays A� B and F are parallel� other loops are sequential�
But� how can we 
nd the program in Figure � that exposes the same parallelism but uses
the fewest number of loops� This problem is a particular case of the typed fusion problem
that we address in Proposition �� We call it the partial distribution problem�

DOPAR I���N

A�I� � ��A�I� � �

ENDDOPAR

DOSEQ I���N

C�I� � C�I��� � G�I�

ENDDOSEQ

DOPAR I���N

B�I� � C�I��� � A�I�

ENDDOPAR

DOSEQ I���N

E�I� � E�I��� � B�I�

ENDDOSEQ

DOSEQ I���N

D�I� � D�I��� � A�I� � C�I���

ENDDOSEQ

DOPAR I���N

F�I� � D�I� � B�I���

ENDDOPAR

Figure �� Parallelized code with maximal
loop distribution�

DOSEQ I���N

C�I� � C�I��� � G�I�

ENDDOSEQ

DOPAR I���N

A�I� � ��A�I� � �

B�I� � C�I��� � A�I�

ENDDOPAR

DOSEQ I���N

D�I� � D�I��� � A�I� � C�I���

E�I� � E�I��� � B�I�

ENDDOSEQ

DOPAR I���N

F�I� � D�I� � B�I���

ENDDOPAR

Figure �� Parallelized code with partial
loop distribution�

��� Minimization of synchronizations

Suppose now that the previous code obtained after maximal loop distribution is executed in
such a way that all sequential loops are executed by the same processor and that parallel loops
are cut among di	erent processes at run�time� Where do we have to insert synchronization

�



barriers so that the resulting code is guaranteed to be correct at run�time� How many
synchronization barriers do we have to insert� In the previous example� the best solution
provided by Callahan�s algorithm �that we recall in Section �� is given in Figure �� Only
two barriers are needed� This is the synchonization minimization problem�

��� Loop fusion combined with loop shifting

Now suppose that we want to combine loop fusion and loop shifting �which consists in moving
statements by a few iterations� so as to perform maximal fusion� while preserving parallel
loops� Starting from the code of Figure �� we can also derive the code of Figure �� It is another
solution with four loops �the code of Figure � is a 
rst solution� but in which we shifted F
by one iteration so that it can now fuse with B� �In this example� the shift transformed the
loop carried dependence between B and F into a loop independent dependence�� In general�
we can fuse more loops with this combination� but how can we 
nd the minimal number of
loops� This problem is addressed in Section �� It is NP�complete�

DOSEQ I���N

C�I� � C�I��� � G�I�

ENDDOSEQ

DOPAR I���N

A�I� � ��A�I� � �

ENDDOPAR

BARSYNC

DOPAR I���N

B�I� � C�I��� � A�I�

ENDDOPAR

DOSEQ I���N

D�I� � D�I��� � A�I� � C�I���

ENDDOSEQ

BARSYNC

DOSEQ I���N

E�I� � E�I��� � B�I�

ENDDOSEQ

DOPAR I���N

F�I� � D�I� � B�I���

ENDDOPAR

Figure �� Code with synchronization barriers�

DOPAR I���N

A�I� � ��A�I� � �

ENDDOPAR

DOSEQ I���N

C�I� � C�I��� � G�I�

D�I� � D�I��� � A�I� � C�I���

ENDDOSEQ

DOPAR I�	�N

IF �I
	� B�I� � C�I��� � A�I�

IF �I�N� F�I��� � D�I��� � B�I�

ENDDOPAR

DOSEQ I���N

E�I� � E�I��� � B�I�

ENDDOSEQ

Figure �� Code obtained by combination
of loop fusion and loop shifting�

��� Problem formulation

We can now formulate the problem more formally� Once dependence analysis has been
performed and potential fusions have been identi
ed� the relations between loops are repre�
sented by a directed acyclic graph G � �V�E � F �F� T � in which each loop of the program

�



corresponds to a vertex v � V of the graph� The mapping T from V to a set of types T
speci
es the type T �v� of a vertex v� Edges in E are classi
ed in precedence edges �edges
in F � and fusion�preventing edges �edges in F �� For simplifying the statements of the results
presented hereafter� all fusion�preventing edges e � �u� v� in F are supposed to be such that
T �u� � T �v��

A fusion partition is a partition of V into disjoint clusters� each cluster represents a set
of loops to be fused� The fused graph Gf is the graph induced by the partition of V � there
is an edge from a cluster c� to a cluster c� if there is an edge e � �u� v� � E such that
u � c� and v � c�� A fusion partition is legal if and only if the three following conditions are
satis
ed�

Type constraint Two vertices of di	erent types can not belong to the same cluster�

Fusion�preventing constraint Two vertices connected by an edge in F can not belong to
the same cluster�

Precedence constraint The fused graph is acyclic�

Remarks�

� the 
rst constraint explains why we chose to call fusion�preventing edges only edges
that link two vertices of the same type� anyhow two vertices of di	erent types can not
be fused�

� the third constraint guarantees that the fused loops can be executed in some order and
that code generation is feasible� Figure ��d� illustrates what may happen without this
constraint� No execution of loops is feasible with the last partition�

a b c d

Figure �� �a� original graph� �b� and �c� two legal partitions� �d� a cyclic partition �illegal��

All fusion problems consist in 
nding a legal fusion partition that optimizes some given
criterion� the main problem addressed in this paper is the typed fusion problem in which the
objective is to minimize the number of clusters� thereby achieving maximal fusion�

Loop fusion can also be formulated as a scheduling problem� Indeed� since we are looking
for clusters that induce an acyclic graph� we can directly search for a totally ordered set of

�



clusters� We are thus looking for a mapping C from V to the non negative integers N such
that the following conditions are satis
ed�

Type constraint For all v � V and u � V� T �v� �� T �u�� C�v� �� C�u� ���

Precedence constraint For each edge e � �u� v� � F� C�v� � C�u� ���

Fusion�preventing constraint For each edge e � �u� v� � F� C�v� � C�u� � � ���

The typed fusion problem is to 
nd a mapping C for which maxfC�v� j v � V g is minimal�
When there is no fusion�preventing edges� this formulation is nothing but a single machine

problem� some tasks �the vertices v � V � have to be performed on a single machine in some
con
guration �the type of v�� the goal is to minimize the number of switches from one
con
guration to another one� Such a problem was addressed in ���� For example� vertices
can be communicated processes that run on one machine� the goal is to minimize the number
of context�switches� Another example is a traveling salesman who has to perform di	erent
operations in some partial order �the graph G� in di	erent towns �the types�� and who wants
to minimize the number of moves between towns�

When all edges between two vertices of same type are fusion�preventing� and when the
graph is a set of chains� the typed fusion problem is nothing but the shortest common
supersequence �SCS� problem ��� whose complexity has been widely studied� each chain
being interpreted as a string from the alphabet of types�

The typed fusion problem is an intermediate problem� some edges may or may not be
fusion�preventing�

� Simple loop fusion� polynomially solvable cases

All polynomially solvable loop fusion subproblems can be solved in the same framework�
with one traversal of a graph whose edges e have a weight w�e�� we can compute for each
vertex v the maximal weight W �v� of a path directed to v� Depending on the problem� we
will give a di	erent meaning to the value W �v�� We will also de
ne in di	erent ways the
weights of edges and the weights of paths of length � �and sometimes the graph itself�� but
in all cases� we will then use an algorithm of the form�

TRAVERSAL�G � �V�E�w�� �

�� Initialize W�v� for vertices v with no predecessor�

	� For all vertices v in topological order do


W�v� � Max�W�u� � w�e� where e � �u�v��

�

which can be implemented in O�jV j� jEj� steps�

��� Loop fusion with a single type

Here� the graph G is a graph G � �V�E � F �F � T � where T is a singleton� Therefore� there
is no type constraint� Only the precedence and the fusion�preventing constraints have to be
considered �Equations ��� and ����� which makes the problem obvious� Initialize W �v� to �

�



if v has no predecessor in G and let w�e� � � if e � F � and w�e� � � otherwise� The value
W �v� computed by the algorithm traversal gives the 
rst cluster in which the vertex v
can be placed� In other words� loops can always been maximally fused in a greedy way� i�e�
as soon as possible with a scheduling terminology�

��� Synchronization minimization

The synchronization minimization problem is not exactly a fusion problem� but it is so
similar to the loop fusion problem with a single type that we mention it here� A greedy
approach is also clearly optimal� as it was observed by Callahan ���� For this problem� the
graph G � �V�E� T � is a DAG with two types S �for sequential� and P �for parallel� but
the goal is not to fuse loops �so� there is actually no type constraint as Equation ����� but
the goal is to place synchronization barriers between loops� assuming that parallel loops are
going to be distributed into di	erent processes while all sequential loops are going to be
executed by the same processor�

Denote byW �v� the minimal number of synchronization barriers that are required before
the execution of the loop corresponding to v� If v has no predecessor� then W �v� � �� Now
consider an edge e � �u� v�� If T �u� � T �v� � S� then no barrier is required between
u and v since v will be anyhow executed serially after u� we simply have to ensure that
W �v� � W �u�� thus we let w�e� � �� In all other cases� an additional barrier is required�
W �v� � W �u� � � and we let w�e� � �� Computing W for each vertex is done using one
graph traversal as before� Loops are generated by increasing value of W and one barrier is
generated each time W is incremented� The overall complexity is O�jV j� jEj��

Back to Example �

For deriving the code of Figure �� we consider the graph of Figure �� parallel vertices are in
black� sequential vertices are in white� integers close to edges are the weights w� W �C� and
W �A� are 
rst set to �� then W �B� �W �D� � �� and 
nally W �E� � W �F � � �� �

W(C) = 0

W(B) = 1

W(E) = 2

1

1 1 1

0
1 1

W(A) = 0

W(D) = 1

W(F) = 2

Barrier

Barrier

Figure �� Graph for synchronization minimization�

Other execution models are possible� for example� if sequential loops are not guaranteed
to be executed by the same processor� then we have to let w�e� � � for e � �u� v� even
if T �u� � T �v� � S� On the contrary� if we can guarantee that each pair of dependent

�



iterations of two consecutive parallel loops will be executed by the same processor� then we
can let w�e� � � �loops could be fused�� This situation can appear in some cases when
generating code with the owner�computes rule �����

��� Loop fusion with two types and no fusion�preventing edges

Suppose that G � �V�E � F � F� T � is such that T � fS� Pg �only two types� and F is
empty �no fusion�preventing edges�� Then� any valid optimal fusion partition leads to a total
order on clusters of the form SPSPSP��� or PSPSPS���� The best solution is thus either
the best solution that starts with an S� or the best solution that starts with a P �

Let us try to 
nd the best solution that starts with an S� We 
rst 
nd a lower bound
for the cluster number W �v� in which v can be placed� If v has no predecessor� W �v� � �
if T �v� � S and W �v� � � if T �v� � P since we look for a solution that starts with an S�
For an edge e � �u� v� with T �u� �� T �v�� the type constraint imposes W �v� � W �u� � ��
we thus let w�e� � �� Otherwise� since there are no fusion�preventing edges� we just let
w�e� � �� The algorithm traversal computes W in O�jV j � jEj� steps� Furthermore�
W �v� is even when T �v� � S� and W �v� is odd when T �v� � P � Thus W is a valid total
order on clusters since it satis
es both the type constraint ��� �thanks to the parity property�
and the precedence constraint ���� the lower bound is therefore a valid solution�

Finding the best solution that starts with a P is done symmetrically� The best solution
�with no restriction on the starting type� is thus found by two calls of complexityO�jV j�jEj��

Example �

All examples given in ���� and ��� are examples with two types and no fusion�preventing
edges� they can thus be optimized in O�jV j � jEj� operations� The main example in ����
is depicted and solved in Figure �� numbers close to vertices �resp� edges� are the value of
W �resp� w�� clusters are in dashed curves� The optimal solution that starts with an S

�white vertices� has � clusters� the optimal solution that starts with a P �black vertices� has
� clusters� �

0 0
1

1
2

2

3 3

1 1 0

2 1

3

4 4

a b c

1 1 1

1

1
1

0

Figure �� �a� original graph for Example �� �b� starting with white� �c� starting with black�

�



��� Ordered typed fusion

In order to approximate the general typed fusion problem� McKinley and Kennedy proposed
a heuristic called the ordered typed fusion� The principle is to 
rst maximally fuse loops of
a given type� then to maximally fuse loops of a second type taking into account what has
been done for the 
rst type� etc� This can also be done using the algorithm traversal as
we now explain�

This time� let us try to 
nd the smallest possible number of clusters for the type T � As
before� we look for a lower bound for the cluster numberW �v� in which a vertex v of type T
can be placed� For a vertex u of type T � �� T � the meaning of W �u� is the minimal number
of clusters of type T that have to be placed before u�

If v has no predecessor� we let W �v� � �� indeed� either T �v� � T and v can be placed
in the 
rst cluster of type T � or T �v� �� T and no cluster of type T is required before v� For
an edge e � �u� v� with T �u� � T � we let w�e� � � if e � F �fusion�preventing constraint��
or if T �v� �� T �type constraint�� In all other cases� we let w�e� � � since we count only the
number of clusters of type T � The algorithm traversal computesW in O�jV j� jEj� steps�
Then� we fuse all vertices v of type T with the same value W �v�� This can also be done in
O�jV j� jEj�� The resulting graph is acyclic since all edges are directed in increasing values
of W � it is thus a valid solution and it requires the minimal number of clusters of type T
since it is equal to the lower bound W �

Then� the same technique is applied for the second type and so on� The resulting overall
complexity is O�jT j�jV j� jEj�� where jT j is the number of types�

Back to Example �

Consider Example � again� It has two types� only one edge is fusion�preventing �marked
with a slash�� see Figure ��a�� The solution in Figure ��b� �resp� Figure ��c�� is the solution
when black �resp� white� is 
rst maximally fused� Figure �� �resp� Figure ��� depicts the
two steps when fusing black �resp� white� vertices 
rst� The solution obtained in Figure ��
corresponds to the code of Figure �� �

a b c

Figure �� �a� original graph� �b� solution when fusing black then white� �c� solution when
fusing white then black�

�



0

1

01
1

0
0

a

0 0

1
0

1
1

b a d

1
0

0

0 1
0

0

1

1

1
2

Figure ��� �a� weighted graph for fusing black� �b� fusion of black� �c� weighted graph for
fusing white after black� �d� fusion of white�

0

0

10
0

1
0

a

0 0

0
1

1 1

b c d

0

1

0

0

1
1

0

1

1

2
2

Figure ��� �a� weighted graph for fusing white� �b� fusion of white� �c� weighted graph for
fusing black after white� �d� fusion of black�

Note that another simple technique can be used to 
nd an approximation to the general
typed fusion problem� Let w�e� � � for each e � �u� v� such that T �u� �� T �v� or e � F � and
w�e� � � otherwise� initializeW to � for vertices with no predecessor� and computeW by the
algorithm traversal� We 
nd c � maxfW �v� j v � V g clusters� in each cluster all vertices
of di	erent types are not related� and all vertices of the same type can fuse� This leads to
a legal partition with at most cjT j clusters� Furthermore� c is a lower bound for the total
number of clusters� Finding a heuristic with performance ratio jT j is thus straightforward�

��� Typed fusion for a bounded number of chains

When the graph G � �V�E � F �F� T � is a set of d chains� then for each chain� we can 
rst
fuse all successive vertices of same type that are linked by a precedence edge �i�e� not fusion�
preventing�� We can thus assume� without loss of generality� that all edges between vertices
of same type are fusion�preventing� In this case� the typed fusion problem is now exactly the
shortest common supersequence �SCS� problem� The SCS gives the totally ordered set of
clusters and the correspondence between each chain and the SCS speci
es in which cluster
a vertex can take place�

It is well�known that the SCS problem in this case can be solved in O��d
Qd

i�� ri� steps by
dynamic programming� where ri is the length of the i�th chain and d is the number of chains�
To say it di	erently� we can describe all possible solutions by a graph in a d�dimensional
space where each vector �x�� � � � � xd� with � � xi � ri corresponds to the fact that the 
rst xi

��



vertices of the i�th chain have found their place in the SCS� and each edge �at most �d edges
leave each vertex� speci
es how we can progress along chains� Then� the maximal fusion
�or the shortest common supersequence� is obtained by computing the shortest path from
the vector ��� � � � � �� to the vector �r�� � � � � rd�� once again by one graph traversal� Figure ��
illustrates this technique for two chains� In this example� the shortest path is unique �using
three diagonal edges�� so is the maximal fusion� The search can also be restricted to solutions
that progress maximally on each chain� In this case� some edges are super�uous and the
complexity reduces to O�d

Qd

i��
ri� �at most d edges leave each vertex��

a b

Figure ��� �a� the ��dimensional graph� �b� the shortest common supersequence�

� Typed loop fusion� NP�complete results

In ����� McKinley and Kennedy considered the problem of parallel and sequential code gen�
eration� i�e� a typed fusion problem with two types� To solve this problem� they proposed
the ordered typed fusion �that we addressed in Section ����� but they pointed out it was
not an optimal approach in general� In ���� they generalized the typed fusion problem to an
arbitrary number of types� which 
nds its application in the fusion of loops with di	erent
headers� By a reduction from the Vertex Cover problem� they proved the following�

Proposition � The typed fusion problem� i�e� the problem of maximal fusion with typed
loops� is NP�complete if the number of types is not �xed�

As they noticed� the number of types required by their reduction is equal to the number of
vertices in the Vertex Cover problem� Thus� Proposition � does not answer the initial fusion
problem of parallel and sequential loops� They conjectured the existence of a polynomial�
time algorithm for two types� We now prove that this is unfortunately not true�

Proposition � The problem of maximal fusion� in the presence of fusion�preventing edges�
is NP�complete starting from two types �and even for chains��

��



Proof Suppose that T is a set with two types fS� Pg and that the graph G � �V�E �
F �F� T � is a set of chains such that all edges between two vertices of same type are fusion�
preventing� Then the typed fusion problem is exactly the SCS problem on a binary alphabet�
which has been proved NP�complete by R�ih� and Ukkonen ����� Each chain can indeed be
considered as a string on the binary alphabet f� � S� � � Pg� �

The proof in ���� is also a reduction from the Vertex Cover problem� It requires blocks
of � and blocks on � on each string� Therefore� this result does not address the typed fusion
problem when there are no fusion�preventing edges� As we explained in Section ���� when
there are no fusion�preventing edges and only two types� the problem is trivially solvable in
polynomial time� In ���� the problem is a scheduling problem that corresponds to the typed
fusion problem with no fusion�preventing edges� By replacing each letter x by the substring
xx where x is a new letter� Lofgren and al� easily showed that the problem is NP�complete
for �n types if the SCS problem is NP�complete for n letters� At this time� they use the
reduction of Maier ��� for which n � �� concluding that the problem is NP�complete for ��
types� With the result of R�ih� and Ukkonen� the same technique shows that the problem
is NP�complete for � types� The following proposition addresses the problem with 	 types�
�In ���� Lofgren and al� mentioned also that the problem was NP�complete for 	 types but
no proof was provided��

Proposition � The problem of maximal fusion� with no fusion�preventing edges� is NP�
complete starting from three types �even for chains��

Proof The proof in ���� is �� pages long� We just give here� for the curious reader� the
modi
cations that are made compared to the original proof� �The proof presented here can
not be understood without the original one�� What we have to prove is that all modi
ed
strings required in ���� for the reduction from Vertex Cover are strings� from an alphabet
with three letters� for which consecutive letters are di	erent �so that no fusion�preventing
edge is required�� In ����� t �resp� r� is the number of vertices �resp� edges� in the Vertex
Cover instance�

In ����� each string is a concatenation of substrings labeled E �for edge� and N �for node��
Each substring labeled N corresponds to �t� �� blocks of �� sometimes separated by one ��
and each substring labeled E corresponds to �r � �� blocks of �� sometimes separated by
two �� The key point is to notice that the separation by only one � is su�cient� We can
then modify the substrings in the following way� using a new letter a�

� each block of � is replaced by a block of �a�

� each block of � is replaced by a block of �a�

Doing so� no string can contain two identical consecutive letters� Now� let us check that the
arguments of the proof are exactly the same�

To make the proof checking simpler� we assume that in each substring �labeled E or N��
the number of blocks is the same� equal to c � � where c � max�t� r�� Furthermore� the
number of pairs ��a or �a� in each block is Kc �instead of 
c in ����� we will then choose
K � ��� Using the notations of ����� q is now equal to �Kc��c � 	c � 
� � ��c � �c� and

��



if there is a vertex cover of size k� there is a SCS of size q � r � k� We now consider the
modi
cations that have to be made on the seven successive lemmas in ����� Using R�ih� and
Ukkonen terminology� a solution has less than q � r � k threads� i�e� less than r � k � �c
extra threads �it is assumed k � t��

Lemma � The block N �j�N�m� contains �Kc�c��� ones� and there are only Kc�c�����c

ones between N
L

s and N
R

s � thus at least Kc�c� �� � �c � �c extra threads� a contradiction
if K � � and c � ��

Lemma � First� if the one in E�i�L is not to the left of N
L

s � then there remains at least

one block of �a of E�i�L to schedule �during� N
L

s � thus at least Kc� c � �c extra threads for
scheduling the zeros of this block� a contradiction if K � 	�

Then� if E�i�L has zeros and a that are not to the left of N
L

s � then an extra thread is

used to schedule the one in E�i�L and establish a correspondence between E�i�L and E
L
� It

remains to check what happens if we remove the thread that previously scheduled the one�
We now count the number of zeros until the end of E�i�L� using the notations of ����� there
are Kc�c� �� i� zeros in Si after the one� and Kch in Sh before the one� to compare with

the Kc�c���� c ones in E
L
N

L

s � if h � i� then Kc�h� i�� c � �c� a contradiction if K � 	�

Lemma � To prove �i�� when the zero is to the right of N � we count the number of ones
to the right of the thread �� Kc�c� �� � c ones in T and at least Kc�c � �� �Kc � � ones
in Si� thus at least Kc� �� c � �c extra threads� a contradiction if K � 	�

To prove �ii�� we 
rst check that N �j�� is the rightmost N�block of Si�� Otherwise� the
number of ones between � and �� is at least Kc�c����Kc for Si� and at most Kc�c���� c

for T � thus there are at least Kc � c � �c extra threads� a contradiction if K � 	� Then�
if j � j�� there are Kc�c � � � j�� ones between �� and � for Si�� and Kc�c � � � c � � � j�
ones between � and �� for Si� thus at least 	Kc�c � �� �Kc ones� while there are at most
	Kc�c � �� � �c for T � a contradiction when K � �� If j � j �� then there are at least
Kc�c� �� �Kc ones between �� and �� for Si and Si� � but only Kc�c� �� � �c for T � same
conclusion� This study was when E�i��R is not to the right of ER

s � Otherwise� counting the
ones between the 
rst of �� and �� to the last of �� and �� leads to �Kc�c� �� �Kc for the
two strings Si and Si�� but only �Kc�c � �� � �c for T �

Lemma 
 If the extra thread for the one in E�i�L is shared� then there is at least one block

of zeros scheduled by extra threads to the left of N
L

s � thus at least Kc � �c extra threads� a
contradiction if K � ��

Lemma 
 Only one extra thread is needed to build �� from ���

Lemmas 	 and � No change� �
Propositions �� �� and � still do not provide an answer to one of the most important

problems in practice� the partial distribution problem presented in Section ���� Indeed�

��



when parallel loops and sequential loops come from the distribution of a single loop� then
sequential loops can always be fused back� just by retrieving the original semantics of the
program� Therefore� the problem of generating a code with as few loops as possible� and in
which each statement is in a parallel loop when possible� is a typed fusion problem� with two
types� but for which fusion�preventing edges can occur only between vertices of one the two
types �namely the parallel type�� We thus need to re
ne again the result of Proposition �
since the proof in ���� requires consecutive letters for both types� For that� we use a more
recent proof of the NP�completeness of the SCS problem proposed by Middendorf �����

Proposition � The problem of maximal fusion� in the presence of fusion�preventing edges�
is NP�complete starting from two types even if only one type is concerned with fusion�
preventing edges �even for chains��

Proof The reader can check that the proof of Theorem 	�
 in ���� requires only strings
with consecutive zeros and three non consecutive ones� For the partial distribution problem�
the zeros correspond thus to parallel loops with fusion�preventing edges between them� and
the ones correspond to sequential loops� �

� Loop fusion combined with loop shifting

We now recall the complexity of the fusion of parallel loops with uniform dependences when
combined with loop shifting� problem which was introduced in ���� Loop shifting is a pro�
gram transformation that consists in moving a statement along the iterations of a loop that
surrounds it� This combination 
nds its applications in parallelizing algorithms that use
�shifted�linear� schedules ���� For example� the code in Figure � was obtained by shifting
�backwards� the statement that computes the array F�

The problem is stated as follows� We are given a directed graph G � �V�E�w�� where
each vertex v � V corresponds to a parallel loop� and where each edge e has a weight w�e�
�the dependence distance�� An edge e is fusion�preventing if the dependence is not loop
independent �i�e� w�e� �� ��� If loop shifting is not considered� the problem of maximal
fusion is trivially polynomially solvable as explained in Section ���� de
ne G � �V�E�w�
where w�e� � � if w�e� � � and w�e� � � otherwise� then the minimal number of loops after
fusion is one plus the maximal weight of a path in G� When loop shifting is considered�
we are allowed to shift each vertex v by ��v� iterations so as to modify the dependence
distance and hope to fuse more loops� After the shift �� an edge e � �u� v� has a weight
w��e� � w�e� � ��v� � ��u�� if w��e� is now �� the edge is not fusion�preventing anymore�
The problem is thus to 
nd a shift � from V to Z such that the maximal weight of a path
in the graph G� is minimized� This problem has been proved �strongly� NP�complete in ����

Proposition � The problem of maximal fusion of parallel loops with uniform dependences
is strongly NP�complete when combined with loop shifting�

��



Proof The proof is by reduction of the fusion problem from the UET�UCT scheduling
problem �Unitary Execution Time � Unitary Communication Time� that was proved NP�
complete in ����� �

An integer linear programming �ILP� formulation has also been proposed in ��� to solve
exactly the problem� The technique is to decouple the shift problem and the fusion problem�
the fusion problem is solved by ILP with additional constraints that guarantee a feasible
shift� Then� the shift itself is found by a simple graph traversal�

� Conclusion

The 
rst motivation of this paper was to characterize the complexity of the typed fusion
problem with a 
xed number of types� problem that was conjectured polynomially solvable
for two types by McKinley and Kennedy ���� We have shown that this was unfortunately
not the case� We have extended this result to a subcase that occurs very frequently in
practice� the problem of partial distribution� which is a typed fusion problem with two types
�parallel and sequential� where the sequential type can always fuse� This subproblem is also
NP�complete� Loop fusion is thus a di�cult problem even for simple objectives such as the
minimization of the the total number of loops or the maximization of data reuse �����

Variants of polynomially solvable cases seem also di�cult� as we illustrate with the prob�
lem of maximal fusion of a single type combined with loop shifting� Other extensions that
have a practical interest remain to be considered� for example� minimizing the number of
synchronization barriers is polynomially solvable� but what is the complexity of the typed
fusion problem when restricting to solutions that require the minimal number of synchroniza�
tion barriers� Another example is an optimized variant of the ordered typed fusion problem�

nding the minimal number of loops for a given type is polynomially solvable� but how can
we pick� among all solutions that minimize the number of loops for this type� a solution for
which a second type will be minimized� This is not exactly the �unordered� typed fusion
problem since there are examples for which the total number of loops is minimized by a
solution for which none of the types is independently minimized�

The consequence of this study is that loop fusion is hard �at least in theory�� From a
practical point of view� this justi
es the use of an exhaustive evaluation of solutions when
dealing with small code portions� in this case� more accurate performance models can then
be used for picking the right solution� However� when a compiler has to perform such an
optimization on larger codes� or even on small portions but too often� then heuristics have
to be used� a reasonable one seems to be the ordered typed fusion if code compaction is
the 
rst goal� McKinley and Kennedy also proposed a very simple heuristic for maximal
reuse ���� which has been shown useful on real code examples�

Acknowledgments

I would like to give special thanks to Lucian Finta and Francis Sourd for helpful comments
and references on the shortest common supersequence problem and on related scheduling
problems�

��



References

��� John R� Allen and Ken Kennedy� Automatic translation of Fortran programs to vec�
tor form� ACM Transactions on Programming Languages and Systems� �������������
October �����

��� Pierre Boulet� Alain Darte� Georges�Andr
 Silber� and Fr
d
ric Vivien� Loop paral�
lelization algorithms� from parallelism extraction to code generation� Journal of Par�
allel Computing� ������ ����� Special issue on Languages and Compilers for Parallel
Computers�

��� David Callahan� A Global Approach to Detection of Parallelism� PhD thesis� Dept� of
Computer Science� Rice University� March �����

��� Alain Darte and Fr
d
ric Vivien� Optimal 
ne and mediumgrain parallelism detection in
polyhedral reduced dependence graphs� International Journal of Parallel Programming�
�������������� �����

��� G� Gao� R� Olsen� V� Sarkar� and R� Thekkath� Collective loop fusion for array con�
traction� In U� Banerjee� D� Gelernter� A� Nicolau� and D� Padua� editors� The �th
Workshop on Languages and Compiler for Parallelism� number ��� in Lecture Notes in
Computer Science� pages �������� Springer�Verlag� �����

��� Michael R� Garey and David S� Johnson� Computers and Intractability� a guide to the
theory of NP�completeness� W� H� Freeman and Company� �����

��� Ken Kennedy and Kathryn S� McKinley� Typed Fusion with Applications to Parallel and
Sequential Code Generation� Technical Report CRPC�TR������ Center for Research
on Parallel Computation� Rice University� �����

��� C� B� Lofgren� L� F� McGinnis� and C� A� Tovey� Routing printed circuit cards through
an assembly cell� Operations Research� ��������������� November�December �����

��� D� Maier� The complexity of some problems on subsequences and supersequences� Jour�
nal of the ACM� �������������� �����

���� Kathryn S� McKinley and Ken Kennedy� Maximizing Loop Parallelism and Improv�
ing Data Locality via Loop Fusion and Distribution� In U� Banerjee� D� Gelernter�
A� Nicolau� and D� Padua� editors� The Sixth Annual Languages and Compiler for Par�
allelism Workshop� number ��� in Lecture Notes in Computer Science� pages ��������
Springer�Verlag� �����

���� M� Middendorf� More on the complexity of common superstring and supersequence
problems� Theoretical Computer Science� ������������ �����

���� M� F� P O�Boyle� A� P� Nisbet� and R� W� Ford� A compiler algorithm to reduce
invalidation latency in virtual shared memory systems� In Proceedings of PACT��	�
Boston� MA� October ����� IEEE Computer Society Press�

��



���� C� Picouleau� Two new NP�complete scheduling problems with communication delays
and unlimited number of processors� Technical Report ������ IBP� Universit
 Pierre et
Marie Curie� France� April �����

���� K��J� R�ih� and E� Ukkonen� The shortest common supersequence problem over binary
alphabet is NP�complete� Theoretical Computer Science� ����������� �����

���� Michael Wolfe� High Performance Compilers for Parallel Computing� Addison�Wesley�
�����

��


