
HAL Id: hal-02101852
https://hal-lara.archives-ouvertes.fr/hal-02101852v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deriving Proof Rules Form Continuations Semantics
Philippe Audebaud, Elena Zucca

To cite this version:
Philippe Audebaud, Elena Zucca. Deriving Proof Rules Form Continuations Semantics. [Research
Report] LIP RR-1997-19, Laboratoire de l’informatique du parallélisme. 1997, 2+19p. �hal-02101852�

https://hal-lara.archives-ouvertes.fr/hal-02101852v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Deriving Proof Rules from

Continuation Semantics

Philippe Audebaud

Elena Zucca
June ��� ����

Research Report No RR�����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Deriving Proof Rules from Continuation Semantics

Philippe Audebaud

Elena Zucca

June ��� ����

Abstract

We claim that the continuation style semantics of a programming language can provide
a starting point for constructing a proof system for that language� The basic idea is to
see weakest precondition as a particular instance of continuation style semantics� hence
to interpret correctness assertions �e�g� Hoare triples fpg C frg� as inequalities over
continuations� This approach also shows a correspondence between labels in a program
and annotations�

Keywords� Continuations� Hoare Semantics� Exceptions� Labels

R�esum�e

Nous montrons comment la s�emantique par continuations peut servir de point de d�e�
part pour construire un syst�eme de preuves pour ce langage� L�id�ee cl�e est de voir la
�plus faible pr�econdition	 comme une s�emantique par continuations particuli�ere� puis
d�interpr�eter les assertions �a la Hoare �fpg C frg� comme des in�egalit�es portant sur
les continuations� Cette approche permet �egalement d��etablir une correspondance entre
�etiquettes dans un programme et annotations�

Mots�cl�es� continuations� s�emantique �a la Hoare� exceptions� �etiquettes

Deriving Proof Rules from Continuation Semantics

Philippe Audebaud

LIP � Laboratoire de l�Informatique du Parall�elisme

ENS Lyon� �� all�ee d�Italie� ����� Lyon� France

email� Philippe�Audebaud�ens�lyon�fr

Elena Zucca

DISI � Dip	 di Informatica e Scienze dell�Informazione

Universit
a di Genova

Via Dodecaneso� ��� ��� Genova� Italy

email� zucca�disi�unige�it

June� ����

Abstract

We claim that the continuation style semantics of a programming language can provide
a starting point for constructing a proof system for that language� The basic idea is to see
weakest precondition as a particular instance of continuation style semantics� hence to interpret
correctness assertions �e�g� Hoare triples fpg C frg� as inequalities over continuations� This
approach also shows a correspondence between labels in a program and annotations�

Introduction

In the old
��s already� Jensen �
 noted a strong resemblance between continuation style semantics
and weakest precondition� To see the point� consider e�g� the semantic clause usually given for
command sequence in continuation style �see e�g� ���� ����

��C��C�cs k � ��C�cs���C�cs k�� for any k continuation

and the corresponding clause de�ning weakest precondition ���

wlp�C��C�� r � wlp�C���wlp�C�� r�� for any r postcondition�

The two clauses are formally the same� and an analogous remark can be made for other kinds of
commands�

Anyway this similarity� in �
 and later in ���� which proposes its veri�cation as an exercise�
has only been noticed as a kind of coincidence and� for what we know� never developed in the
next�coming literature�

We believe instead that it would be worthwhile to regard this relation as more substantial and
potentially contributing to clarify the role of both the approaches in understanding programming
languages� In particular� we think that this subject deserves a renewed interest now that continua�
tions have been recognized as an important unifying paradigm for many areas of computer science
�see e�g� �� for a survey�� In this paper� our aim is to make a �rst step in this direction�

To this end� we �rst of all show that axiomatic semantics is just an instance of continuation
semantics� obtained taking as �answers	� in the continuation style sense� booleans with a suitable
order �indeed with this choice continuations turn out to be predicates on states��

A consequence of this fact is that the continuation style semantics of a programming language
can be taken as starting point for constructing a proof system for that language� More precisely�
we can introduce judgments of the form � fpg C frg where p� r are continuations and C is a

�

command� corresponding to Hoare triples in their extensional version� i�e� where one does not
care about the syntactic representation of predicates ���� These judgments are interpreted as
inequalities p � ��C

cs
r with � the pointwise partial order over continuations� hence� the semantic

clauses provide a guideline for constructing a proof system for such judgments�
We begin �Sect� �� illustrating the idea on the standard imperative language for which weakest

precondition is usually de�ned �While language in the following�� As one can expect� the proof
system we get in this case turns out to be Hoare�s system� Then �Sect� �� Sect� ��� we consider two
extensions of the language allowing to change the control �ow �exceptions and goto�s�� for which
the continuation semantics is especially well�suited� In this case� the application of our idea has
some interesting consequences�

Since the continuation style semantics for these languages uses an environment associating
continuations with labels� the proof systems we get have judgments of the form � � fpg C frg
where � is an environment associating predicates with labels�

These proof systems are formally di�erent from other extensions of Hoare�s logic to jumps
proposed in the literature ��� �� �� which all introduce more complex forms of postconditions in
correctness assertions� indeed� our analysis shows that these proposals are based on a direct style
view of the language �which of course requires a more complex model when control �ow is not
always sequential��

On the contrary� the proof systems we get are a natural generalization of the standard case� For
instance� the rule for a block of labelled commands begin�� � C�� � � � ��n � Cn end is exactly the rule
for while B do C in the case in which the block is begin� � if B then C�goto� else skip end�

Moreover� our approach shows a correspondence between labels and annotations in programs�
A label� say �� is used to denote a speci�c point in a program to which it is possible to jump during
the execution� An annotation� say P � is a formula �i�e� a syntactic representation of a predicate�
inserted in a speci�c point of a program to denote that some property is expected to hold there�

Now� in the continuation style semantics� if � � C is a labelled command in a program� then
the denotation of � in the current environment � is ��C

cs
� r� with r the continuation of C� in the

particular case where continuations are predicates� ��C
cs
� r is the weakest precondition of C w�r�t�

the postcondition r �under ��� hence we can correctly insert before C an annotation representing
���� �or a stronger condition��

Then� the problem of �nding� for a given program� a set of annotations su�cient to prove its
correctness can be reduced to the problem of �nding a tuple of predicates which is a pre��xpoint
of the functional which de�nes the continuation style semantics of the program and which can be
expressed within the given language of formulas�

In Sect� �� we illustrate this idea by giving an algorithm which� inputs a correctness assertion
fPg C fRg �in the intensional version� i�e� with P�R formulas�� and outputs a formula Q� and a set
of constraints fXi � Qi j i � ���ng� with Q�� Q�� � � � � Qn formulas with free variables �indetermi�
nates� X�� � � � � Xn� The algorithm output is such that each solution �namely� ground substitution
� � fXi �� Si j i � ���ng s�t� Si � Qih�i� i � ���n� gives a set of correct annotations for C w�r�t�
R� in particular Q�h�i is a correct precondition for C w�r�t� to R� hence fPg C fRg is valid if
P � Q�h�i�

Finally� the conclusion provides a more detailed comparison with related works and outlines
some further research directions�

� Deriving Hoare�s System

In this section� we illustrate our ideas on the While language handled in the original Hoare�s
system�

�

��� Continuation Semantics of While

First of all� we recall the well�known continuation style semantics of the While language� We
report direct semantics too for completeness� Here below our chosen notations�

Notations� We write �A� B� for the set of the functions from A into B� Application of f to x is denoted
by f x� and � denotes function composition� For any set A� idA denotes the identity of A� If A and B are two
cpo�s with bottom element �A and �B� respectively� then we denote by �A� B� the cpo of the continuous
functions from A into B with the point�wise partial order� and by �A�� B� the cpo of the continuous strict
functions �i�e� f such that f �A � �B�� Finally� for 	 � �A� A�� �x�	� denotes the least
xpoint of 	
�recall that �x�	� � ��

n��
	n�A��

The direct and continuation style semantics of theWhile is reported on Fig� �� We denote by
Com� Expr� BExpr� Id the sets of commands� expressions� boolean expressions and identi�ers of
the language� ranged over by C� E� B and I � respectively� by Val the set of values of expressions�
and by Answer a cpo with bottom element �Answer� Only syntax and semantics of commands are
speci�ed�

We recall the standard results about the well�de�nedness of continuation style semantics of
While and its relation with direct style semantics �see e�g� ���� �� for the proof��

Proposition ��� For any command C of While�

�� ��C
cs
� �Cont� Cont�

�� for any r � Cont� ��C
cs
r � r � ��C

ds
�

��� Predicates as Continuations

Take as Answer the cpo Bool of booleans values true� false with the �unusual� order � induced
by true � false� This way� �Answer � true� This amounts to interpreting p � q as the boolean
implication p � q� We set Pred � �State� �� Bool� continuations can be seen in this case as
predicates� and the resulting point�wise partial order in Pred is that p � q i� p is a stronger
condition than q�

Let us now recall the de�nition of weakest �liberal� precondition wlp of a command C w�r�t� a
postcondition r �where r � �State� ftrue� falseg��

wlp�C�r s � true i� ��C
ds
s � � or ��C

ds
s � s�� s� 	� � and r s� � true

An equivalent more concise de�nition can be given taking r � �State� �� Bool�

wlp�C�r s � r ���C
ds
s��

Note that the assumption that continuations �predicates in this case� are strict corresponds to the
intuitive idea that a non terminating command veri�es any postcondition� since we are considering
partial correctness� Now� from Prop� ���� we easily get that�

Fact ��� For any command C� ��C
cs
� wlp�C��

Indeed� it is easy to see that� with this choice of Answer� semantic clauses in continuation style
are exactly usual clauses de�ning weakest precondition�

Boolean connectives� Usual boolean connectives can be easily extended to Pred� as summarized below�

� True s � true� for any s � State��

�

Syntax
C ��� skip j I �� E j C��C� j if B then C� else C� j while B do C

States
State � �Id� Val�
State� � State
 f�Stateg
� ���� � State� �Val� Id� State� substitution on states

�State �v�I � �State�
s �v�I I � v� for s 	� �State�
s �v�I I � � s I �� for s 	� �State� I 	� I �

Direct style semantics
���

ds
� Com� �State� �� State withBottom

��skip
ds
� idState�

�� I �� E
ds
� �s�s ���E s�I

��C��C�ds � ��C�ds � ��C�ds
��if B then C� else C�ds � condState����B� ��C�ds� ��C�ds�
��while B do C

ds
� �x��f� condState����B� f � ��Cds� id�State���State����

Continuation semantics
Cont � �State� �� Answer
���

cs
� Com� �Cont� Cont

��skip
cs
� idCont

�� I �� E
cs
� �r�r ���E�I

��C��C�cs � ��C�cs � ��C�cs
��if B then C� else C�cs � �r� condAnswer���B� ��C�cs r� ��C�cs r�
��while B do C

cs
� �x��f��r� condAnswer���B� ��Ccs�f r�� r��

Auxiliary functions
� ���� � Cont� �State� Val�� Id� Cont substitution on continuations

q �e�I � �s�q s �e�s��I
condAnswer � �State� �� Bool� �State� �� Answer� �State� �� Answer� �State� �� Answer
�we omit the su�x when clear from the context�

cond�b� q�� q�� �State � �Answer�
cond�b� q�� q�� s � q� s� if s 	� �State and b s � true
cond�b� q�� q�� s � q� s� if s 	� �State and b s � false

Figure �� Direct and continuation style semantics for theWhile language�

�

� False� � true�False s � false� for any s �� ��

� For any q � Pred� ��q�� � true� ��q�s � ��q s�� for any s �� ��

� For any q�� q� � Pred� �q� � q��� � true� �q� � q��s � q�s � q�s� for any s �� �� � and	 can be de
ned
analogously �q� 	 q� can be equivalently de
ned as ��q�� � q� as usual��

Note that True and False are the bottom and top element of Pred� respectively� Moreover� we
have q� � q� i� q� � q�� Finally� it is easy to see that the following fact holds�

Fact ��� �� condBool�b� q�� q�� � �b q�� � ��b q���

�� p� condBool�b� q�� q�� i� p b� q� and p �b� q��

��� Hoare�s System

We de�ne now correctness assertions as triples hp� C� ri� written fpg C frg� where p� r are contin�
uations and C is a command� We say that a correctness assertion fpg C frg is valid� and write
j� fpg C frg� i� p � ��C

cs
r� Our subsequent aim is to derive� starting from the semantic clauses� a

�sound and complete w�r�t� validity� proof system having judgments of the form � fpg C frg� To
this end� we �nd an equivalent condition for p � ��C

cs
r� for each kind of command�

Proposition ��� For any pair of continuations p� r

�� p � ��skip
cs
r i� p � r�

�� p � �� I �� E
cs
r i� p � r ���E�I �

�� p � ��C��C�csr i� p � ��C�csq and q � ��C�csr� for some q � Cont�

�� p � ��if B then C� else C�csr i� p ��B � ��C�csr and p ���B � ��C�csr�

	� p � ��while B do C
cs
r i� p � i� i ��B � ��C

cs
i and i ���B � r� for some i � Cont�

Proof�

�� Immediate�

�� Immediate�

�� From the semantic clause� p � ��C��C�csr implies p � ��C�csq and q � ��C�csr� for some
q � Cont �q � ��C�cs r�� Anyway� it is easy to see that the opposite implication also holds�
since ��C�cs is monotonic �Prop� ��������� Hence the result�

�� From the semantic clause�

p � ��if B then C� else C�csr

i� p � cond���B� ��C�cs r� ��C�cs r�

i� p ��B � ��C�csr and p ���B � ��C�csr

The result follows�

�� Set w � ��while B do C
cs
� From the semantic clause� w is the least �xpoint of the functional

� de�ned by
� f r � cond���B� ��C

cs
�f r�� r��

Whence� w r is the least �xpoint of the continuous function � de�ned by

� q � cond���B� ��C
cs
q� r�

�

�Skip�
p� r

fpg skip frg

�Assign�
p� r ���E�I

fpg I �� E frg

�Conc�
fpg C� fqg fqg C� frg

fpg C��C� frg

�If�
fp ��Bg C� frg fp � ��Bg C� frg

fpg if B then C� else C� frg

�While�
p� i fi ��Bg C fig i ���B� r

fpg while B do C frg

Table �� Proof system for the While language�

Set �	 � w r� and b � ��B� Since �	 is a �xpoint� �	 � cond�b� ��C
cs
�	� r�� which implies �	 b �

��C
cs
�	 and �	 �b � r� Hence the necessary condition�

It is easy to see that the opposite implication also holds� Indeed� if i b � ��C
cs
i and

i �b � r hold for some i� then i � cond�b� ��C
cs
i� r� � � i� which means that i is a pre�

�xpoint of the function �� Then� since �	 � w r is the least �xpoint of �� i � w r� hence by
transitivity p � w r� hence the result� �

Altogether� we get the following result�

Proposition ��� If � f�g � f�g � Cont� Com� Cont is the relation inductively de�ned by the
set of rules in Table �� then� for any command C of the While language� p� r continuations�

� fpg C frg i� j� fpg C frg

Proof� By structural induction and Prop� ���� �

The proof system in Fig� � is Hoare�s system in its extensional version � i�e� where preconditions
and postconditions in Hoare�s triples are assumed to be predicates �semantic entities� and not for�
mulas �syntactic representations of predicates�� hence a result of completeness can be obtained �see
e�g� ��� for a discussion about this di�erence�� Hence� Prop� ��� states nothing new� Anyway� note
that the results and the proof itself are formulated using� as long as possible� only general proper�
ties of the continuation style semantics� the only point where the particular choice of predicates as
continuations plays a role is in allowing to rewrite the conditional operator in terms of the logical
connectives�

Analogously� the following consequence rule

�Conseq�
p� � p fpg C frg r � r�

fp�g C fr�g
�

which is given in some equivalent formulation of Hoares�s system� can be easily obtained from the
general properties of the continuation style semantics� as shown below�

�

Fact ��	 For any p� p�� r� r� continuations s�t� p� � p and r � r�� fpg C frg implies fp�g C fr�g for
any command C�

Proof� The fact that p� � ��C
cs
r holds by transitivity� the fact that ��C

cs
r � ��C

cs
r� holds since

��C
cs
is monotonic� �

� Proof Rules for Exceptions

In this section and the following one� we extend the languageWhile by constructs allowing a non
sequential control of �ow and show that� again� the continuation style semantics leads to a proof
system�

Let us �rst consider an exception mechanism through an extension Excp of theWhile language
with two commands� trap and raise�

Informally� the execution of trap � in C� with C� consists in the execution of C� until some
raise� command is encountered� in this case� the normal continuation is abandoned and the
command C� �called a handler� is executed instead� We call � a label for keeping a uniform
terminology w�r�t� the goto�s case illustrated in the next section�

The continuation style semantics of Excp is given in Fig� �� We denote by Label the set of labels
�exception names in this case�� ranged over by �� and by ContEnv the set of the environments
associating continuations with labels� ranged over by ��

The view of continuation style semantics as axiomatic semantics still holds in the following sense�
The notion of weakest precondition of a command w�r�t� a postcondition is now parameterized by
an environment associating predicates with labels� ��C

cs
� r is the weakest precondition of C w�r�t�

r under �� Indeed� whenever C contains a raise� command with � free� the weakest precondition
of C depends on the weakest precondition w�r�t� r of the corresponding handler� which is given by
��

For �� �� environments� set � � �� i� �x ��x� � ���x�� The following proposition states that the
continuation style semantics of Excp is well�de�ned and associates with each command a function
monotonic in its �rst argument �the environment��

Proposition ��� For any command C of Excp

�� for any environment �� ��C
cs
� � �Cont� Cont�

�� if � � �� then ��C
cs
� � ��C

cs
���

Proof� By structural induction� using the fact that the function � �� ��C
cs
� is continuous� �

Analogously to what we have done for the While language� we now derive from the semantic
clauses a proof system for the extended language� In this case� according to the continuation
style semantics of a command� the validity of correctness assertions depends on a continuation
environment� we say that fpg C frg is valid under �� and write � j� fpg C fqg� i� p � ��C

cs
� r�

Analogously� judgments of the proof system are of the form � � fpg C frg�

Proposition ��� For any pair of continuations p� r and any continuation environment �

�� p � ��raise�
cs
� r i� p � �����

�� p � ��trap � in C� with C�cs� r i� q � ��C�cs� r and p � ��C�cs� �q�� r� for some q �
Cont�

Proof� For each case�

Syntax
C ��� � � � j raise� j trap � in C� with C�

Continuation environments
ContEnv � �Label� Cont�
� ���� � ContEnv� Cont� Label� ContEnv substitution on continuation environments

� �q�� ��� � q�
� �q�� �
� � ��
�� for
 	� �

� �q����� � � � � qn��n stands for � �q���� � � � �qn��n

Continuation semantics
���

cs
� Com� �ContEnv� �Cont� Cont�

��skip
cs
� � idCont

�� I �� E
cs
� � �r�r ���E�I

��C��C�cs � � ��C�cs � � ��C�cs �
��if B then C� else C�cs � � cond���B

ds
� ��C�cs �� ��C�cs ��

��while B do C
cs
� � �x��f��r� cond���B

cs
� ��C

cs
��f r�� r��

��raise�
cs
� � �r�����

��trap � in C� with C�cs � � �r� ��C�cs� ����C�cs � r��� r

Figure �� Continuation style semantics of the Excp language

�Raise�
p� ����

� � fpg raise� frg

�Trap�
� �q�� � fpg C� frg � � fqg C� frg

� � fpg trap � in C� with C� frg

Table �� Additional rules for the Excp language

�� Immediate�

�� From the semantic clause� p � ��trap � in C� with C�cs� r implies p � ��C�cs�� �q��� r� for
some q �q � ��C�cs � r�� Anyway� it is easy to see that the opposite implication also holds�
Indeed� set �q � ��C�cs � r� if p � ��C�cs�� �q��� r� for some q s�t� q � �q� then � �q�� �
� ��q�� since the order on ContEnv is de�ned pointwise� then ��C�cs � �q�� � ��C�cs � ��q��
since ��C�cs is monotonic �Lemma ��������� and in particular ��C�cs � �q�� r � ��C�cs � ��q�� r�
Hence the result� �

From the above proposition� it is immediate to derive the proof rules for raise and trap

commands� given in Table �� Note that by the rule �Raise� we can deduce in particular the
judgment � � f����g raise� fFalseg� expressing the fact that after a raise command the normal
continuation �postcondition� is abandoned�

For the commands of theWhile language� the continuation environment is not signi�cant and
must be simply propagated from the premises to the consequence of proof rules� Formally� let us
keep the same names for the new proof rules obtained by replacing every judgment of the form
� fpg C frg by a judgment � � fpg C frg� We can state a soundness and completeness result for

�

Syntax
C ��� � � � j goto� j begin�� � C�� � � � ��n � Cn end

Continuation semantics
��goto�

cs
� r � ����

��begin�� � C�� � � � ��n � Cn endcs � r � �q�� where h�q�� � � � � �qni � �x����
�hq�� � � � � qni � h��C�cs �� q�� � � � � ��Cncs �� ri� with �� � ��q����� � � � � qn��n�

Figure �� Continuation style semantics of the Goto language

�Goto�
p� ����

� � fpg goto� frg

�Block�
p� q� �� � fq�g C� fq�g � � � �� � fqng Cn frg

� � fpg begin�� � C�� � � � ��n � Cn end frg
�� � ��q����� � � � � qn��n

Table �� Additional rules for the Goto language

the extended proof system�

Proposition ��� If � � f�g � f�g � ContEnv� Cont� Com� Cont is the relation inductively
de�ned by the previous proof rules plus �Raise� and �Trap� in Table �� then� for any � � ContEnv�
C command of Excp� p� r continuations�

� � fpg C frg i� � j� fpg C frg

Proof� By structural induction and Prop� ���� �

� Proof Rules for Goto�s

We consider now a language Goto which extends Excp by an unrestricted jump mechanism�
Informally� the execution of a block of labelled commands begin�� � C�� � � � ��n � Cn end consists of
the execution of the sequence of commands C�� � � � �Cn until some goto�i command is encountered�
in this case� the normal continuation is abandoned and the execution jumps to Ci� Note that any
Ci can contain in turn blocks of labelled commands� with the usual scoping rules for labels�

The continuation style semantics of Goto is given in Fig� �� The view of continuation style
semantics as axiomatic semantics holds as already explained for Excp� i�e� the weakest precondition
w�r�t� r under � of a command containing some goto� with � free depends on ����� which is the
weakest precondition of the command labelled � w�r�t� r under �� Anyway� in this case the
dependency is mutually recursive� hence the weakest precondition is de�ned as the least �xpoint
of an equation� as for the while command� Correspondingly� we get the rule �Block� below� where
q�� � � � � qn play the same role of �indeterminates	 as the invariant in the rule �While��

The following proposition states that the continuation semantics of the Goto language is well�
de�ned and associates a function monotonic in its �rst argument �the continuation environment��
with each command�

Proposition ��� For any command C of the Goto language

�

�� for any continuation environment �� ��C
cs
� � �Cont� Cont�

�� if � � �� then ��C
cs
� � ��C

cs
���

Proof� By structural induction� using the fact that� for all ��� � � � � �n labels and � continuation
environment� the function hq�� � � � � qni �� ��C

cs
� �q����� � � � � qn��n is continuous� �

Again� we shall derive from the semantic clauses a proof system for the extended language� by
the following proposition�

Proposition ��� For any pair of continuations p� r and any continuation environment �

�� p � ��goto�
cs
� r i� p � �����

�� p � ��begin�� � C�� � � � ��n � Cn endcs� r i� p � q�� q� � ��C�cs�� q�� � � � � qn � ��Cncs�� r�
with �� � ��q����� � � � � qn��n� for some q�� � � � � qn � Cont�

Proof� For each case�

�� Immediate�

�� Seth�q�� � � � � �qni � �x���� Since h�q�� � � � � �qni is a �xpoint of � �in fact� the least one��

�q� � ��C�cs �� q�� � � � � �qn � ��Cncs �� r

with �� � ���q����� � � � � �qn��n� Hence� from the semantic clause� the necessary condition holds�

It is easy to see that the opposite implication also holds� Indeed� assume hq�� � � � � qni is s�t� qi �
��Cics �� qi��� for i � ���n �qn�� � r�� where �� � � �q����� � � � � qn��n� Then ���rhq�� � � � � qni �
hq�� � � � � qni� hence hq�� � � � � qni is a pre��xpoint of �� Since the least �xpoint of � is h�q�� � � � � �qni�
hq�� � � � � qni � h�q�� � � � � �qni� hence by transitivity p � �q�� hence the result� �

From the above proposition� it is immediate to derive the proof rules for goto and block

commands� given in Table �� Note that� as for rule �Raise�� we can deduce in particular the
judgment � � f����g goto� fFalseg� by the rule �Goto��

We can state a soundness and completeness result for the extended proof system�

Proposition ��� Let � � f�g � f�g � ContEnv� Cont � Com � Cont the relation inductively
de�ned by the previous rules plus rules �Goto� and �Block� given in Table �� Then� for any � �
ContEnv� C command of Goto� p� r continuations�

� � fpg C frg i� � j� fpg C frg�

Proof� By structural induction and Prop� ���� �

��� �While� and �Trap� Rules as Derived Rules

In this subsection� we show that the proof rules given for the while and trap command can be seen
as a specialization of the rule given for the block of labelled commands�

To this end� we de�ne in Table � a translation T from the whole set of the commands of Goto
to the set of the commands not containing while and trap commands� We denote by FL�C� the
set of the free labels in a command C� de�ned in the usual way� and by C �
�� the command
obtained from C by substituting � with
 in the usual way �� conversion��

��

T � skip � � skip

T � I �� E � � I �� E

T �C��C�� � T �C���T �C��

T �if B then C� else C�� � if B then T �C�� else T �C��

T �while B do C� � begin� � if B then T �C�� goto� else skip end

for some � 	� FL�T �C��

T �raise�� � goto�

T �trap � in C� with C�� � begin
 � �T �C� ������ goto��� � � T �C���� � skip end

for some
� �� � 	� FL�T �C���
 FL�T �C���

T �goto�� � goto�

T �begin�� � C�� � � � ��n � Cn end� � begin�� � T �C��� � � � ��n � T �Cn�end

Table �� Elimination of while and trap commands

Theorem ��� For any � continuation environment� C command of Goto� p� r continuations

� � fpg C frg i� � � fpg T �C� frg�

This result could be proved in an indirect way by showing that the translation preserves the
continuation style semantics of commands and by the soundness and completeness of the proof
system� We give instead a direct proof which shows that the proof rules �While� and �Trap� can
be obtained as derived rules� We need the following lemma�

Lemma ��� For any C command of Goto�

� FL�C� � FL�T �C���

� for any � continuation environment� p� r continuations�
 	� FL�C��

 � �q�
 � fpg C frg i� � � fpg C frg�

 � �q�
 � fpg C �
�� frg i� � �q�� � fpg C frg�

Proof� By structural induction� �

Proof of Theorem ��� By structural induction� We show the non trivial cases�

While Let us consider the judgment � � fpg while B do C frg� By the translation� this judgment
becomes � � fpg begin� � if B then T �C�� goto� else skip end frg� for some � 	� FL�C��

We get the following proof tree

p� q�

��
q� ��B� r

� �q��� � fq� ���Bg skip frg

� �q��� � fq�g if B then T �C�� goto� else skip frg

� � fpg begin� � if B then T �C�� goto� else skip end frg

��

where the proof tree �� is

���

� �q��� � fq� ��Bg T �C� fqg

q � q�
� �q��� � fqg goto� frg

� �q��� � fq� ��Bg T �C�� goto� frg

By Lemma ��� � �q��� � fq� ��Bg T �C� fqg i� � � fq� ��Bg T �C� fqg� Now� it is easy to see
that � � fq� ��Bg T �C� fqg and q � q� for some q � Cont i� � � fq� ��Bg T �C� fq�g� By
inductive hypothesis� from this last judgment� we get a proof for � � fq� ��Bg C fq�g�

In summary� we get the following proof tree�

p� q�

���

� � fq� ��Bg C fq�g
q� ���B� r

� � fpg while B do C frg

which is the same obtained by rule �While��

Trap Let us consider the judgment � � fpg trap � in C� with C� frg� By the translation� this
judgment becomes � � fpg begin
 � �T �C� ������ goto��� � � T �C���� � skip end frg� for some

� �� � 	� FL�C��
 FL�C���

We get the following proof tree� where �� stands for the environment ��q��
� q���� q���

p� q� ��

���

�� � fq�g T �C�� fq�g

q� � r

�� � fq�g skip frg

� � fpg begin
 � �T �C� ������ goto��� � � T �C���� � skip end frg

where the proof tree �� is

���

�� � fq�g T �C� ����� fqg

q � q�
�� � fqg goto� fq�g

�� � fq�g T �C� ������ goto� fq�g

By Lemma ��� �� � fq�g T �C� ����� fqg i� � �q��� � fq�g T �C�� fqg� and �� � fq�g T �C�� fq�g i�
� � fq�g T �C�� fq�g�

Now� it is easy to see that p� q� and � �q��� � fq�g T �C�� fqg and q � q� and q� � r� for some
q�� q� q� � Cont� i� � �q��� � fpg T �C�� frg�

Hence� by inductive hypothesis� we get proofs for � �q��� � fq�g C� fqg and � �q��� � fpg T �C��
frg�

In summary� we get the proof tree

���

� �q��� � fpg C� frg

���

� � fq�g C� frg

� � fpg trap � in C� with C� frg

which is the same obtained by rule �Trap�� �

��

� Annotations as Pre��xpoints

In this section we analyse the consequences of our point of view on a more practical issue� i�e�
the problem of annotating a program in such a way that its correctness can be proved in a semi�
automatic way�

First of all� talking about annotations requires to turn from the extensional approach we have
taken until now �correctness assertions as triples fpg C frg with p� r predicates� i�e� semantic
entities� to the intensional approach� where correctness assertions are triples fPg C fRg with P�R
formulas in some given language Form�

Analogously� we consider syntactic representations of continuation environments� ranged over
by H � which are �nite maps associating a formula with a label� We call them formula environments�

A formula P is semantically interpreted as a predicate ��P � Pred� and this interpretation
naturally extends to formula environments� The validity of a correctness assertion is now de�ned
by H j� fPg C fRg i� ��H j� f��P g C f��Rg� the proof rules given in the preceding sections still
work in the intensional version� Note that� anyway� the completeness of the proof system now holds
only if the given language of formulas is expressive enough for representing all the valid assertions
�see e�g� ��� for a detailed explanation of this point��

Coming now to annotations� we recall that they are formulas inserted in speci�c points in a
program to indicate that some property is expected to hold there� Annotations can be used just
for documentation purposes or as an help for proving the correctness of a program w�r�t� to a given
speci�cation� Indeed� the task of proving a correctness assertion fPg C fRg can be in principle
reduced to prove the validity of P � wlp�C�R� anyway� wlp�C�R could be either non expressible in
Form or expressible� but in a very convolute way �that is tipically the case when C is a command
whose semantics is expressed by a �xpoint equation� like while and block commands in Goto��
In this case� the usual approach is to require the user to insert a certain number of annotations
in C� getting an annotated command A� then� it is possible to extract from fPg A fRg a set
VC�fPg A fRg� of formulas in Form� called veri�cation conditions� s�t� their validity guarantees
the validity of the original assertion fPg C fRg� We illustrate the idea on an example� referring to
��� �� for the formal de�nitions� The validity of the assertion fx � ng C fy � ng� with n positive
integer constant�

C � y �� �� while x 	� � do � y �� y � � x �� x� � �

can be established annotating C as follows

A � y �� �� fx y � n x � �g while x 	� � do fx y � n x � �g � y �� y � � x �� x� � ��

Indeed� the veri�cation conditions VC�fx � ng A fy � ng� turn out to be the formulas

x � n� x � � n x � ��
x y � n x � � x 	� �� x y � n x � ��
�x y � n x � �� ��x 	� ��� y � n

whose validity can be immediately proved�
Note that the task of choosing correct annotations is completely left to the user� one could

wrongly annotate the program� and in this case obtain in the veri�cation conditions some non valid
formula�

Note moreover that the user is required to insert one annotation for each while command�
written while B do fPg C to stress that P is an invariant� and one annotation for each command
sequence� written C�� fPg C� �unless C� is a skip or an assignment command��

��

The aim of this section is to present a quite di�erent approach to the problem of �nding correct
annotations� based on the intuition that there is a correspondence between annotations and labels
in programs� We �rst explain this correspondence�

If a command C has a label� say �� then� as already pointed out� � denotes in the current envi�
ronment � the continuation semantics �weakest precondition� of C w�r�t� the current continuation
�postcondition�� Hence a label can be always correctly replaced by its denotation�

Then� the problem of �nding a set of annotations for a program su�cient for proving its correct�
ness can be reduced to the problem of �nding a tuple of formulas which denotes a pre��xpoint of the
functional which de�nes the continuation style semantics �weakest precondition� of the program�

Starting from this idea� we propose below an algorithm Gen for �nding a set of annotations for
a program which works quite di�erently from the traditional one�

First of all� we let the syntax below for Form�

P ��� true j false j P� P� j P� � P� j �P j E� relop E� j X j P �E�I

Note that in the language of formulas we allow formula variables� ranged over by X � taken in some
denumerably in�nite set V � and formulas of the form P �E�I � expressing the replacement of an
identi�er I by an expression E in a formula P � In the following we assume that formulas are always
reduced in such a way that replacements are only of the form X �E��I� � � � �En�In �n � ���

We denote by Form�V � the set of the formulas with free formula variables in V � for V � V �
Moreover� we say that � � V � Form�V� is a �V�W ��substitution i� � is the identity over V n V
and� for any X � V � ��X� � Form�W �� We denote by P h�i the result of applying the substitution
� to the formula P �modulo reduction of replacements explained above��

For any �V��W���substitution �� and �V��W���substitution ��� the �V�
 V�� �W� n V��
W���
substitution ��� �� is de�ned by ���� ����X� � ���X�h��i if X � V�� ���X� if X � V� n V��

Formula variables will be used in the algorithm to denote indeterminates in the �xpoint equation
de�ning the continuation style semantics of a program�

The algorithm Gen takes in input four parameters� a formula environment H � a command C�
a postcondition R and a �nite set V of �already used� formula variables� The initial call on a
closed �i�e� without free labels� command C and a closed �i�e� without free formula variables�
postcondition R will be Gen��� C� R� ��� In a generic call� say Gen�H�C�R� V �� C will only contain
free labels which have an associated formula in H � and H and R will only contain free formula
variables in V �

The algorithm on an initial call Gen��� C� R� ��� returns Q��F � A� U � where U � fX�� � � � � Xng
is a �nite set of formula variables� F is a set of constraints fXi � Qi j i � ���ng� Q�� Q�� � � � � Qn �
Form�U� and A is an annotated version of C where the annotations are X�� � � � � Xn�

The expected meaning is that� for any �U� ���substitution �fXi �� Si j i � ���ng �solution	
of F � i�e� s�t� Si � Qih�i� for i � ���n � Q�h�i is a precondition for C w�r�t� R� Thus� given
a correctness assertion fPg C fRg� we can conclude the validity of this assertion if� moreover�
P � Q�h�i�

In other words� the algorithm generates simultaneously �a schema of� an annotated version of
C and the corresponding set of veri�cation conditions� which contain free formula variables� Then
a correctly annotated version of C is obtained for any instantiation of these variables which makes
the veri�cation conditions valid�

For instance� on the example above the algorithm returns the tuple�

� X ���y�

� fX � �X �y ��y �x� ��x x 	� �� � �y � n ��x 	� ���g�

� y �� � � fXg while x � � do � y �� y �� x �� x� � ��

��

� fXg�

Adding P � Q�h�i� we get the following set of constraints

x � n� X ���y�
X x 	� �� X �y ��y �x� ��x�
X ��x 	� ��� y � n

which admits the easy solution X � �x y � n x � ���
Note that� while in the traditional approach there are two steps� i�e� annotating the program

�step left to the user� and producing the veri�cation conditions from the annotated program �algo�
rithmic step�� our algorithm produces in parallel �the schema of� the annotated program and the
veri�cation conditions� the part left to the user is now �nding a solution of the system of equations�

Moreover� the algorithm inserts an annotation only in any point where �keeping in mind the
above explained correspondence between annotations and labels� the denotation of a label would
be recursively de�ned �intuitively� it is possible to jump to this label from the continuation of the
corresponding command��

On a generic call Gen�H�C�R� V �� the algorithm returns Q��F � A� U like above with the di�er�
ence that fX�� � � � � Xng � U n V and � is a �U n V� V ��substitution� The meaning is consequently
generalized �see Theorem ��� below��

The algorithm Gen is given in Fig� �� We say that a command C is wellformed w�r�t� a formula
environment H if H��� is de�ned for all � � FL�C�� Given a substitution � and a set of constraints
F � fPi � Qi j i � ���ng� we write � j� F i� Pih�i � Qih�i is valid� for all i � ���n�

In order to prove the correctness of the algorithm �Theorem ��� below� we need the following
fact and lemma�

Fact ��� For any pair ��� �� of substitutions� ��� �� j� F i� �� j� Fh��i�

The lemma below formally expresses the fact that the result of the algorithm on a generic call
is invariant modulo renaming of the �initially given� free formula variables�

Lemma ��� Let H�C�R�V be a formula environment� a command� a formula and a set of for
mula variables s�t� C is wellformed w�r�t� H and FV�H�
 FV�R� � V � Set Gen�H�C�R�V � �
�Q��F � A� U�� Then� for any �V�W �substitution � s�t� W � �U n V � � ��

Gen�Hh�i� C� Rh�i�W� � �Q�h�i�Fh�i�A�W
���

where W � � W
 �U n V ��

Proof� By structural induction on C� �

Theorem ��� Let H�C�R� V be as in Lemma ��� and P a formula s�t� FV�P � � V � Set
Gen�H�C�R�V � � �Q��F � A� U�� Then� statments � and � are equivalent

�� H � fPg C fRg�

�� There exists a �U n V� V �substitution � s�t� � j� F
 fP � Q�g�

Proof� By structural induction on C� We show two cases �for brievety we omit the third component
of the output� i�e� the annotated command� since it is not relevant for the thesis��

��

Seq We have Gen�H�C��C�� R� V � � �Q��F�
 F�� U�� if Gen�H�C�� R� V � � �Q�F��W � and
Gen�H�C�� Q�W � � �Q��F�� U��

To see that ��� implies ���� assume a proof tree forH � fPg C fRg is given� The last step must
be an instantiation of the �Conc� rule� Therefore� there exists a formula Q� s�t� H � fPg C�

fQ�g and H � fQ�g C� fRg� By inductive hypothesis� there exists a �W nV� V ��substitution ��
s�t� �� j� F�
 fQ� � Qg� Hence� from rule �Conseq� we get also H � fPg C� fQh��ig� From
Lemma ���� Gen�H�C�� Qh��i� V � � �Q�h��i�F�h��i� U

��� where U � � V
 �U nW �� Now� by
inductive hypothesis� there exists a �U �nV� V ��substitution �� s�t� �� j� F�h��i
fP � Qh��ig�
Now� since U � nV � U nW � and from Fact ��� it is clear that ��� �� is a �U nV� V ��substitution
s�t� ��� �� j� F�
 F�
 fP � Q�g� as desired�

The converse implication can be proved analogously�

While We have Gen�H� while B do C�R� V � � �X�F
 fX B � Q�X �B � Rg� U�� if� for
some X � V n V � Gen�H�C�X�V
 fXg� � �Q�F� U��

To see that ��� implies ���� assume given a proof tree for H � fPg while B do C fRg�
Analogously to the case above� we can conclude that there exists a formula I s�t� H � fI
Bg C fIg and the implications P � I and I �B � R hold� By inductive hypothesis�
H � fX Bg C fXg i� there exists a �U n V n fXg� V
 fXg��substitution s�t� j�
F
 fX B � Qg� Then� it is clear that � � � fX �� Ig is a �U n V� V ��substitution s�t�
� j� �F
 fX B � Q�X �B � Rg�
 �P � X��

The converse implication can be proved analogously� �

Note that a set of constraints F � fXi � Qi j i � ���ng represents a functional � � Pred
n � Predn�

Hence� for any substitution � � fXi �� Si j i � ���ng solution of F �i�e� Si � Qih�i� i � ���n��
the tuple S�� � � � � Sn represents� since in Pred we have p � r i� p � r� a pre��xpoint of �� Hence
S�� � � � � Sn gives a set of correct annotations w�r�t� fPg C fRg i� it represents a pre��xpoint of �
and� moreover� P � Q�h�i�

� Conclusion

We have shown that weakest precondition can be obtained as a particular instance of continuation
style semantics taking as �answers	� in the continuation style sense� booleans with a suitable order�
Taking this approach� correctness assertions can be interpreted as inequalities over continuations
and semantic clauses can be taken as starting point for constructing a proof system for a language�
Moreover� the problem of �nding a set of annotations su�cient for proving the correctness of a
program w�r�t� a correctness assertion can be reduced to the problem of �nding a tuple of assertions
denoting a pre�xed point of the functional de�ning the continuation style semantics of the program�

Note that� since the requirement that continuations are strict implies that non termination
gives as answer the bottom element of booleans� the order we have chosen �true � false� leads to
partial correctness �non terminating commands satisfy any postcondition�� In order to get total
correctness� it is enough to consider the inverse order �false � true�� as it was in �
� Anyway� in
this case there is no natural derivation of proof rules from semantic clauses in the cases where the
�xed point operator is used �for instance� the proof rule for the while command uses an ad�hoc
side condition for ensuring termination��

The traditional approach to proof rules for languages with jumps uses a generalized form of
postconditions� i�e� correctness assertions become of the form fpg C ff�� � q�� � � � � �n � qngg where
��� � � � � �n correspond to the possible kinds of termination of C �including a special label � denoting
�normal	 termination�� and q�� � � � � qn are the corresponding postconditions� This corresponds to
the idea that usual correctness assertions are suitable for single�entry� single�exit structures� and
the above form is the natural generalization to single�entry� multiple�exit structures ��� ��

��

This point of view is very useful when we think in a �precondition�driven	 way� i�e� we want to
state� given a precondition p and a command C� which properties are expected to hold when the
execution of C terminates� in some of the possible ways� Anyway� in this way there is no natural
generalization of the notion of weakest precondition�

We take exactly the dual view �indeed� a correctness assertion like above corresponds in our
proof systems to a judgment � � fpg C frg where ���i� � qi for �i 	� �� r � qi for �i � ��� our
approach is �postcondition�driven	� i�e� we want to state� given a postcondition r and a command
C� which property must hold before C and which properties must hold before executing the corre�
sponding handler!command in any case of abnormal termination� in order that the postcondition
r is guaranteed to hold after C�

This paper is intended to be a �rst step in analyzing the relationship between continuation
style semantics and proof rules� and is mainly aimed at �xing the correspondence and showing its
consequences in some well�known cases� Hence the interest is not in the results� which are standard�
but in the new point of view over them� The continuation of our work will be the application of
this point of view to cases where there is no clear idea of how a good proof system should be�
In particular� we are interested in proof systems for the object oriented paradigm� which only
recently have been the subject of some proposal ��� �� We think that our approach could help both
in giving a cleaner view of what should be in this case an axiomatic semantics and in allowing a
simple integration with the treatment of jumps� leading to proof systems suitable for object oriented
languages with exception handling like Java�

References

�� Special issue on continuations� LISP and Symbolic Computation� � and
��!� and ��� �����
�����

�� M� Abadi and K�R�M� Leino� A logic of object�oriented programs� In TAPSOFT ���
 Theory
and Practice of Software Development� number ���� in Lecture Notes in Computer Science�
pages ���"���� Springer Verlag� April ���
�

�� M�A� Arbib and S� Alagi�c� Proof rules for gotos� Acta Informatica� ������"���� ��
��

�� F� Cristian� Correct and robust programs� IEEE Transactions on Software Engineering� SE�
���������"�
�� �����

�� E�W� Dijkstra� A Discipline of Programming� Prentice Hall� Englewood Cil�s� N�J�� ��
��

�� M�J�C� Gordon� Programming Language Theory and its Implementation� Prentice Hall� En�
glewood Cil�s� N�J�� �����

�
 K� Jensen� Connection between Dijkstra�s predicate transformers and denotational continu�
ation semantics� Technical Report DAIMI PB���� Computer Science Dept�� Aarhus Univ��
��
��

�� K�R�M� Leino� Ecstatic� An object�oriented programming language with an axiomatic seman�
tics� In �th Intl� Workshop on Foundations of Object Oriented Languages ����� ���
�

�� K� Lodaya and R�K� Shyamasundar� Proof theory for exception handling in a tasking environ�
ment� Acta Informatica� ���
"��� �����

��� H�R� Nielson and F� Nielson� Semantics with Applications
 A Formal Introduction� John Wiley
Sons� �����

�

��� D�A� Schmidt� Denotational Semantics
 A Methodology for Language Development� Allyn #
Bacon� Inc�� �����

��� G�Winskel� The Formal Semantics of Programming Languages An Introduction� Foundations
of Computing Series� The MIT Press� Cambridge� Massachussets� �����

��

Input

� a formula environment H

� a command C well�formed w�r�t� H

� a postcondition R

� a �nite set of variables V s�t� FV�H�
 FV�R� � V

Output

� a formula Q� �a candidate precondition of C w�r�t� R under H�

� a �nite set of constraints F � fXi � Qi j i � ���ng

� an annotated version A of C where the annotations are X�� � � � � Xn

� a �nite set U of formula variables �U � V
 fX�� � � � � Xng�

Algorithm Gen�H�C�R�V � � �Q��F � A� U�� where�

� Gen�H� skip � R� V � � �R� �� skip � V ��

� Gen�H� I �� E �R� V � � �R �E�I � �� I �� E � V ��

� Gen�H�C��C�� R� V � � �Q��F�
 F�� A��A�� U�
if Gen�H�C�� R� V � � �Q�F�� A��W � and Gen�H�C�� Q�W � � �Q��F�� A�� U��

� Gen�H� if B then C� else C�� R� V � �
�B P� � �B P��F�
 F�� if B then A� else A�� U�

if Gen�H�C�� R� V � � �P��F�� A��W � and Gen�H�C�� R�W � � �P��F�� A�� U�

� Gen�H� whileB do C�R� V � �
�X�F
 fX � �Q B� � �R �B�g� fXg while B do A�U�

if Gen�H�C�X� V
 fXg� � �Q�F�A� U�� for some X � V n V �

� Gen�H� raise��R� V � � �H���� �� raise�� V ��

� Gen�H� trap � in C� with C�� R� V � � �Q��F�
 F�� trap � in A� with A�� U�
if Gen�H�C�� R� V � � �Q�F�� A��W � and Gen�H �Q�� � C�� R�W � � �Q��F�� A�� U��

� Gen�H� goto��R� V � � �H���� �� goto�� V ��

� Gen�H� begin�� � C�� � � � ��n � Cn end� R� V � �
�X��F � beginfX�g �� � A�� � � � � fXng �n � An end� U�

if Gen�H�Ci� Xi��� Vi� � �Qi�Fi� Ai� Vi��� �i � n� and Gen�H�Cn� R� Vn� � �Qn�Fn� An� U��
for some X�� � � � � Xn � V n V � where

V� � V
 fX�� � � � � Xng�
H � H �X����� � � � � Xn��n�
F �
n

i��Fi
 fXi � Qig�

Figure �� The Gen algorithm

��

