
HAL Id: hal-02101853
https://hal-lara.archives-ouvertes.fr/hal-02101853v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring the behavior of parallel programs: how to be
scalable?

Jean-Yves Peterschmitt, Bernard Tourancheau, Vigouroux Xavier-Francois

To cite this version:
Jean-Yves Peterschmitt, Bernard Tourancheau, Vigouroux Xavier-Francois. Monitoring the behav-
ior of parallel programs: how to be scalable?. [Research Report] LIP RR-1993-22, Laboratoire de
l’informatique du parallélisme. 1993, 2+15p. �hal-02101853�

https://hal-lara.archives-ouvertes.fr/hal-02101853v1
https://hal.archives-ouvertes.fr

LIP
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Monitoring the behavior of parallel

programs�

how to be scalable�

J��Y� Peterschmitt

B� Tourancheau

X��F� Vigouroux

August ��� ����

Research Report No �����

Ecole Normale Supérieure de Lyon
46, Allée d’Italie, 69364 Lyon Cedex 07, France,

Téléphone : + 33 72 72 80 00; Télécopieur : + 33 72 72 80 80;
Adresses électroniques :

lip@frensl61.bitnet; lip@lip.ens−lyon.fr (uucp).

Monitoring the behavior of parallel programs�

how to be scalable�

J��Y� Peterschmitt

B� Tourancheau

X��F� Vigouroux

August ��� ����

Abstract

It is easy to �nd errors and ine�cient parts of a sequential program� by using a standard
debugger�pro�ler� but there is no such tool in a parallel environment� The only way to
study the race conditions of a parallel program is to execute it and collect data about
its execution� The programmer can then use the generated trace �les and specialized
tuning tools to visualize and improve the behavior of the program� idle processors�
communications� etc� The problem in large parallel systems is that these tools have to
deal with an enormous amount of data� The classical approach to monitor and trace
analysis �i�e� sequential� event driven� post�mortem monitoring� is no longer realistic� To
avoid this bottleneck� we introduced PIMSY �Parallel Implementation of a Monitoring
System�� The main idea of PIMSY is to let the trace data distributed among the parallel
storage and to distribute the program �or the programs� that deal with the trace data�

Keywords� monitoring� scalability

R�esum�e

Gr	ace
a l�utilisation d�un d�ebogueur�pro�ler� il est facile de trouver les erreurs et les par�
ties ine�caces dans un programme s�equentiel� Mais il n�existe pas d�outils homologues
dans un environnement parall
ele� La seule solution pour �etudier le comportement d�un
programme est de l�ex�ecuter et de r�ecup�erer les informations concernant cette ex�ecution�
Le programmeur peut alors traiter
a l�aide d�outils appropri�es les �chiers de trace a�n
de visualiser et d�am�eliorer le programme � processeurs inactifs� communications� ���
Un probl
eme appara	t avec les syst
emes massivement parall
eles� c�est celui de la grande
quantit�e d�information qu�ont
a traiter ces outils� L�approche classique du monitoring
et de l�analyse de trace �c��
a�d� s�equentiel� post�mortem� bas�e sur l��ev�enement� n�est
plus viable� Pour �eviter ce goulot d��etranglement� nous pr�esentons PIMSY �Parallel
Implementation of a Monitoring System�� L�id�ee centrale de PIMSY est de conserver
l�aspect distribu�e des �chiers trace lors de leur g�en�eration� Pour cela on utilise un sys�
t
eme distribu�e de �chiers de trace qui sont manipul�es par un programme� lui�m	eme�
parall
ele�

Mots�cl�es� monitoring� scalabilit�e

� MONITORING

��� Introduction

The behavior of parallel programs depends on many parameters �CBM��� GMGK��� JLSU���
Mil��� that are in general independent of the user program� This non�deterministic behavior makes
the programming di�cult� Furthermore� because of the lack of global state �DHHB��� DHHB���
CL���� the classical �i�e� sequential� debugging is no longer possible� The programmers must �nd
a di�erent way to make their programs work� One solution is to record the events that occur when
the application runs on the parallel machine� and then compare the theoretical predicted behavior
of the program and the observed behavior�

To precisely record the behavior of the program� every events must be saved to allow for replay
after the program has executed� variable assignment� messages exchanges� instant of occurrence�
etc� However the amount of information would be enormous�

With the following example� the reader should get a better grasp of the problem� Given a target
system with ���i��� processors� running at ��� MIPS �� instructions per clock cycle� and �� MHz
clock�� Suppose that one event ���byte long� is generated every ������ instructions� by a simple
computation� we �nd that the number of bytes generated per second is ���������� Furthermore�
with ��� nodes �� Mbytes�sec would be generated� This is impossible to manage such a �ow
without altering the network behavior or allocating the entire memory of each node�

To reduce the amount of information� we must select the type of events we want to monitor�

��� Three�phase monitoring

When observing a parallel system� the activity of gathering and using run�time information can be
split into three reasonably independent phases �see �gure ���

The generation of the runtime information is done by software probes inserted in the source
code� instrumented libraries or hardware components of the machine� The �rst two solutions
are intrusive but portable� The hardware one is not intrusive �if the monitoring system has
its own bus�� but is not portable at all�

Storing the information and making it available where it is required� It is possible to chose when
this stage takes place� download immediately� download progressively� download afterwards�
Obviously� a fourth method must be added to the �rst three ones to avoid overfull� downloads
when bu�er is full�

The analysis of the information consists of interpreting the data and using for the purpose it
was created for�

Application Storage Usage

Component of the monitoring

System

Flow of Information

Figure �� The three phases of gathering and using runtime information

Each component of the operation deals with the total amount of data� With the increase in the
number of nodes� it is obvious that these three phases will not be able to manage the entire trace

�

�le any more� The aim of PIMSY is to make a �rst step to make the monitoring really scalable� To
succeed� we need a fundamental assumption� The trace �le is distributed on di�erent storage sites�

� PHILOSOPHY OF PIMSY

As we have seen in the previous section� the problem with monitoring a parallel program is in the
amount of data generated during event tracing�

A number of e�orts have been proposed to reduce the amount of data in performing a trace�
�NM��� evaluates if a communication has to be monitored to only keep the causality� �CK��� deals
with clumping �recursive grouping of information�� �Imr��� explains the combination of low level
events to obtain high level ones� and �GHSG��� Moh��� MN��� MRR��� ROA���� vRT��� speak
about trace formats and �general� �ltering�

The solution we consider is di�erent than these� We choose to parallelize all the phases of the
monitoring process� The �rst stage is already a concurrent computation but the two others are
usually sequential� Thus we try to have them run in parallel�

The parallelization of the storage phase can be achieved by saving the information on di�erent
storage sites� This is the central request of PIMSY� Fortunately� many new parallel machines �Del���
usually provide distributed storage� In this way� the load and the save operations are quicker �see
�gure � and ���

Broadcast tree
Storage

Figure �� One storage place

Broadcast tree
Storage

Figure �� Multiple storage places

Concerning the third phase ��using the monitoring information��� the parallelism is a conse�
quence of the second phase� Indeed� if the trace �le is split according to time� space �processors�
or event type� the information analysis can be then distributed in the same way�

Another goal is to reduce the time between the generation and the analysis of trace data to
provide on�line monitoring� Thus� by performing the monitoring directly the parallel machine�
a trace generating process will be able to communicate e�ciently with the analysis tool� This
situation has the advantage of being between the on�line� and the o��line� approach�

With these considerations� we will introduce PIMSY with its two main components� �rst� the
scalability and then the extensibility�

��� Scalability

�Scalability has no commonly accepted� precise de�nition� �NA���� although the authors present
the algorithmic scalability as opposed to the architectural scalability� Their de�nition is quite good�

�As soon as produced� the data is used
�The data is �rst stored and afterward analyzed

�

Monitor
Trace Servers

Client

Storage

Unused Nodes

Execution Nodes

Figure �� Relation between the generation of trace data and its analysis in PIMSY components

Algorithmic scalability is related to the parallelism inherent in an algorithm� and can

be measured through its speedup on an architecture with an idealized communication

structure�

Following this last de�nition� we want to have the best scalability for the entire monitoring tool�

��� Extensibility

The second characteristic that is satis�ed by PIMSY is the extensibility� We want a tool as general as
possible� so that� each user can con�gure it as he wants� It�s obvious that the visualization of SIMD�

computers applications is not the same that the ones used for MIMD computers�� Furthermore� an
expert does not want the same information displayed as a novice �RAM���a�� Thus� a user must
be able to build his own set of analyzing view that he wants to work on� He must be given a set
of tools to allow him to add the ones he wants� And� also� the possibilities of building his own� on
top of the management layer must be possible�

Basing our conception on that paradigm� the chosen structure of PIMSY is very simple� the
software is layered� One layer managed the visualization tools �video� audio� text����� which are
tasks running on the parallel machine� So their number and type can be chosen by the user�
Another layer gives the appropriate information to the �rst one� Finally� a third layer deals with
the �les and �lters�

� PIMSY

��� Hardware

The parallel machine is composed of several nodes and several hard disks�
The number of hard disks is proportional to the number of nodes� For example� we can

suppose that if there is O�p� nodes� the machines has O�
p
p� hard disks�

During the generation phase� each node can save the information generated locally in a trace
�le on the associated hard disk�

Each node has a local memory and a local clock� One problem in the analysis of monitoring
data is the lack of global time� There is no way to synchronize perfectly two nodes by exchanging

�Single instruction� Multiple Data �according to the Flynn Classi�cation�
�Multiple instruction� Multiple Data

�

Protocol

Clients

Protocol

Servers

Filters

Trace Files

Figure �� The architecture of PIMSY

Figure �� Example of machine partition with regard to the nearest hard disk

messages� A hardware solution has been built by �MR��� with Hypermon to solve this problem� but
additional hardware is always costly� complex and not portable� Several papers �CL��� DHHB���
DHHB��� J�ez��� Mat��� SM��� have proposed di�erent software approaches to construct a global
time as accurate as possible�

There are two classes of such algorithms�

� The �rst ones are based on a linear drift of the clocks �DHHB��� DHHB���� A statistical
study can then be used to synchronize them�

� �CL��� J�ez��� Mat��� SM��� order the events with these two rules�

	 two events on the same node are ordered�

	 the reception of a message takes place after the emission of the same message �see �g�
���

�SM��� enumerates very clearly the di�erent existing algorithms�

We chose is to synchronize the di�erent clocks afterwards� Since the trace �le is split in two
parts� we can perform the synchronization in parallel� We consider that the clocks have the same
speed or that their speed di�erence is negligible� We made some tests on the Volvox machine of
Archipel �see results on �g� ��� This machine is composed of i��� and T���� The drift between the
nodes was approximatively� d�t� � cte � ���������t� According to the constructor� the oscillator
frequency is accurate ������� seconds� therefore we are in the accuracy interval ��������

The synchronization is achieved by just adding an o�set to each local clock� To compute this
o�set we use the communications that are recorded in the trace �le�

Concerning the physical network� no assumption is made� but we can say that� to make PIMSY
faisable� the logical network must allow at least the communications shown �gure �� This logical

�

Min o�set

Max o�set

Receive

Send

Figure �� Minimum and maximum o�set allowed according to two communications

�

�

��

��

��

��

��

��

��

��

��

� ������ ������ ������ ������ �e��� �	�e����	�e����	�e���

Figure �� drift between two T��� as a function of time

topology is clearly induced by the communications described in section ��� and ���� Note that
clients and servers can be placed on the same nodes�

With a physical topology that matchs the logical one� the communications do not need to be
routed across intermediate nodes� since they are point to point�

We assume that the communications are asynchronous to avoid wasting time when the source
and the destination are not synchronous� the messages are received in a mailbox that is checked as
soon as possible�

��� Software

���� the operating system

The trace �les are split on di�erent hard disks �or storage sites�� thus� not to lose the advantage of
the repartition of the servers � the operating system must make it possible to the servers to select
the hard disk they want to read� If this is not possible� the repartition of the data will be hidden
and the mapping of the server will no more be possible�

Furthermore� always for the sake of e�ciency� we must be able to choose a mapping from process
to processor� This functionality must exist for the two kinds of processes� one for the servers and

�

Connection Graph

Server Node

Client Node

Hard Drive

Figure �� The minimal network

another for the clients� The former comes from the fact that the servers only access their own disks�
Therefore� the distance between them and the disks must be as short as possible� The latter is also
induced by e�ciency constraints but is not really necessary� Actually� the selection of a server for
a new client and the load induced by the client can not be predicted� Thus� the server should be
able to transfer a client to another server because of overload� This possibility implies to monitor
the server themselves�

���� The source

All the PIMSY servers are written is C��� This choice comes from the fact that the C�� is an
oriented�object language and because it is a superset of C� Furthermore� the reusability of the C��
ensures the lifetime of the project�

���
 The parallel machine

Instead of directly using a parallel machine to execute PIMSY� we use a Parallel Virtual Machine�
thanks to PVM �BDG���� BDG����� PVM is currently developed by the Computer Science
Department in the University of Tennessee� Knoxville� The primary goals of the tool are portability
and the use of heterogeneous systems� We are particularly interested in the �rst one�

PVM is a software package that allows a heterogeneous collection of serial� parallel and vector
computers hooked together by a network� The user views the resulting machine as a loosely
coupled� distributed�memory computer� programmed in C� Fortran or C�� with message passing
extensions� To con�gure the machine� PVM only uses a list of names or network addresses� This
is made possible by a deamon that runs and manages the communications� One user can get only
one virtual machine at a time�

PVM library contains a set of routines that allow parallel programming� synchronous and
asynchronous communications� status of a process� processes spawning� barriers� etc�

In PIMSY� we try to use as many standard and portable routines as possible� to allow easy
portability of the resulting source�

��� Trace Files

During the execution of the application� the events are generated locally� Usually� these local �les
are merged into a single one before reaching the data analysis step� This is the case in Pablo
�RAM���b� RAM���a��

For PIMSY� the trace �les must not be merged� because the parallelism that we want to have
would disappear�

�

The only assumption on the trace �les is the consistency � the local clocks need to be synchro�
nized thanks to the addition of an o�set� If there is no synchronization� the local timestamp of
a send could be greater than the one of the reception� Currently� the accepted trace �les follow
the ParaGraph format �HE��� de�ned in �vRT���� PIMSY will accept self�de�ning trace �les� Two
approaches are possible� ��� each �le contains a header that de�nes the grammar used in the body
of the �le� This strategy is used in the SDDF� of Pablo which description can be found in �Ayd����
The other solution� chosen by B� Mohr for SIMPLE�� consists of uses a separate description �le�
This �le� written in TDL�� can be reused several times� This �le can be seen as a monitor description
rather than a �le description�

For us� this last point of view is better for PIMSY� Because� the replication of the data is not
too abusive� Each hard disk contains one description �le per generator type which will be read
before the data� So di�erent machines �even more di�erent monitor version� can use di�erent trace
formats and be analyzed indi�erently by using PVM and PIMSY�

��� Trace Servers

The trace servers are a set of tasks that reply to requests made by the analysis tools �views�� Each
one takes care of the part of information it has� Each trace servers is associated to a hard disk�
more generally a storage site� Thus we can equally speak of a trace server or its hard disk�

Merge

Target
Selection

Filter

header

body
Other TSOther TS

Clients

Figure ��� The architecture of a Trace server

A trace server has four communication channels used to propagate the trace information�

Hard Disk IN � a TS uses this channel to get trace data from the hard disk it owns� Before
using the information� the TS �lters it according to the associated request� This �ltering
operation must be done as soon as possible to limit the amount of data that goes through on
the network�

Note that one goal of PIMSY is to reduce the gap between generation and analysis of the trace
data� Thus PIMSY could be supplied with its own event generator� This generator would
directly use this channel� without storing the information on the hard disk� This way� PIMSY
would manage the three phases of monitoring �see �gure ��� Currently� PIMSY uses static
�les generated by a trace system

Trace Servers IN � this channel is used to receive data from the other TS� The received infor�
mation is already correctly �ltered� therefore no additional processing needs to be performed
on it�

�
Self De�ning Data Format

�
Source related and IntegratedMultiprocessor and computer Performance evaluation� modeLing and visualization

Environment
�
Trace Description Language

�

The trace information that comes from the �ltering operation and the one that comes from
the other TS are merged into one� The merging operation must choose a total order� for
example� the one implied by the timestamps��

Trace Servers OUT � this channel is used to send trace data� Once the trace information
generated� the TS select the destinations according to the header�

Clients OUT � the trace data that transit by this channel has been necessary asked by a client�
As a client can ask information for a set of clients� a destination has not necessary asked for
it� But� once a client receive data� it must send back a acknowledgment�

Note that we are not speaking of the channel in� because the clients do not use it to trans�
fer trace information but to ask for information� to indicate their states or to return an
acknowledgment�

��� Clients

The conditions on the TS and the parallel machine have to be ful�lled by the clients� For example�
if the clients are not scalable then there is no need to make PIMSY scalable� The graphic tolls were
presented in �PTV���� Some clients that satisfy the scalability request were also introduced in this
paper�

As the user may want to have di�erent views on the same instant of a parallel program� the
clients must be able to be synchronized� The solution we choose to achieve this synchronization is
to broadcast the result of a request to a set of clients� The client that initiates the request chooses
the destination of the trace data� The TS forward the result of the request to this set� Then when
all the destination views �nish their work with the data� a global acknowledgment is sent to the
source� The problem with this solution is that the client must be able to be driven by other ones�
When a client is created� it indicates to its TS if it can be synchronized� The following protocol
explains more precisely a request of PIMSY�

��� Protocol

Here are some de�nitions to simplify the following�

execution � set of trace �les generated during the execution�

workers � set of trace servers that have information about an execution�

source � client that send a request�

source�TS � Trace Server that manages the source�

destination � set of clients that will receive the trace data requested by the source�

destination�TS � Set of TSs that manage at least on destination�

The protocol is straightforward� The source asks for a data slice ��ltered information about
the execution� by sending a request to the source�TS� We then build a linear network of workers�
ending with a merging task� Eventually� the merging TS sends the information to the destinations
through their associated destination�TS� After having processed the data� each client sends an
acknowledgment to the source�TS which sends global acknowledgment in return�

�The timestamp is the common �eld of all events� Obviously� we do need a �eld giving the type of the event� The
location should not be a necessary �eld� Indeed trace �le could contain non local information� such as statistics

�

���� Complexity

Suppose that we have a request for a slice of size l� and that q workers have l�q events of that slice�
Since we have to generate and send a sequence of size l� it�s obvious that the complexity will be at
least in O�l��

Thus� we can choose a simple algorithm to reach this complexity� We suppose that we have a
linear network of workers� and that the �rst worker is to get the entire data� On such a network
we use the well known odd�even algorithm �see �g� ��� to sort the data� This way� we only have
to concatenate the local lists in linear time�

With the odd�even algorithm each worker communicates in turn with its left and right neighbor�
The exchanged message consists in the local trace information� Each worker merges its list and
the received one �in O�l�q�� and keeps one half� the left worker keeps the lower half and the right
worker the upper one� Note that the workers can limit the merging to the half they keep� This
operation must be repeated q times� the global time being therefore in O�l��

The concatenation phase� is obviously in O�l��

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

��

���

����

�

� �

�

Figure ��� The odd�even algorithm

� AUDIO TOOLS

��� Introduction

We present here our attempt to make small� stand alone programs� that use sound to convey mon�
itoring information� These programs can generate sound in real�time on a common SPARCstation�
and can be easily modi�ed to suit the needs of a given user �e�g� doing on�line monitoring�� In
particular� it will be easy to interface them with PIMSY�

��� Conveying data with sound

Using sound in a visualization application allows the programmer to convey new information�
without using conventional displays� This has been named soni�cation or auralization� Concerning
monitoring� �FJA��� focuses on the mapping of events to the MIDI format� and uses the resulting
sounds in parallel with ParaGraph� �Mad��� introduces a more general purpose soni�cation tool�
and uses it in the Pablo monitoring environment �see also �RAM���a��� This tool allows the user
to switch easily between using MIDI or SPARCstation sound�

What is maybe most important is the fact that conventional displays rely on seeing� whereas
programs using sound related dimensions rely on hearing� These two ways of gathering information
are radically orthogonal because they use two di�erent senses� and can therefore convey information

�

to our brain in parallel� Moreover� one of the advantages of sound is that we can process part of
the information in a passive manner �i�e� without intently listening to it�� This advantage has been
detailed in �ZT����

To convey information� using sound� we can play with its basic parameters �pitch� timbre�
amplitude� envelope and duration�� and have them change over time�

We can also mix sounds together� or change their placement in space using two or more speakers�
Note that for obvious technical reasons� we cannot achieve all these sound e�ects on a standard
SPARCstation�

As it is emphasized in �BH���� sound can be used for four di�erent reasons in a scienti�c
application� reinforcing existing visual displays� conveying distinctive patterns or signatures �that
are not obvious with mere displays�� replacing displays or signaling exceptional conditions�

Unfortunately� there are still some drawbacks in the use of sound A few people can recognize
the absolute pitch of a tone� but most people can only assess pitch intervals� There is the same
problem with the intensity� people can tell whether a sound is loud� or louder than another one�
but that is about all they can say� Nobody can determine precisely the numerical value of a sound
parameter� We have the same problems with the perception of colors� but in this case� we can at
least display a color scale on the side of a graphical display� Unfortunately� there is no such thing
as a sound scale that could be used in the same way as a color scale� Yet� we believe that the users
will be able to understand increasingly complex parallel programs� thanks to the use of sound� with
some appropriate training�

��� Sound on a SPARCstation

Sound programs on a SPARCstation take advantage of the built�in digital to analog converter�
With this� they can play a sound of ����� samples per second �� KHz�� on a single channel� This
provides audio data quality equivalent to standard telephone quality�

The data supplied to the sound chip is compressed with ��law encoding� In this encoding
algorithm� the spacing of sample intervals is close to linear at low amplitudes� but is closer to
logarithmic at high amplitudes� Therefore� instead of supplying the chip with ���bit samples� we
just send it ��bit samples� For more details� see �Sun��a� Sun��b� VR����

��� Implementation

In this project we did not want to rely on a large library of recorded sounds� digitized o��line� to
produce the �nal monitoring sounds� Moreover� we also wanted to be able to produce the sounds
in real�time� to avoid having to store them in a huge temporary �le� Our programs needed to be
fast and have at the same time low memory and disk�space requirements�

We got interesting enough results with seemingly very simple sounds waves� basic sine waves�

��� The AudioTrace programs

���� common points

All of our audio monitoring programs have the same structure� and share therefore several common
features�

� the source code is small� and the resulting executable is small as well �less than �� Kbytes�
This shows that adding the same kind of sounds to existing programs will not make these
programs much bigger�

��

� the input is a trace �le� The content of the trace �le is sorted according to increasing
timestamps� The kind of trace �le used can be easily modi�ed� All we need is a way to
know when the interesting events �SENDs and RECEIVEs in our current tools� take place�

� the output is a ��au� sound	� The sound is created with a valid audio header� and can be
either played directly� or stored for future use�

� the programs are fast� This allows us to generate and play the created sound on the �y� This
way� we only have to store the trace �le� instead of the much longer resulting sound �le�

Trace �le

Sound generated

Timestamp

Low Frequency Sound

Occurence of event

Figure ��� Computing a new wave

Figure ��� Relation between the execution time and the sound duration

� the duration of the created sound is proportional to the execution time of the parallel program�
Therefore� the relative places of the sound events in the generated sound will be the same as
in the actual execution of the parallel program�

The total duration of the generated sound depends on two parameters� length and scale�
as shown on �gure ��� At the beginning of the program� the time is set to �� It is then
incremented by scale units of time at each step� This is called the replay time� At the same
time� the trace �le is read sequentially� in search of interesting events�
�

At a given replay time� we are always in one of these two cases�

	 no interesting event took place between the previous and the current replay time� and
we generate length samples of a sound having a low frequency and amplitude �i�e� a
sound that will not be heard� unless the loudness of the speaker is set to a high value��

	 one or more interesting events took place� and we generate as many consecutive sounds
of length samples as there were interesting events�

���� using the programs

The programs all work the same way� and have a name in the form tr xxx� where xxx speci�es
the type of the program ��tr � means that we work with trace �les�� They have four common
parameters� speci�ed on the command line�

�le is a trace �le ���trf� ASCII �le��

	Audio �les that can be played on a SPARCstation usually have the 	�au
 extension� For more details about the
�le structure and the �le header� see �VR���

�
What we mean by interesting depends on what we are studying�

��

nb is the number of events we want to map to frequencies� It can be� for instance� the total number
of processors involved in the parallel program�

length and scale have already been explained above�

If we want to play the sound at the same time it is created� we use�
cat file�trf � tr xxx nb length scale � play��

Otherwise� to store the generated sound in a sound �le� we rather type�
cat file�trf � tr xxx nb length scale � file�au

We have three programs available� Others could be easily and quickly deduced from the available
ones�

tr send � when a processor sends a message� tr send plays a beep at the frequency associated
with this processor�

tr sendmix � at a given time� tr sendmix mixes the frequencies associated to all the processors
that have sent one or more messages� but whose messages have not all been received yet�

tr sendnum � the pitch of the sound generated by tr sendnum at a given time is proportional to
the number of messages sent by all the processors� but not received yet�

These three programs complement each other� Using them� you can easily determine when the
communications take place� It is also easy to hear several processors sending data on a regular
basis� and others being out of phase� By listening carefully to the rhythm� you can also determine
if the programs go regularly through the same communication patterns�

We have shown how easy it is to use sound on a SPARCstation with our approach� and how
sound can be used to convey data� We hope that the availability of our programs� and their ease
of use will help more users to use sound regularly� or at least give it a try�

� FUTURE WORK � CONCLUSION

We are continuing an implementation of PIMSY� A prototype has already been implemented on a
LAN of SPARCstations using PVM package� This version shows the e�ciency of our approach�
The next prototype will be implemented on another distributed memory multi�computer called
Volvox manufactured by Archipel� This implementation will show the portability of our approach�
Real�time implementation of the trace server is also under study� Such a trace�server will store the
runtime information in local memory and be able to serve client requests in a real�time fashion�

We will implement several others tools to read a su�cient set of representations �i�e� visualiza�
tion and auralization�� The existing set of tool is limited but exists�

In this paper� we have �rst presented our client�server based approach to massively parallel
monitoring� In order to avoid the traditional bottleneck of parallel monitoring� we have designed a
monitoring system in which not only the generation of the runtime information is distributed� but
also the storage and the processing of this information�

��play is the standard on�line sound playing program supplied with the SPARCstations �usually located in the
�usr�demo�SOUND directory�

��

References

�Ayd��� R� Aydt� The pablo self�de�ning data format� Department of Computer Science� Uni�
versity of Illinois at Urbana�Champaign� March ����� available by ftp anonymous

bugle�cs�uiuc�edu�pub�Release�����Documentation�SDDF�ps�Z�

�BDG���� A� Beguelin� J� Dongara� G� Geist� R� Manchek� and V� Sunderam� A users� guide
to pvm �parallel virtual machine�� Technical Report ORNL�TM������� Oak Ridge
NAtional Laboratory� University of Tennessee� July �����

�BDG���� A� Beguelin� J� Dongarra� A� Geist� R� Manchek� K� Moore� and V� Sunderman�
PVM and HeNCE � Tools for heterogeneous network computing� In J� Dongarra and
B� Tourancheau� editors� Environments and tools for parallel scienti�c Computing�
volume � of Advances In Parallel Computing� pages ���!���� Saint Hilaire du Touvet�
France� September ����� CNRS�NSF� Elsevier Science Publishers � North Holland�

�BH��� Marc H� Brown and John Hershberger� Color and sound in algorithm animation�
Computer� December �����

�CBM��� W� Cheung� J� Black� and E� Manning� A framework for distributed debugging� IEEE
Software� �����!���� January �����

�CK��� A� Couch and D� Krumme� Monitoring parallel executions in real time� In Proceedings

of the �th distributed memory computing conference� volume �� pages ����!����� IEEE�
�����

�CL��� K� Chandy and L� Lamport� Distributed snapshots � determining global states in
distributed sytems� ACM transaction s on Computer Systems� �������!��� February
�����

�Del��� Intel Supercomputer Systems Division� Intel Corporation� ����� N�W� Greenbier Park�
way� Beaverton� Oregon ������ A Touchstone DELTA System Description� February
�����

�DHHB��� A� Duda� G� Harrus� Y� Haddad� and G� Bernard� Monitoring of distributed systems�
Technical Report ��� ISEM� December �����

�DHHB��� A� Duda� G� Harrus� Y� Haddad� and G� Bernard� Estimating global time in distributed
systems� In �th international conference on distributed computing systems� pages ���!
���� Berlin� September ����� IEEE Press�

�FJA��� J� Francioni� J� Jackson� and L� Albright� The sounds of parallel programs� In Q� Stout
and M� Wolfe� editors� The sixth distributed memory computing conference proceedings�
Frontier Series� pages ���!���� Portland� Oregon� April ����� IEEE� IEEE computer
society press�

�GHSG��� I� Glendinning� S� A� Hellberg� P� A� Shallow� and M� Gorrod� Generic visualization
and performance monitoring tools for message passing parallel systems� In N� Topham�
R� Ibbett� and T� Bemmerl� editors� programming environments for parallel computing�
volume A��� of IFIP Transactions� pages ���!���� Edinburgh Holland� April �����
IFIP� North Holland�

��

�GMGK��� H� Garcia�Molina� F� Germano� and W� H� Kohler� Debugging a distributed computing
system� In IEEE� editor� Transactions on Software Engineering� pages ���!���� March
�����

�HE��� M� Heath and J� Etheridge� Visualizing the performance of parallel programs� IEEE

Software� ����!��� September �����

�Imr��� K� Imre� Experiences with monitoring and visualising the performance of parallel
programs� In Workshop on performance measurement and visualization of parallel

systemsq� October �����

�J�ez��� J�M� J�ez�equel� Building a global time on parallel machines� In LNCS Springer�Verlag�
editor� the �rd International Workshop on Distributed Algorithms� pages ���!����
�����

�JLSU��� J� Joyce� G� Lomow� K� Slind� and B� Unger� Monitoring distributed systems� Trans�
actions computing systems � ACM� ��������!���� May �����

�Mad��� T� Madhyastha� A portable system for data soni�cation� Technical Report UIUCDCS�
R��������� University of Illinois at Urbana�Champaign� ����� available by ftp

anonymous at cs�uiuc�edu�UIUCDCS�R��	��
���

�Mat��� F� Mattern� Virtual time and global state of ditributed systems� In Cosnard� Quin�
ton� Raynald� and Robert� editors� international workshop on parallel and distributed

algorithms� North Holland� November �����

�Mil��� B� Miller� What to draw " when to draw " an essay on parallel program visualization�
to appear � Journal of Parallel # Distributed Computing� �����

�MN��� A� Malony and K� Nichols� Standards working group summary� In M� Simmons and
R� Koskela� editors� Performance Instrumentation and Visualization� Frontier Series�
pages ���!���� Santa Fe� New Mexico� May ����� ACM� Addison�Wesley Publishing
Compagny�

�Moh��� B� Mohr� Standardization of event traces considered harmful ! or ! is an iplementa�
tion of objet�idependent event trace monitoring and analysis systems possible " In
J� Dongarra and B� Tourancheau� editors� Environments and tools for parallel scien�

ti�c Computing� volume � of Advances In Parallel Computing� pages ���!���� Saint
Hilaire du Touvet� France� September ����� CNRS�NSF� Elsevier Science Publishers �
North Holland�

�MR��� A� Mallony and D� Reed� A hardware�based performance monitor for the intel iPSC��
hypercube� In Miller B� and McDowell C�� editors� Proceedings of the ACM Interna�

tional Conference on Supercomputing� Amsterdam� June ����� ACM press�

�MRR��� A� Malony� D� Reed� and D� Rudolph� Integrating performance data collection� analysis
and visualization� In M� Simmons and R� Koskela� editors� Performance Instrumen�

tation and Visualization� Frontier Series� pages ��!��� Santa Fe� New Mexico� May
����� ACM� Addison�Wesley Publishing Compagny�

�NA��� D� Nussbaum and A� Agarwal� Scalability of parallel machines� Communications of

the ACM� ��������!��� March �����

��

�NM��� R� Netzer and B� Miller� Optimal tracing and replay for debugging message�passing
parallel pograms� In IEEE Computer Society Press� editor� SuperComputing ��	 �

Proceedings� pages ���!���� Minneapolis� Minnesota� November ����� IEEE� IEEE
Computer Society Press�

�PTV��� S� Poinson� B� Tourancheau� and X� Vigouroux� Distributed monitoring for scalable
massively parallel machines� In J� Dongarra and B� Tourancheau� editors� Environ�
ment and Tools for Parallel Scienti�c Computing� volume � of Advances in parallel

computing� pages ��!���� Saint Hilaire du Touvet � France� September ����� CNRS �
NSF� Elsevier Sciences Publisher�

�RAM���a� D� Reed� R� Aydt� T� Madhyastha� R� Noe� K� Shields� and B� Schwartz� An overview
of the pablo performance analysis environment� �����

�RAM���b� D� Reed� R� Aydt� T� Madhyastha� R� Noe� K� Shields� and B� Schwartz� The pablo
performance analysis environment� �����

�ROA���� D� Reed� R� Olson� R� Aydt� T� Madhyastha� T� Birkett� D� Jensen� B� Nazief� and
B� Totty� Scalable performance environments for parallel systems� In Q� Stout and
Wolfe M�� editors� The sixth distributed memory computing conference proceedings�
Frontier Series� pages ���!���� Portland� Oregon� April ����� IEEE� IEEE computer
society press�

�SM��� R� Schwarz and F� Mattern� Detecting causal relationships in distributed communica�
tions �in serch of the holy grail� IR ������� Universit$at Keiserslautern� Post�ach �����
D����� Keiserslautern� November �����

�SM��� R� Schwarz and F� Mattern� Detecting causal relationships in distributed communica�
tions �in search of the holy grail� Technical Report ������ Universit$at Keiserslautern�
Post�ach ����� D����� Keiserslautern� December �����

�Sun��a� Sun Microsystems� Multimedia Primer� February ����� Part No � FE������

�Sun��b� Sun Microsystems� SPARCstation
� System Architecture� May ����� Part No � ����
FE�����K�

�VR��� Guido Van Rossum� Faq� Audio �le formats� Usenet News� May �����

�vRT��� M� van Riek and B� Tourancheau� A general approach to the monitoring of distributed
memory machines� Research Report ������ LIP ! Ecole Normale Sup�erieure de Lyon�
�����

�vRT��� M� van Riek and B� Tourancheau� The trace�formats that are used in picl� paragraph
and gpms� Technical Report ������ LIP ! Ecole Normale Sup�erieure de Lyon� �����

�ZT��� E� Zabala and R� Taylor� Process and processor interaction� Architecture independent
visual�sation schema� In J� Dongarra and B� Tourancheau� editors� Environments and

tools for parallel scienti�c Computing� volume � of Advances In Parallel Computing�
pages ��!��� Saint Hilaire du Touvet� France� September ����� CNRS�NSF� Elsevier
Science Publishers � North Holland�

��

