
LIP
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Monitoring the behavior of parallel

programs�

how to be scalable�

J��Y� Peterschmitt

B� Tourancheau

X��F� Vigouroux

August ��� ����

Research Report No �����

Ecole Normale Supérieure de Lyon
46, Allée d’Italie, 69364 Lyon Cedex 07, France,

Téléphone : + 33 72 72 80 00; Télécopieur : + 33 72 72 80 80;
Adresses électroniques :

lip@frensl61.bitnet; lip@lip.ens−lyon.fr (uucp).

Monitoring the behavior of parallel programs�

how to be scalable�

J��Y� Peterschmitt

B� Tourancheau

X��F� Vigouroux

August ��� ����

Abstract

It is easy to �nd errors and ine�cient parts of a sequential program� by using a standard
debugger�pro�ler� but there is no such tool in a parallel environment� The only way to
study the race conditions of a parallel program is to execute it and collect data about
its execution� The programmer can then use the generated trace �les and specialized
tuning tools to visualize and improve the behavior of the program� idle processors�
communications� etc� The problem in large parallel systems is that these tools have to
deal with an enormous amount of data� The classical approach to monitor and trace
analysis �i�e� sequential� event driven� post�mortem monitoring� is no longer realistic� To
avoid this bottleneck� we introduced PIMSY �Parallel Implementation of a Monitoring
System�� The main idea of PIMSY is to let the trace data distributed among the parallel
storage and to distribute the program �or the programs� that deal with the trace data�

Keywords� monitoring� scalability

R�esum�e

Gr	ace
a l�utilisation d�un d�ebogueur�pro�ler� il est facile de trouver les erreurs et les par�
ties ine�caces dans un programme s�equentiel� Mais il n�existe pas d�outils homologues
dans un environnement parall
ele� La seule solution pour �etudier le comportement d�un
programme est de l�ex�ecuter et de r�ecup�erer les informations concernant cette ex�ecution�
Le programmeur peut alors traiter
a l�aide d�outils appropri�es les �chiers de trace a�n
de visualiser et d�am�eliorer le programme � processeurs inactifs� communications� ���
Un probl
eme appara	t avec les syst
emes massivement parall
eles� c�est celui de la grande
quantit�e d�information qu�ont
a traiter ces outils� L�approche classique du monitoring
et de l�analyse de trace �c��
a�d� s�equentiel� post�mortem� bas�e sur l��ev�enement� n�est
plus viable� Pour �eviter ce goulot d��etranglement� nous pr�esentons PIMSY �Parallel
Implementation of a Monitoring System�� L�id�ee centrale de PIMSY est de conserver
l�aspect distribu�e des �chiers trace lors de leur g�en�eration� Pour cela on utilise un sys�
t
eme distribu�e de �chiers de trace qui sont manipul�es par un programme� lui�m	eme�
parall
ele�

Mots�cl�es� monitoring� scalabilit�e

� MONITORING

��� Introduction

The behavior of parallel programs depends on many parameters �CBM��� GMGK��� JLSU���
Mil��� that are in general independent of the user program� This non�deterministic behavior makes
the programming di�cult� Furthermore� because of the lack of global state �DHHB��� DHHB���
CL���� the classical �i�e� sequential� debugging is no longer possible� The programmers must �nd
a di�erent way to make their programs work� One solution is to record the events that occur when
the application runs on the parallel machine� and then compare the theoretical predicted behavior
of the program and the observed behavior�

To precisely record the behavior of the program� every events must be saved to allow for replay
after the program has executed� variable assignment� messages exchanges� instant of occurrence�
etc� However the amount of information would be enormous�

With the following example� the reader should get a better grasp of the problem� Given a target
system with ���i��� processors� running at ��� MIPS �� instructions per clock cycle� and �� MHz
clock�� Suppose that one event ���byte long� is generated every ������ instructions� by a simple
computation� we �nd that the number of bytes generated per second is ���������� Furthermore�
with ��� nodes �� Mbytes�sec would be generated� This is impossible to manage such a �ow
without altering the network behavior or allocating the entire memory of each node�

To reduce the amount of information� we must select the type of events we want to monitor�

��� Three�phase monitoring

When observing a parallel system� the activity of gathering and using run�time information can be
split into three reasonably independent phases �see �gure ���

The generation of the runtime information is done by software probes inserted in the source
code� instrumented libraries or hardware components of the machine� The �rst two solutions
are intrusive but portable� The hardware one is not intrusive �if the monitoring system has
its own bus�� but is not portable at all�

Storing the information and making it available where it is required� It is possible to chose when
this stage takes place� download immediately� download progressively� download afterwards�
Obviously� a fourth method must be added to the �rst three ones to avoid overfull� downloads
when bu�er is full�

The analysis of the information consists of interpreting the data and using for the purpose it
was created for�

Application Storage Usage

Component of the monitoring

System

Flow of Information

Figure �� The three phases of gathering and using runtime information

Each component of the operation deals with the total amount of data� With the increase in the
number of nodes� it is obvious that these three phases will not be able to manage the entire trace

�

�le any more� The aim of PIMSY is to make a �rst step to make the monitoring really scalable� To
succeed� we need a fundamental assumption� The trace �le is distributed on di�erent storage sites�

� PHILOSOPHY OF PIMSY

As we have seen in the previous section� the problem with monitoring a parallel program is in the
amount of data generated during event tracing�

A number of e�orts have been proposed to reduce the amount of data in performing a trace�
�NM��� evaluates if a communication has to be monitored to only keep the causality� �CK��� deals
with clumping �recursive grouping of information�� �Imr��� explains the combination of low level
events to obtain high level ones� and �GHSG��� Moh��� MN��� MRR��� ROA���� vRT��� speak
about trace formats and �general� �ltering�

The solution we consider is di�erent than these� We choose to parallelize all the phases of the
monitoring process� The �rst stage is already a concurrent computation but the two others are
usually sequential� Thus we try to have them run in parallel�

The parallelization of the storage phase can be achieved by saving the information on di�erent
storage sites� This is the central request of PIMSY� Fortunately� many new parallel machines �Del���
usually provide distributed storage� In this way� the load and the save operations are quicker �see
�gure � and ���

Broadcast tree
Storage

Figure �� One storage place

Broadcast tree
Storage

Figure �� Multiple storage places

Concerning the third phase ��using the monitoring information��� the parallelism is a conse�
quence of the second phase� Indeed� if the trace �le is split according to time� space �processors�
or event type� the information analysis can be then distributed in the same way�

Another goal is to reduce the time between the generation and the analysis of trace data to
provide on�line monitoring� Thus� by performing the monitoring directly the parallel machine�
a trace generating process will be able to communicate e�ciently with the analysis tool� This
situation has the advantage of being between the on�line� and the o��line� approach�

With these considerations� we will introduce PIMSY with its two main components� �rst� the
scalability and then the extensibility�

��� Scalability

�Scalability has no commonly accepted� precise de�nition� �NA���� although the authors present
the algorithmic scalability as opposed to the architectural scalability� Their de�nition is quite good�

�As soon as produced� the data is used
�The data is �rst stored and afterward analyzed

�

Monitor
Trace Servers

Client

Storage

Unused Nodes

Execution Nodes

Figure �� Relation between the generation of trace data and its analysis in PIMSY components

Algorithmic scalability is related to the parallelism inherent in an algorithm� and can

be measured through its speedup on an architecture with an idealized communication

structure�

Following this last de�nition� we want to have the best scalability for the entire monitoring tool�

��� Extensibility

The second characteristic that is satis�ed by PIMSY is the extensibility� We want a tool as general as
possible� so that� each user can con�gure it as he wants� It�s obvious that the visualization of SIMD�

computers applications is not the same that the ones used for MIMD computers�� Furthermore� an
expert does not want the same information displayed as a novice �RAM���a�� Thus� a user must
be able to build his own set of analyzing view that he wants to work on� He must be given a set
of tools to allow him to add the ones he wants� And� also� the possibilities of building his own� on
top of the management layer must be possible�

Basing our conception on that paradigm� the chosen structure of PIMSY is very simple� the
software is layered� One layer managed the visualization tools �video� audio� text����� which are
tasks running on the parallel machine� So their number and type can be chosen by the user�
Another layer gives the appropriate information to the �rst one� Finally� a third layer deals with
the �les and �lters�

� PIMSY

��� Hardware

The parallel machine is composed of several nodes and several hard disks�
The number of hard disks is proportional to the number of nodes� For example� we can

suppose that if there is O�p� nodes� the machines has O�
p
p� hard disks�

During the generation phase� each node can save the information generated locally in a trace
�le on the associated hard disk�

Each node has a local memory and a local clock� One problem in the analysis of monitoring
data is the lack of global time� There is no way to synchronize perfectly two nodes by exchanging

�Single instruction� Multiple Data �according to the Flynn Classi�cation�
�Multiple instruction� Multiple Data

�

Protocol

Clients

Protocol

Servers

Filters

Trace Files

Figure �� The architecture of PIMSY

Figure �� Example of machine partition with regard to the nearest hard disk

messages� A hardware solution has been built by �MR��� with Hypermon to solve this problem� but
additional hardware is always costly� complex and not portable� Several papers �CL��� DHHB���
DHHB��� J�ez��� Mat��� SM��� have proposed di�erent software approaches to construct a global
time as accurate as possible�

There are two classes of such algorithms�

� The �rst ones are based on a linear drift of the clocks �DHHB��� DHHB���� A statistical
study can then be used to synchronize them�

� �CL��� J�ez��� Mat��� SM��� order the events with these two rules�

	 two events on the same node are ordered�

	 the reception of a message takes place after the emission of the same message �see �g�
���

�SM��� enumerates very clearly the di�erent existing algorithms�

We chose is to synchronize the di�erent clocks afterwards� Since the trace �le is split in two
parts� we can perform the synchronization in parallel� We consider that the clocks have the same
speed or that their speed di�erence is negligible� We made some tests on the Volvox machine of
Archipel �see results on �g� ��� This machine is composed of i��� and T���� The drift between the
nodes was approximatively� d�t� � cte � ���������t� According to the constructor� the oscillator
frequency is accurate ������� seconds� therefore we are in the accuracy interval ��������

The synchronization is achieved by just adding an o�set to each local clock� To compute this
o�set we use the communications that are recorded in the trace �le�

Concerning the physical network� no assumption is made� but we can say that� to make PIMSY
faisable� the logical network must allow at least the communications shown �gure �� This logical

�

Min o�set

Max o�set

Receive

Send

Figure �� Minimum and maximum o�set allowed according to two communications

�

�

��

��

��

��

��

��

��

��

��

� ������ ������ ������ ������ �e��� �	�e����	�e����	�e���

Figure �� drift between two T��� as a function of time

topology is clearly induced by the communications described in section ��� and ���� Note that
clients and servers can be placed on the same nodes�

With a physical topology that matchs the logical one� the communications do not need to be
routed across intermediate nodes� since they are point to point�

We assume that the communications are asynchronous to avoid wasting time when the source
and the destination are not synchronous� the messages are received in a mailbox that is checked as
soon as possible�

��� Software

���� the operating system

The trace �les are split on di�erent hard disks �or storage sites�� thus� not to lose the advantage of
the repartition of the servers � the operating system must make it possible to the servers to select
the hard disk they want to read� If this is not possible� the repartition of the data will be hidden
and the mapping of the server will no more be possible�

Furthermore� always for the sake of e�ciency� we must be able to choose a mapping from process
to processor� This functionality must exist for the two kinds of processes� one for the servers and

�

Connection Graph

Server Node

Client Node

Hard Drive

Figure �� The minimal network

another for the clients� The former comes from the fact that the servers only access their own disks�
Therefore� the distance between them and the disks must be as short as possible� The latter is also
induced by e�ciency constraints but is not really necessary� Actually� the selection of a server for
a new client and the load induced by the client can not be predicted� Thus� the server should be
able to transfer a client to another server because of overload� This possibility implies to monitor
the server themselves�

���� The source

All the PIMSY servers are written is C��� This choice comes from the fact that the C�� is an
oriented�object language and because it is a superset of C� Furthermore� the reusability of the C��
ensures the lifetime of the project�

���
 The parallel machine

Instead of directly using a parallel machine to execute PIMSY� we use a Parallel Virtual Machine�
thanks to PVM �BDG���� BDG����� PVM is currently developed by the Computer Science
Department in the University of Tennessee� Knoxville� The primary goals of the tool are portability
and the use of heterogeneous systems� We are particularly interested in the �rst one�

PVM is a software package that allows a heterogeneous collection of serial� parallel and vector
computers hooked together by a network� The user views the resulting machine as a loosely
coupled� distributed�memory computer� programmed in C� Fortran or C�� with message passing
extensions� To con�gure the machine� PVM only uses a list of names or network addresses� This
is made possible by a deamon that runs and manages the communications� One user can get only
one virtual machine at a time�

PVM library contains a set of routines that allow parallel programming� synchronous and
asynchronous communications� status of a process� processes spawning� barriers� etc�

In PIMSY� we try to use as many standard and portable routines as possible� to allow easy
portability of the resulting source�

��� Trace Files

During the execution of the application� the events are generated locally� Usually� these local �les
are merged into a single one before reaching the data analysis step� This is the case in Pablo
�RAM���b� RAM���a��

For PIMSY� the trace �les must not be merged� because the parallelism that we want to have
would disappear�

�

The only assumption on the trace �les is the consistency � the local clocks need to be synchro�
nized thanks to the addition of an o�set� If there is no synchronization� the local timestamp of
a send could be greater than the one of the reception� Currently� the accepted trace �les follow
the ParaGraph format �HE��� de�ned in �vRT���� PIMSY will accept self�de�ning trace �les� Two
approaches are possible� ��� each �le contains a header that de�nes the grammar used in the body
of the �le� This strategy is used in the SDDF� of Pablo which description can be found in �Ayd����
The other solution� chosen by B� Mohr for SIMPLE�� consists of uses a separate description �le�
This �le� written in TDL�� can be reused several times� This �le can be seen as a monitor description
rather than a �le description�

For us� this last point of view is better for PIMSY� Because� the replication of the data is not
too abusive� Each hard disk contains one description �le per generator type which will be read
before the data� So di�erent machines �even more di�erent monitor version� can use di�erent trace
formats and be analyzed indi�erently by using PVM and PIMSY�

��� Trace Servers

The trace servers are a set of tasks that reply to requests made by the analysis tools �views�� Each
one takes care of the part of information it has� Each trace servers is associated to a hard disk�
more generally a storage site� Thus we can equally speak of a trace server or its hard disk�

Merge

Target
Selection

Filter

header

body
Other TSOther TS

Clients

Figure ��� The architecture of a Trace server

A trace server has four communication channels used to propagate the trace information�

Hard Disk IN � a TS uses this channel to get trace data from the hard disk it owns� Before
using the information� the TS �lters it according to the associated request� This �ltering
operation must be done as soon as possible to limit the amount of data that goes through on
the network�

Note that one goal of PIMSY is to reduce the gap between generation and analysis of the trace
data� Thus PIMSY could be supplied with its own event generator� This generator would
directly use this channel� without storing the information on the hard disk� This way� PIMSY
would manage the three phases of monitoring �see �gure ��� Currently� PIMSY uses static
�les generated by a trace system

Trace Servers IN � this channel is used to receive data from the other TS� The received infor�
mation is already correctly �ltered� therefore no additional processing needs to be performed
on it�

�
Self De�ning Data Format

�
Source related and IntegratedMultiprocessor and computer Performance evaluation� modeLing and visualization

Environment
�
Trace Description Language

�

The trace information that comes from the �ltering operation and the one that comes from
the other TS are merged into one� The merging operation must choose a total order� for
example� the one implied by the timestamps��

Trace Servers OUT � this channel is used to send trace data� Once the trace information
generated� the TS select the destinations according to the header�

Clients OUT � the trace data that transit by this channel has been necessary asked by a client�
As a client can ask information for a set of clients� a destination has not necessary asked for
it� But� once a client receive data� it must send back a acknowledgment�

Note that we are not speaking of the channel in� because the clients do not use it to trans�
fer trace information but to ask for information� to indicate their states or to return an
acknowledgment�

��� Clients

The conditions on the TS and the parallel machine have to be ful�lled by the clients� For example�
if the clients are not scalable then there is no need to make PIMSY scalable� The graphic tolls were
presented in �PTV���� Some clients that satisfy the scalability request were also introduced in this
paper�

As the user may want to have di�erent views on the same instant of a parallel program� the
clients must be able to be synchronized� The solution we choose to achieve this synchronization is
to broadcast the result of a request to a set of clients� The client that initiates the request chooses
the destination of the trace data� The TS forward the result of the request to this set� Then when
all the destination views �nish their work with the data� a global acknowledgment is sent to the
source� The problem with this solution is that the client must be able to be driven by other ones�
When a client is created� it indicates to its TS if it can be synchronized� The following protocol
explains more precisely a request of PIMSY�

��� Protocol

Here are some de�nitions to simplify the following�

execution � set of trace �les generated during the execution�

workers � set of trace servers that have information about an execution�

source � client that send a request�

source�TS � Trace Server that manages the source�

destination � set of clients that will receive the trace data requested by the source�

destination�TS � Set of TSs that manage at least on destination�

The protocol is straightforward� The source asks for a data slice ��ltered information about
the execution� by sending a request to the source�TS� We then build a linear network of workers�
ending with a merging task� Eventually� the merging TS sends the information to the destinations
through their associated destination�TS� After having processed the data� each client sends an
acknowledgment to the source�TS which sends global acknowledgment in return�

�The timestamp is the common �eld of all events� Obviously� we do need a �eld giving the type of the event� The
location should not be a necessary �eld� Indeed trace �le could contain non local information� such as statistics

�

���� Complexity

Suppose that we have a request for a slice of size l� and that q workers have l�q events of that slice�
Since we have to generate and send a sequence of size l� it�s obvious that the complexity will be at
least in O�l��

Thus� we can choose a simple algorithm to reach this complexity� We suppose that we have a
linear network of workers� and that the �rst worker is to get the entire data� On such a network
we use the well known odd�even algorithm �see �g� ��� to sort the data� This way� we only have
to concatenate the local lists in linear time�

With the odd�even algorithm each worker communicates in turn with its left and right neighbor�
The exchanged message consists in the local trace information� Each worker merges its list and
the received one �in O�l�q�� and keeps one half� the left worker keeps the lower half and the right
worker the upper one� Note that the workers can limit the merging to the half they keep� This
operation must be repeated q times� the global time being therefore in O�l��

The concatenation phase� is obviously in O�l��

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

��

���

����

�

� �

�

Figure ��� The odd�even algorithm

� AUDIO TOOLS

��� Introduction

We present here our attempt to make small� stand alone programs� that use sound to convey mon�
itoring information� These programs can generate sound in real�time on a common SPARCstation�
and can be easily modi�ed to suit the needs of a given user �e�g� doing on�line monitoring�� In
particular� it will be easy to interface them with PIMSY�

��� Conveying data with sound

Using sound in a visualization application allows the programmer to convey new information�
without using conventional displays� This has been named soni�cation or auralization� Concerning
monitoring� �FJA��� focuses on the mapping of events to the MIDI format� and uses the resulting
sounds in parallel with ParaGraph� �Mad��� introduces a more general purpose soni�cation tool�
and uses it in the Pablo monitoring environment �see also �RAM���a��� This tool allows the user
to switch easily between using MIDI or SPARCstation sound�

What is maybe most important is the fact that conventional displays rely on seeing� whereas
programs using sound related dimensions rely on hearing� These two ways of gathering information
are radically orthogonal because they use two di�erent senses� and can therefore convey information

�

to our brain in parallel� Moreover� one of the advantages of sound is that we can process part of
the information in a passive manner �i�e� without intently listening to it�� This advantage has been
detailed in �ZT����

To convey information� using sound� we can play with its basic parameters �pitch� timbre�
amplitude� envelope and duration�� and have them change over time�

We can also mix sounds together� or change their placement in space using two or more speakers�
Note that for obvious technical reasons� we cannot achieve all these sound e�ects on a standard
SPARCstation�

As it is emphasized in �BH���� sound can be used for four di�erent reasons in a scienti�c
application� reinforcing existing visual displays� conveying distinctive patterns or signatures �that
are not obvious with mere displays�� replacing displays or signaling exceptional conditions�

Unfortunately� there are still some drawbacks in the use of sound A few people can recognize
the absolute pitch of a tone� but most people can only assess pitch intervals� There is the same
problem with the intensity� people can tell whether a sound is loud� or louder than another one�
but that is about all they can say� Nobody can determine precisely the numerical value of a sound
parameter� We have the same problems with the perception of colors� but in this case� we can at
least display a color scale on the side of a graphical display� Unfortunately� there is no such thing
as a sound scale that could be used in the same way as a color scale� Yet� we believe that the users
will be able to understand increasingly complex parallel programs� thanks to the use of sound� with
some appropriate training�

��� Sound on a SPARCstation

Sound programs on a SPARCstation take advantage of the built�in digital to analog converter�
With this� they can play a sound of ����� samples per second �� KHz�� on a single channel� This
provides audio data quality equivalent to standard telephone quality�

The data supplied to the sound chip is compressed with ��law encoding� In this encoding
algorithm� the spacing of sample intervals is close to linear at low amplitudes� but is closer to
logarithmic at high amplitudes� Therefore� instead of supplying the chip with ���bit samples� we
just send it ��bit samples� For more details� see �Sun��a� Sun��b� VR����

��� Implementation

In this project we did not want to rely on a large library of recorded sounds� digitized o��line� to
produce the �nal monitoring sounds� Moreover� we also wanted to be able to produce the sounds
in real�time� to avoid having to store them in a huge temporary �le� Our programs needed to be
fast and have at the same time low memory and disk�space requirements�

We got interesting enough results with seemingly very simple sounds waves� basic sine waves�

��� The AudioTrace programs

���� common points

All of our audio monitoring programs have the same structure� and share therefore several common
features�

� the source code is small� and the resulting executable is small as well �less than �� Kbytes�
This shows that adding the same kind of sounds to existing programs will not make these
programs much bigger�

��

� the input is a trace �le� The content of the trace �le is sorted according to increasing
timestamps� The kind of trace �le used can be easily modi�ed� All we need is a way to
know when the interesting events �SENDs and RECEIVEs in our current tools� take place�

� the output is a ��au� sound	� The sound is created with a valid audio header� and can be
either played directly� or stored for future use�

� the programs are fast� This allows us to generate and play the created sound on the �y� This
way� we only have to store the trace �le� instead of the much longer resulting sound �le�

Trace �le

Sound generated

Timestamp

Low Frequency Sound

Occurence of event

Figure ��� Computing a new wave

Figure ��� Relation between the execution time and the sound duration

� the duration of the created sound is proportional to the execution time of the parallel program�
Therefore� the relative places of the sound events in the generated sound will be the same as
in the actual execution of the parallel program�

The total duration of the generated sound depends on two parameters� length and scale�
as shown on �gure ��� At the beginning of the program� the time is set to �� It is then
incremented by scale units of time at each step� This is called the replay time� At the same
time� the trace �le is read sequentially� in search of interesting events�
�

At a given replay time� we are always in one of these two cases�

	 no interesting event took place between the previous and the current replay time� and
we generate length samples of a sound having a low frequency and amplitude �i�e� a
sound that will not be heard� unless the loudness of the speaker is set to a high value��

	 one or more interesting events took place� and we generate as many consecutive sounds
of length samples as there were interesting events�

���� using the programs

The programs all work the same way� and have a name in the form tr xxx� where xxx speci�es
the type of the program ��tr � means that we work with trace �les�� They have four common
parameters� speci�ed on the command line�

�le is a trace �le ���trf� ASCII �le��

	Audio �les that can be played on a SPARCstation usually have the 	�au
 extension� For more details about the
�le structure and the �le header� see �VR���

�
What we mean by interesting depends on what we are studying�

��

nb is the number of events we want to map to frequencies� It can be� for instance� the total number
of processors involved in the parallel program�

length and scale have already been explained above�

If we want to play the sound at the same time it is created� we use�
cat file�trf � tr xxx nb length scale � play��

Otherwise� to store the generated sound in a sound �le� we rather type�
cat file�trf � tr xxx nb length scale � file�au

We have three programs available� Others could be easily and quickly deduced from the available
ones�

tr send � when a processor sends a message� tr send plays a beep at the frequency associated
with this processor�

tr sendmix � at a given time� tr sendmix mixes the frequencies associated to all the processors
that have sent one or more messages� but whose messages have not all been received yet�

tr sendnum � the pitch of the sound generated by tr sendnum at a given time is proportional to
the number of messages sent by all the processors� but not received yet�

These three programs complement each other� Using them� you can easily determine when the
communications take place� It is also easy to hear several processors sending data on a regular
basis� and others being out of phase� By listening carefully to the rhythm� you can also determine
if the programs go regularly through the same communication patterns�

We have shown how easy it is to use sound on a SPARCstation with our approach� and how
sound can be used to convey data� We hope that the availability of our programs� and their ease
of use will help more users to use sound regularly� or at least give it a try�

� FUTURE WORK � CONCLUSION

We are continuing an implementation of PIMSY� A prototype has already been implemented on a
LAN of SPARCstations using PVM package� This version shows the e�ciency of our approach�
The next prototype will be implemented on another distributed memory multi�computer called
Volvox manufactured by Archipel� This implementation will show the portability of our approach�
Real�time implementation of the trace server is also under study� Such a trace�server will store the
runtime information in local memory and be able to serve client requests in a real�time fashion�

We will implement several others tools to read a su�cient set of representations �i�e� visualiza�
tion and auralization�� The existing set of tool is limited but exists�

In this paper� we have �rst presented our client�server based approach to massively parallel
monitoring� In order to avoid the traditional bottleneck of parallel monitoring� we have designed a
monitoring system in which not only the generation of the runtime information is distributed� but
also the storage and the processing of this information�

��play is the standard on�line sound playing program supplied with the SPARCstations �usually located in the
�usr�demo�SOUND directory�

��

References

�Ayd��� R� Aydt� The pablo self�de�ning data format� Department of Computer Science� Uni�
versity of Illinois at Urbana�Champaign� March ����� available by ftp anonymous

bugle�cs�uiuc�edu�pub�Release�����Documentation�SDDF�ps�Z�

�BDG���� A� Beguelin� J� Dongara� G� Geist� R� Manchek� and V� Sunderam� A users� guide
to pvm �parallel virtual machine�� Technical Report ORNL�TM������� Oak Ridge
NAtional Laboratory� University of Tennessee� July �����

�BDG���� A� Beguelin� J� Dongarra� A� Geist� R� Manchek� K� Moore� and V� Sunderman�
PVM and HeNCE � Tools for heterogeneous network computing� In J� Dongarra and
B� Tourancheau� editors� Environments and tools for parallel scienti�c Computing�
volume � of Advances In Parallel Computing� pages ���!���� Saint Hilaire du Touvet�
France� September ����� CNRS�NSF� Elsevier Science Publishers � North Holland�

�BH��� Marc H� Brown and John Hershberger� Color and sound in algorithm animation�
Computer� December �����

�CBM��� W� Cheung� J� Black� and E� Manning� A framework for distributed debugging� IEEE
Software� �����!���� January �����

�CK��� A� Couch and D� Krumme� Monitoring parallel executions in real time� In Proceedings

of the �th distributed memory computing conference� volume �� pages ����!����� IEEE�
�����

�CL��� K� Chandy and L� Lamport� Distributed snapshots � determining global states in
distributed sytems� ACM transaction s on Computer Systems� �������!��� February
�����

�Del��� Intel Supercomputer Systems Division� Intel Corporation� ����� N�W� Greenbier Park�
way� Beaverton� Oregon ������ A Touchstone DELTA System Description� February
�����

�DHHB��� A� Duda� G� Harrus� Y� Haddad� and G� Bernard� Monitoring of distributed systems�
Technical Report ��� ISEM� December �����

�DHHB��� A� Duda� G� Harrus� Y� Haddad� and G� Bernard� Estimating global time in distributed
systems� In �th international conference on distributed computing systems� pages ���!
���� Berlin� September ����� IEEE Press�

�FJA��� J� Francioni� J� Jackson� and L� Albright� The sounds of parallel programs� In Q� Stout
and M� Wolfe� editors� The sixth distributed memory computing conference proceedings�
Frontier Series� pages ���!���� Portland� Oregon� April ����� IEEE� IEEE computer
society press�

�GHSG��� I� Glendinning� S� A� Hellberg� P� A� Shallow� and M� Gorrod� Generic visualization
and performance monitoring tools for message passing parallel systems� In N� Topham�
R� Ibbett� and T� Bemmerl� editors� programming environments for parallel computing�
volume A��� of IFIP Transactions� pages ���!���� Edinburgh Holland� April �����
IFIP� North Holland�

��

�GMGK��� H� Garcia�Molina� F� Germano� and W� H� Kohler� Debugging a distributed computing
system� In IEEE� editor� Transactions on Software Engineering� pages ���!���� March
�����

�HE��� M� Heath and J� Etheridge� Visualizing the performance of parallel programs� IEEE

Software� ����!��� September �����

�Imr��� K� Imre� Experiences with monitoring and visualising the performance of parallel
programs� In Workshop on performance measurement and visualization of parallel

systemsq� October �����

�J�ez��� J�M� J�ez�equel� Building a global time on parallel machines� In LNCS Springer�Verlag�
editor� the �rd International Workshop on Distributed Algorithms� pages ���!����
�����

�JLSU��� J� Joyce� G� Lomow� K� Slind� and B� Unger� Monitoring distributed systems� Trans�
actions computing systems � ACM� ��������!���� May �����

�Mad��� T� Madhyastha� A portable system for data soni�cation� Technical Report UIUCDCS�
R��������� University of Illinois at Urbana�Champaign� ����� available by ftp

anonymous at cs�uiuc�edu�UIUCDCS�R��	��
���

�Mat��� F� Mattern� Virtual time and global state of ditributed systems� In Cosnard� Quin�
ton� Raynald� and Robert� editors� international workshop on parallel and distributed

algorithms� North Holland� November �����

�Mil��� B� Miller� What to draw " when to draw " an essay on parallel program visualization�
to appear � Journal of Parallel # Distributed Computing� �����

�MN��� A� Malony and K� Nichols� Standards working group summary� In M� Simmons and
R� Koskela� editors� Performance Instrumentation and Visualization� Frontier Series�
pages ���!���� Santa Fe� New Mexico� May ����� ACM� Addison�Wesley Publishing
Compagny�

�Moh��� B� Mohr� Standardization of event traces considered harmful ! or ! is an iplementa�
tion of objet�idependent event trace monitoring and analysis systems possible " In
J� Dongarra and B� Tourancheau� editors� Environments and tools for parallel scien�

ti�c Computing� volume � of Advances In Parallel Computing� pages ���!���� Saint
Hilaire du Touvet� France� September ����� CNRS�NSF� Elsevier Science Publishers �
North Holland�

�MR��� A� Mallony and D� Reed� A hardware�based performance monitor for the intel iPSC��
hypercube� In Miller B� and McDowell C�� editors� Proceedings of the ACM Interna�

tional Conference on Supercomputing� Amsterdam� June ����� ACM press�

�MRR��� A� Malony� D� Reed� and D� Rudolph� Integrating performance data collection� analysis
and visualization� In M� Simmons and R� Koskela� editors� Performance Instrumen�

tation and Visualization� Frontier Series� pages ��!��� Santa Fe� New Mexico� May
����� ACM� Addison�Wesley Publishing Compagny�

�NA��� D� Nussbaum and A� Agarwal� Scalability of parallel machines� Communications of

the ACM� ��������!��� March �����

��

�NM��� R� Netzer and B� Miller� Optimal tracing and replay for debugging message�passing
parallel pograms� In IEEE Computer Society Press� editor� SuperComputing ��	 �

Proceedings� pages ���!���� Minneapolis� Minnesota� November ����� IEEE� IEEE
Computer Society Press�

�PTV��� S� Poinson� B� Tourancheau� and X� Vigouroux� Distributed monitoring for scalable
massively parallel machines� In J� Dongarra and B� Tourancheau� editors� Environ�
ment and Tools for Parallel Scienti�c Computing� volume � of Advances in parallel

computing� pages ��!���� Saint Hilaire du Touvet � France� September ����� CNRS �
NSF� Elsevier Sciences Publisher�

�RAM���a� D� Reed� R� Aydt� T� Madhyastha� R� Noe� K� Shields� and B� Schwartz� An overview
of the pablo performance analysis environment� �����

�RAM���b� D� Reed� R� Aydt� T� Madhyastha� R� Noe� K� Shields� and B� Schwartz� The pablo
performance analysis environment� �����

�ROA���� D� Reed� R� Olson� R� Aydt� T� Madhyastha� T� Birkett� D� Jensen� B� Nazief� and
B� Totty� Scalable performance environments for parallel systems� In Q� Stout and
Wolfe M�� editors� The sixth distributed memory computing conference proceedings�
Frontier Series� pages ���!���� Portland� Oregon� April ����� IEEE� IEEE computer
society press�

�SM��� R� Schwarz and F� Mattern� Detecting causal relationships in distributed communica�
tions �in serch of the holy grail� IR ������� Universit$at Keiserslautern� Post�ach �����
D����� Keiserslautern� November �����

�SM��� R� Schwarz and F� Mattern� Detecting causal relationships in distributed communica�
tions �in search of the holy grail� Technical Report ������ Universit$at Keiserslautern�
Post�ach ����� D����� Keiserslautern� December �����

�Sun��a� Sun Microsystems� Multimedia Primer� February ����� Part No � FE������

�Sun��b� Sun Microsystems� SPARCstation
� System Architecture� May ����� Part No � ����
FE�����K�

�VR��� Guido Van Rossum� Faq� Audio �le formats� Usenet News� May �����

�vRT��� M� van Riek and B� Tourancheau� A general approach to the monitoring of distributed
memory machines� Research Report ������ LIP ! Ecole Normale Sup�erieure de Lyon�
�����

�vRT��� M� van Riek and B� Tourancheau� The trace�formats that are used in picl� paragraph
and gpms� Technical Report ������ LIP ! Ecole Normale Sup�erieure de Lyon� �����

�ZT��� E� Zabala and R� Taylor� Process and processor interaction� Architecture independent
visual�sation schema� In J� Dongarra and B� Tourancheau� editors� Environments and

tools for parallel scienti�c Computing� volume � of Advances In Parallel Computing�
pages ��!��� Saint Hilaire du Touvet� France� September ����� CNRS�NSF� Elsevier
Science Publishers � North Holland�

��

