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We claim that the continuation style semantics of a programming language can provide a starting point for constructing a proof system for that language. The basic idea is to see weakest precondition as a particular instance of continuation style semantics, hence to interpret correctness assertions (e.g. Hoare triples fpg C frg) as inequalities over continuations. This approach also shows a correspondence between labels in a program and annotations.

Introduction

In the old 70's already, J e n s e n 7 ] noted a strong resemblance between continuation style semantics and weakest precondition. To see the point, consider e.g. the semantic clause usually given for command sequence in continuation style (see e.g. 11, 1 0 ]). C 1 C 2 ] ] cs k = C 1 ] ] cs ( C 2 ] ] cs k), for any k continuation and the corresponding clause de ning weakest precondition 5]: wlp(C 1 C 2 ) r = wlp(C 1 )(wlp(C 2 ) r), for any r postcondition.

The two clauses are formally the same, and an analogous remark can be made for other kinds of commands.

Anyway this similarity, i n 7 ] and later in 11], which proposes its veri cation as an exercise, has only been noticed as a kind of coincidence and, for what we know, never developed in the next-coming literature.

We believe instead that it would be worthwhile to regard this relation as more substantial and potentially contributing to clarify the role of both the approaches in understanding programming languages. In particular, we think that this subject deserves a renewed interest now that continuations have been recognized as an important unifying paradigm for many areas of computer science (see e.g. 1] for a survey). In this paper, our aim is to make a rst step in this direction.

To this end, we rst of all show that axiomatic semantics is just an instance of continuation semantics, obtained taking as \answers", in the continuation style sense, booleans with a suitable order (indeed with this choice continuations turn out to be predicates on states).

A consequence of this fact is that the continuation style semantics of a programming language can be taken as starting point for constructing a proof system for that language. More precisely, we can introduce judgments of the form f pg C frg where p r are continuations and C is a 1 command, corresponding to Hoare triples in their extensional version, i.e. where one does not care about the syntactic representation of predicates 10]. These judgments are interpreted as inequalities p C] ] cs r with the pointwise partial order over continuations hence, the semantic clauses provide a guideline for constructing a proof system for such judgments.

We begin (Sect. 1) illustrating the idea on the standard imperative language for which w eakest precondition is usually de ned (While language in the following). As one can expect, the proof system we get in this case turns out to be Hoare's system. Then (Sect. 2, Sect. 3), we consider two extensions of the language allowing to change the control ow (exceptions and goto's), for which the continuation semantics is especially well-suited. In this case, the application of our idea has some interesting consequences.

Since the continuation style semantics for these languages uses an environment associating continuations with labels, the proof systems we get have judgments of the form f pg C frg where is an environment associating predicates with labels. These proof systems are formally di erent from other extensions of Hoare's logic to jumps proposed in the literature 4, 3 , 9], which a l l i n troduce more complex forms of postconditions in correctness assertions indeed, our analysis shows that these proposals are based on a direct style view of the language (which of course requires a more complex model when control ow is not always sequential).

On the contrary, the proof systems we get are a natural generalization of the standard case. For instance, the rule for a block of labelled commands begin 1 : C 1 : : : n : C n end is exactly the rule for while B do C in the case in which the block i s begin : if B then C goto else skip end.

Moreover, our approach s h o ws a correspondence between labels and annotations in programs. A label, say , is used to denote a speci c point in a program to which it is possible to jump during the execution. An annotation, say P, i s a f o r m ula (i.e. a syntactic representation of a predicate) inserted in a speci c point of a program to denote that some property is expected to hold there. Now, in the continuation style semantics, if : C is a labelled command in a program, then the denotation of in the current e n vironment is C] ] cs r , w i t h r the continuation of C i n t h e particular case where continuations are predicates, C] ] cs r is the weakest precondition of C w.r.t. the postcondition r (under ), hence we can correctly insert before C an annotation representing ( ) (or a stronger condition).

Then, the problem of nding, for a given program, a set of annotations su cient to prove i t s correctness can be reduced to the problem of nding a tuple of predicates which is a pre-xpoint of the functional which de nes the continuation style semantics of the program and which c a n b e expressed within the given language of formulas.

In Sect. 4, we illustrate this idea by giving an algorithm which, inputs a correctness assertion fP g C fRg (in the intensional version, i.e. with P R formulas), and outputs a formula Q 0 and a set of constraints fX i ) Q i j i 2 1::ng, with Q 0 Q 1 : : : Q n formulas with free variables (indeterminates) X 1 : : : X n . The algorithm output is such t h a t e a c h solution (namely, ground substitution = fX i 7 ! S i j i 2 1:

:ng s.t. S i ) Q i h i, i 2 1::n) gives a set of correct annotations for C w.r.t. R in particular Q 0 h i is a correct precondition for C w.r.t. to R, hence fP g C fRg is valid if P ) Q 0 h i.
Finally, the conclusion provides a more detailed comparison with related works and outlines some further research directions.

Deriving Hoare's System

In this section, we illustrate our ideas on the While language handled in the original Hoare's system.

Continuation Semantics of While

First of all, we recall the well-known continuation style semantics of the While language. We report direct semantics too for completeness. Here below o u r c hosen notations.

Notations. We write (A ! B) for the set of the functions from A into B. Application of f to x is denoted by f x , and denotes function composition. For any set A, id A denotes the identity o f A. I f A and B are two cpo's with bottom element ? A and ? B , respectively, then we denote by A ! B] the cpo of the continuous functions from A into B with the point-wise partial order, and by A ! ? B] the cpo of the continuous strict functions (i.e. f such that f ? A = ? B ). Finally, for 2 A ! A], x( ) denotes the least xpoint o f (recall that x( ) = _ 1 n=0 n ? A ).

The direct and continuation style semantics of the While is reported on Fig. 1. We denote by Com, Expr, BExpr, Id the sets of commands, expressions, boolean expressions and identi ers of the language, ranged over by C, E, B and I, respectively by Val the set of values of expressions, and by Answer a cpo with bottom element ? Answer . Only syntax and semantics of commands are speci ed.

We recall the standard results about the well-de nedness of continuation style semantics of While and its relation with direct style semantics (see e.g. 11, 1 0 ] for the proof).

Proposition 1.1 For any command C of While,

1. C] ] cs 2 Cont ! Cont]
2. for any r 2 Cont, C] ] cs r = r C] ] ds .

Predicates as Continuations

Take a s Answer the cpo Bool of booleans values true false with the (unusual) order induced by true < false. This way, ? Answer = true. This amounts to interpreting p q as the boolean implication p ) q. We s e t Pred = State ? ! ? Bool] continuations can be seen in this case as predicates, and the resulting point-wise partial order in Pred is that p q i p is a stronger condition than q.

Let us now recall the de nition of weakest (liberal) precondition wlp of a command C w.r.t. a postcondition r (where r 2 (State ! f true falseg)) wlp(C)r s = true i C] ] ds s = ? or C] ] ds s = s 0 s 0 6 = ? and r s 0 = true An equivalent more concise de nition can be given taking r 2 State ? ! ? Bool], wlp(C)r s = r ( C] ] ds s):

Note that the assumption that continuations (predicates in this case) are strict corresponds to the intuitive idea that a non terminating command veri es any postcondition, since we are considering partial correctness. Now, from Prop. 1.1, we easily get that: Fact 1.2 For any command C, C] ] cs = wlp(C). Indeed, it is easy to see that, with this choice of Answer, s e m a n tic clauses in continuation style are exactly usual clauses de ning weakest precondition.

Boolean connectives. Usual boolean connectives can be easily extended to Pred, as summarized below. (we omit the su x when clear from the context) cond(b q 1 q 2 ) ? State = ? Answer , cond(b q 1 q 2 ) s = q 1 s, i f s 6 = ? State and b s = true cond(b q 1 q 2 ) s = q 2 s, i f s 6 = ? State and b s = false False ? = true False s = false, for any s 6 = ? For any q 2 Pred, ( :q)? = true (:q)s = :(q s ), for any s 6 = ?

For any q 1 q 2 2 Pred, ( q 1 ^q2 )? = true (q 1 ^q2 )s = q 1 s ^q2 s, for any s 6 = ? _ and ) can be de ned analogously (q 1 ) q 2 can be equivalently de ned as (:q 1 ) _ q 2 as usual).

Note that True and False are the bottom and top element o f Pred, respectively. Moreover, we have q 1 ) q 2 i q 1 q 2 . Finally, it is easy to see that the following fact holds.

Fact 1.3 1. cond Bool (b q 1 q 2 ) = ( b ^q1 ) _ (:b ^q2 ).

2. p ) cond Bool (b q 1 q 2 ) i p ^b ) q 1 and p : b ) q 2 .

Hoare's System

We de ne now correctness assertions as triples hp C ri, written fpg C frg, w h e r e p r are continuations and C is a command. We s a y that a correctness assertion fpg C frg is valid, and write j = fpg C frg, i p C] ] cs r. Our subsequent aim is to derive, starting from the semantic clauses, a (sound and complete w.r.t. validity) proof system having judgments of the form f pg C frg. T o this end, we nd an equivalent condition for p C] ] cs r, for each kind of command.

Proposition 1.4 For any pair of continuations p r

1. p skip ] ] cs r i p r 2. p I := E ] ] cs r i p r E] ]=I] 3. p C 1 C 2 ] ] cs r i p C 1 ] ] cs q and q C 2 ] ] cs r, for some q 2 Cont 4. p if B then C 1 else C 2 ] ] cs r i p ^ B] ] C 1 ] ] cs r and p : B] ] C 2 ] ] cs r 5. p while B do C] ] cs r i p i, i ^ B] ] C] ] cs i and i : B] ] r, for some i 2 Cont.
Proof.

1. Immediate. 2. Immediate.

3. From the semantic clause, p C 1 C 2 ] ] cs r implies p C 1 ] ] cs q and q C 2 ] ] cs r, for some q 2 Cont (q = C 2 ] ] cs r). Anyway, it is easy to see that the opposite implication also holds, since C 1 ] ] cs is monotonic (Prop. 1.1-(1)). Hence the result.

4. From the semantic clause,

p if B then C 1 else C 2 ] ] cs r i p cond( B] ] C 1 ] ] cs r C 2 ] ] cs r) i p ^ B] ] C 1 ] ] cs r and p : B] ] C 2 ] ] cs r
The result follows. 

= cond( B] ] C] ] cs q r) (Skip) p ) r fpg skip frg (Assign) p ) r E] ]=I] fpg I := E frg (Conc) fpg C 1 fqg fqg C 2 frg fpg C 1 C 2 frg (If) fp ^ B] ]g C 1 frg fp : B] ]g C 2 frg fpg if B then C 1 else C 2 frg (While) p ) i fi ^ B] ]g C fig i : B] ] ) r fpg while B do C frg
Set { = w r , a n d b = B] ]. Since { is a xpoint, { = cond(b C] ] cs { r), which implies { ^b C]
] cs { and { : b r. Hence the necessary condition. It is easy to see that the opposite implication also holds. Indeed, if i ^b C] ] cs i and i : b r hold for some i, then i cond(b C] ] cs i r) = i , which means that i is a prexpoint of the function . Then, since { = w r is the least xpoint o f , i w r , hence by transitivity p w r , hence the result.

2

Altogether, we get the following result. 

2

The proof system in Fig. 1 is Hoare's system in its extensional version , i.e. where preconditions and postconditions in Hoare's triples are assumed to be predicates (semantic entities) and not formulas (syntactic representations of predicates), hence a result of completeness can be obtained (see e.g. 10] for a discussion about this di erence). Hence, Prop. 1.4 states nothing new. Anyway, n o t e that the results and the proof itself are formulated using, as long as possible, only general properties of the continuation style semantics the only point where the particular choice of predicates as continuations plays a role is in allowing to rewrite the conditional operator in terms of the logical connectives.

Analogously, the following consequence rule (Conseq) p 0 ) p fpg C frg r ) r 0 fp 0 g C fr 0 g , which i s g i v en in some equivalent f o r m ulation of Hoares's system, can be easily obtained from the general properties of the continuation style semantics, as shown below.

Fact 1.6 For any p p 0 r r 0 continuations s.t. p 0 p and r r 0 , fpg C frg implies fp 0 g C fr 0 g for any command C.

Proof. The fact that p 0 C] ] cs r holds by transitivity the fact that C] ] cs r C] ] cs r 0 holds since C] ] cs is monotonic. 2

2 Proof Rules for Exceptions

In this section and the following one, we extend the language While by constructs allowing a non sequential control of ow and show that, again, the continuation style semantics leads to a proof system.

Let us rst consider an exception mechanism through an extension Excp of the While language with two commands: trap and raise.

Informally, the execution of trap in C 1 with C 2 consists in the execution of C 1 until some raise command is encountered in this case, the normal continuation is abandoned and the command C 2 (called a handler) is executed instead. We c a l l a label for keeping a uniform terminology w.r.t. the goto's case illustrated in the next section.

The continuation style semantics of Excp is given in Fig. 2. We d e n o t e b y Label the set of labels (exception names in this case), ranged over by , and by ContEnv the set of the environments associating continuations with labels, ranged over by . The view of continuation style semantics as axiomatic semantics still holds in the following sense. The notion of weakest precondition of a command w.r.t. a postcondition is now parameterized by an environment associating predicates with labels: C] ] cs r is the weakest precondition of C w.r.t. r under . Indeed, whenever C contains a raise command with free, the weakest precondition of C depends on the weakest precondition w.r.t. r of the corresponding handler, which i s g i v en by .

For , 0 environments, set 0 i 8x (x) 0 (x). The following proposition states that the continuation style semantics of Excp is well-de ned and associates with each command a function monotonic in its rst argument (the environment).

Proposition 2.1 For any command C of Excp

1. for any environment , C] ] cs 2 Cont ! Cont] 2. if 0 then C] ] cs C] ] cs 0 .
Proof. By structural induction, using the fact that the function 7 ! C] ] cs is continuous. 2

Analogously to what we h a ve done for the While language, we n o w d e r i v e from the semantic clauses a proof system for the extended language. In this case, according to the continuation style semantics of a command, the validity of correctness assertions depends on a continuation environment: we s a y that fpg C frg is valid under , and write j = fpg C fqg, i p C] ] cs r . Analogously, judgments of the proof system are of the form f pg C frg.

Proposition 2.2 For any pair of continuations p, r and any continuation environment :

1. p raise ] ] cs r i p ( ) 2. p trap in C 1 with C 2 ] ] cs r i q C 2 ] ] cs r and p C 1 ] ] cs q= ] r, for some q 2 Cont.

Proof. For each case: Syntax C ::= : : :j raise j trap in C 1 with C 2 Continuation environments ContEnv = ( Label ! Cont) ; ;=;] : ContEnv Cont Label ! ContEnv substitution on continuation environments q= ] ( ) = q, q= ] ( ) = ( ), for 6 = q 1 = 1 : : : q n = n ] stands for q 1 = 1 ] : : : q n = n ]

Continuation semantics

;] ] cs : 2. From the semantic clause, p trap in C 1 with C 2 ] ] cs r implies p C 1 ] ] cs ( q= ]) r, f o r some q (q = C 2 ] ] cs r ). Anyway, it is easy to see that the opposite implication also holds. Indeed, set q = C 2 ] ] cs r i f p C 1 ] ] cs ( q= ]) r, for some q s.t. q q, then q= ] q= ] since the order on ContEnv is de ned pointwise then C 1 ] ] cs q= ] C 1 ] ] cs q= ] since C 1 ] ] cs is monotonic (Lemma 2.1-(2)), and in particular C 1 ] ] cs q= ] r C 1 ] ] cs q= ] r.

Com ! (ContEnv ! Cont ! Cont]) skip ] ] cs = id Cont I := E ] ] cs = r:r E] ]=I] C 1 C 2 ] ] cs = C 1 ] ] cs C 2 ] ] cs if B then C 1 else C 2 ] ] cs = cond( B] ] ds C 1 ] ] cs C 2 ] ] cs ) while B do C] ] cs = x( f: r: cond( B] ] cs C] ] cs (f r ) r )) raise ] ] cs = r: ( ) trap in C 1 with C 2 ] ] cs = r: C 1 ] ] cs ( C 2 ] ] cs r )= ] r
Hence the result.

2

From the above proposition, it is immediate to derive the proof rules for raise and trap commands, given in Table 2. Note that by the rule (Raise) we can deduce in particular the judgment f ( )g raise fFalseg, expressing the fact that after a raise command the normal continuation (postcondition) is abandoned.

For the commands of the While language, the continuation environment is not signi cant and must be simply propagated from the premises to the consequence of proof rules. Formally, let us keep the same names for the new proof rules obtained by replacing every judgment of the form f pg C frg by a judgment f pg C frg. W e can state a soundness and completeness result for Syntax C ::= : : :j goto j begin 1 : C 1 : : : n : C n end

Continuation semantics

goto ] ] cs r = ( ) begin 1 : C 1 : : : n : C n end]] cs r = q 1 , where h q 1 : : : q n i = x( ), hq 1 : : : q n i h C 1 ] ] cs q 2 : : : C n ] ] cs r i, w i t h q 1 = 1 : : : q n = n ].

Figure 3: Continuation style semantics of the Goto language (Goto) p ) ( ) f pg goto frg (Block) p ) q 1 f q 1 g C 1 fq 2 g f q n g C n frg f pg begin 1 : C 1 : : : n : C n end frg q 1 = 1 : : : We consider now a language Goto which extends Excp by an unrestricted jump mechanism.

q n = n ]
Informally, the execution of a block of labelled commands begin 1 : C 1 : : : n : C n end consists of the execution of the sequence of commands C 1 : : : C n until some goto i command is encountered in this case, the normal continuation is abandoned and the execution jumps to C i . Note that any C i can contain in turn blocks of labelled commands, with the usual scoping rules for labels. The continuation style semantics of Goto is given in Fig. 3. The view of continuation style semantics as axiomatic semantics holds as already explained for Excp, i.e. the weakest precondition w.r.t. r under of a command containing some goto with free depends on ( ), which is the weakest precondition of the command labelled w.r.t. r under . Anyway, in this case the dependency is mutually recursive, hence the weakest precondition is de ned as the least xpoint of an equation, as for the while command. Correspondingly, w e get the rule (Block) below, where q 1 : : : q n play the same role of \indeterminates" as the invariant in the rule (While).

The following proposition states that the continuation semantics of the Goto language is wellde ned and associates a function monotonic in its rst argument (the continuation environment), with each command.

Proposition 3.1 For any command C of the Goto language 1. for any continuation environment , C] ] cs 2 Cont ! Cont] 2. if

0 then C] ] cs C] ] cs 0 .
Proof. By structural induction, using the fact that, for all 1 : : : n labels and continuation environment, the function hq 1 : : : q n i 7 ! C] ] cs q 1 = 1 : : : q n = n ] i s c o n tinuous. 2

Again, we shall derive from the semantic clauses a proof system for the extended language, by the following proposition: Proposition 3.2 For any pair of continuations p, r and any continuation environment : 1. p goto ] ] cs r i p ( ) 2. p begin 1 : C 1 : : : n : C n end]] cs r i p q 1 , q 1 C 1 ] ] cs q 2 , . . . , q n C n ] ] cs r , with q 1 = 1 : : : q n = n ], f o r s o m e q 1 : : : q n 2 Cont.

Proof. For each case: 1. Immediate.

2. Seth q 1 : : : q n i = x( ). Since h q 1 : : : q n i is a xpoint of (in fact, the least one), q 1 C 1 ] ] cs q 2 : : : q n C n ] ] cs r with q 1 = 1 : : : q n = n ]. Hence, from the semantic clause, the necessary condition holds. It is easy to see that the opposite implication also holds. Indeed, assume hq 1 : : : q n i is s.t. q i C i ] ] cs q i+1 , for i 2 1::n (q n+1 = r), where q 1 = 1 : : : q n = n ]. Then r hq 1 : : : q n i = hq 1 : : : q n i hence hq 1 : : : q n i is a pre-xpoint of . Since the least xpoint o f i s h q 1 : : : q n i, hq 1 : : : q n i h q 1 : : : q n i, hence by transitivity p q 1 , hence the result. 2

From the above proposition, it is immediate to derive the proof rules for goto and block commands, given in Table 3. Note that, as for rule (Raise), we can deduce in particular the judgment f ( )g goto fFalseg, b y the rule (Goto).

We can state a soundness and completeness result for the extended proof system. 

(While) and (Trap) Rules as Derived Rules

In this subsection, we s h o w that the proof rules given for the while and trap command can be seen as a specialization of the rule given for the block of labelled commands.

To this end, we de ne in Table 4 a translation T from the whole set of the commands of Goto to the set of the commands not containing while and trap commands. This result could be proved in an indirect way b y showing that the translation preserves the continuation style semantics of commands and by the soundness and completeness of the proof system. We g i v e instead a direct proof which shows that the proof rules (While) and (Trap) can be obtained as derived rules. We need the following lemma. While Let us consider the judgment f pg while B do C frg. By the translation, this judgment becomes f pg begin : if B then T (C) goto else skip end frg, for some 6 2 FL(C).

We get the following proof tree p ) q 1 1 q 1 ^ B] ] ) r q 1 = ] f q 1 : B] ]g skip frg q 1 = ] f q 1 g if B then T (C) goto else skip frg f pg begin : if B then T (C) goto else skip end frg 11 where the proof tree 1 is . . . q 1 = ] f q 1 ^ B] ]g T (C) fqg q ) q 1 q 1 = ] f qg goto frg q 1 = ] f q 1 ^ B] ]g T (C) goto frg By Lemma 3.5 q 1 = ] f q 1 ^ B] ]g T (C) fqg i f q 1 ^ B] ]g T (C) fqg. N o w, it is easy to see that f q 1 ^ B] ]g T (C) fqg and q ) q 1 for some q 2 Cont i f q 1 ^ B] ]g T (C) fq 1 g. B y inductive h ypothesis, from this last judgment, we get a proof for f q 1 ^ B] ]g C fq 1 g. In summary, w e get the following proof tree: p ) q 1 . . . f q 1 ^ B] ]g C fq 1 g q 1 : B] ] ) r f pg while B do C frg which is the same obtained by rule (While).

Trap Let us consider the judgment f pg trap in C 1 with C 2 frg. By the translation, this judgment becomes f pg begin : ( T (C 1 = ]) goto !) : T (C 2 ) ! : skip end frg, for some !6 2 FL(C 1 ) FL(C 2 ). We get the following proof tree, where stands for the environment q 1 = q 2 = q 3 =!] p ) q 1 2 . . . f q 2 g T (C 2 ) fq 3 g q 3 ) r f q 3 g skip frg f pg begin : ( T (C 1 = ]) goto !) : T (C 2 ) ! : skip end frg where the proof tree 2 is . . . f q 1 g T (C 1 = ]) fqg q ) q 3 f qg goto ! fq 2 g f q 1 g T (C 1 = ]) goto ! fq 2 g By Lemma 3.5 f q 1 g T (C 1 = ]) fqg i q 2 = ] f q 1 g T (C 1 ) fqg, and f q 2 g T (C 2 ) fq 3 g i f q 2 g T (C 2 ) fq 3 g. Now, it is easy to see that p ) q 1 and q 2 = ] f q 1 g T (C 1 ) fqg and q ) q 3 and q 3 ) r, for some q 1 q q 3 2 Cont, i q 2 = ] f pg T (C 1 ) frg. Hence, by inductive h ypothesis, we get proofs for q 2 = ] f q 1 g C 1 fqg and q 2 = ] f pg T (C 1 ) frg.

In summary, w e get the proof tree . . .

q 2 = ] f pg C 1 frg . . . f q 2 g C 2 frg f pg trap in C 1 with C 2 frg
which is the same obtained by rule (Trap).

4 Annotations as Pre-xpoints

In this section we analyse the consequences of our point of view on a more practical issue, i.e. the problem of annotating a program in such a w ay that its correctness can be proved in a semiautomatic way.

First of all, talking about annotations requires to turn from the extensional approach w e h a ve taken until now (correctness assertions as triples fpg C frg with p r predicates, i.e. semantic entities) to the intensional approach, where correctness assertions are triples fP g C fRg with P R formulas in some given language Form. Analogously, w e consider syntactic representations of continuation environments, ranged over by H, which are nite maps associating a formula with a label. We call them formula environments.

A formula P is semantically interpreted as a predicate P] ] 2 Pred, and this interpretation naturally extends to formula environments. The validity of a correctness assertion is now de ned by H j = fP g C fRg i H] ] j = f P] ]g C f R] ]g the proof rules given in the preceding sections still work in the intensional version. Note that, anyway, the completeness of the proof system now h o l d s only if the given language of formulas is expressive enough for representing all the valid assertions (see e.g. 12] for a detailed explanation of this point).

Coming now to annotations, we recall that they are formulas inserted in speci c points in a program to indicate that some property is expected to hold there. Annotations can be used just for documentation purposes or as an help for proving the correctness of a program w.r.t. to a given speci cation. Indeed, the task of proving a correctness assertion fP g C fRg can be in principle reduced to prove the validity o f P ) wlp(C)R a n yway, wlp(C)R could be either non expressible in Form or expressible, but in a very convolute way (that is tipically the case when C is a command whose semantics is expressed by a xpoint equation, like while and block commands in Goto).

In this case, the usual approach is to require the user to insert a certain number of annotations in C, getting an annotated command A then, it is possible to extract from fP g A fRg a s e t VC(fPg A fRg) o f f o r m ulas in Form, called veri cation conditions, s.t. their validity guarantees the validity of the original assertion fP g C fRg. W e illustrate the idea on an example, referring to 6, 12] for the formal de nitions. The validity of the assertion fx = ng C fy = ng, with n positive integer constant, C = y := 0 w h i l e x 6 = 0 do ( y := y + 1 x := x ; 1 ) can be established annotating C as follows A = y := 0 fx + y = n ^x 0g while x 6 = 0 do fx + y = n ^x 0g ( y := y + 1 x := x ; 1 ) . Indeed, the veri cation conditions VC(fx = ng A fy = ng) turn out to be the formulas x = n ) x + 0 = n ^x 0, x + y = n ^x 0 ^x 6 = 0 ) x + y = n ^x 0, (x + y = n ^x 0) : (x 6 = 0 ) ) y = n whose validity can be immediately proved.

Note that the task of choosing correct annotations is completely left to the user: one could wrongly annotate the program, and in this case obtain in the veri cation conditions some non valid formula.

Note moreover that the user is required to insert one annotation for each while command, written while B do fP g C to stress that P is an invariant, and one annotation for each command sequence, written C 1 fP g C 2 (unless C 2 is a skip or an assignment command).

The aim of this section is to present a quite di erent approach to the problem of nding correct annotations, based on the intuition that there is a correspondence between annotations and labels in programs. We rst explain this correspondence.

If a command C has a label, say , then, as already pointed out, denotes in the current e n vironment the continuation semantics (weakest precondition) of C w.r.t. the current continuation (postcondition). Hence a label can be always correctly replaced by its denotation.

Then, the problem of nding a set of annotations for a program su cient for proving its correctness can be reduced to the problem of nding a tuple of formulas which denotes a pre-xpoint of the functional which de nes the continuation style semantics (weakest precondition) of the program.

Starting from this idea, we propose below an algorithm Gen for nding a set of annotations for a program which w orks quite di erently from the traditional one.

First of all, we let the syntax below f o r Form.

P ::= true j false j P 1 ^P2 j P 1 _ P 2 j : P j E 1 relop E 2 j X j P E=I]

Note that in the language of formulas we allow formula variables, ranged over by X, t a k en in some denumerably in nite set V, and formulas of the form P E=I], expressing the replacement o f a n identi er I by an expression E in a formula P. In the following we assume that formulas are always reduced in such a w ay that replacements are only of the form X E 1 =I 1 ] : : : E n =I n ] ( n 0). We denote by Form(V ) the set of the formulas with free formula variables in V , f o r V V . Moreover, we s a y that : V ! Form(V) i s a ( V W)-substitution i is the identity o ver V n V and, for any X 2 V , (X) 2 Form(W). We d e n o t e b y Ph i the result of applying the substitution to the formula P (modulo reduction of replacements explained above).

For any ( V 1 W 1 )-substitution 1 and (V 2 W 2 )-substitution 2 , the

(V 1 V 2 (W 1 n V 2 ) W 2 )- substitution 1 2 is de ned by ( 1 2 )(X) = 1 (X)h 2 i if X 2 V 1 , 2 (X) i f X 2 V 2 n V 1 .
Formula variables will be used in the algorithm to denote indeterminates in the xpoint equation de ning the continuation style semantics of a program.

The algorithm Gen takes in input four parameters: a formula environment H, a command C, a postcondition R and a nite set V of (already used) formula variables. The initial call on a closed (i.e. without free labels) command C and a closed (i.e. without free formula variables) postcondition R will be Gen( C R ). In a generic call, say Gen(H C R V), C will only contain free labels which h a ve an associated formula in H, a n d H and R will only contain free formula variables in V .

The algorithm on an initial call Gen( C R ), returns Q 0 F A U , w h e r e U = fX 1 : : : X n g is a nite set of formula variables, F is a set of constraints fX i ) Q i j i 2 1::ng, Q 0 Q 1 : : : Q n 2 Form(U) and A is an annotated version of C where the annotations are X 1 : : : X n .

The expected meaning is that, for any ( U )-substitution fX i 7 ! S i j i 2 1::ng \solution" of F, i . e . s.t. S i ) Q i h i, f o r i 2 1::n , Q 0 h i is a precondition for C w.r.t. R. Thus, given a correctness assertion fP g C fRg, w e can conclude the validity of this assertion if, moreover, P ) Q 0 h i.

In other words, the algorithm generates simultaneously (a schema of) an annotated version of C and the corresponding set of veri cation conditions, which c o n tain free formula variables. Then a correctly annotated version of C is obtained for any instantiation of these variables which makes the veri cation conditions valid.

For instance, on the example above the algorithm returns the tuple:

X 0=y], f X ) (X y + 1 =y] x ; 1=x] ^x 6 = 0 ) _ (y = n : (x 6 = 0 ) ) g, y := 0 fXg while x 0 do ( y := y + 1 x := x ; 1 ) ,

Seq We h a ve Gen(H C 1 C 2 R V ) = ( Q 0 F 1 F 2 U ), if Gen(H C 2 R V ) = ( Q F 2 W ) and Gen(H C 1 Q W ) = ( Q 0 F 1 U ).
To see that (1) implies (2), assume a proof tree for H f Pg C fRg is given. The last step must be an instantiation of the (Conc) rule. Therefore, there exists a formula Q 0 s.t. H f Pg C 1 fQ 0 g and H f Q 0 g C 2 fRg. By inductive h ypothesis, there exists a (W nV V)-substitution 2 s.t. 2 j = F 2 f Q 0 ) Qg. Hence, from rule (Conseq) we get also H f Pg C 1 fQh 2 ig. F rom Lemma 4.2, Gen(H C 1 Q h 2 i V ) = ( Q 0 h 2 i F 1 h 2 i U 0 ), where U 0 = V (U n W). Now, by inductive h ypothesis, there exists a (U 0 nV V)-substitution 1 s.t. 1 j = F 1 h 2 i fP ) Qh 2 ig. Now, since U 0 n V = U n W, and from Fact 4.1 it is clear that 2 1 is a (U n V V)-substitution s.t. 1 2 j = F 1 F 2 f P ) Q 0 g, as desired.

The converse implication can be proved analogously.

While We h a ve Gen(H while B do C R 

V ) = ( X F f X ^B ) Q X : B ) Rg U ), if, for some X 2 V n V , Gen(H C X V f Xg) = ( Q F U).
V n f Xg V f Xg)-substitution s.t. j = F f X ^B ) Qg. Then, it is clear that = fX 7 ! Ig i s a ( U n V V)-substitution s.t. j = ( F f X ^B ) Q X : B ) Rg) (P ) X).
The converse implication can be proved analogously.

2 Note that a set of constraints F = fX i ) Q i j i 2 1::ng represents a functional : Pred n ! Pred n . Hence, for any substitution = fX i 7 ! S i j i 2 1::ng solution of F (i.e. S i ) Q i h i, i 2 1::n), the tuple S 1 : : : S n represents, since in Pred we h a ve p ) r i p r, a pre-xpoint of . Hence S 1 : : : S n gives a set of correct annotations w.r.t. fP g C fRg i it represents a pre-xpoint o f and, moreover, P ) Q 0 h i.

Conclusion

We h a ve shown that weakest precondition can be obtained as a particular instance of continuation style semantics taking as \answers", in the continuation style sense, booleans with a suitable order. Taking this approach, correctness assertions can be interpreted as inequalities over continuations and semantic clauses can be taken as starting point for constructing a proof system for a language. Moreover, the problem of nding a set of annotations su cient for proving the correctness of a program w.r.t. a correctness assertion can be reduced to the problem of nding a tuple of assertions denoting a pre xed point of the functional de ning the continuation style semantics of the program.

Note that, since the requirement t h a t c o n tinuations are strict implies that non termination gives as answer the bottom element of booleans, the order we h a ve c hosen (true < false) leads to partial correctness (non terminating commands satisfy any postcondition). In order to get total correctness, it is enough to consider the inverse order (false < true), as it was in 7]. Anyway, i n this case there is no natural derivation of proof rules from semantic clauses in the cases where the xed point operator is used (for instance, the proof rule for the while command uses an ad-hoc side condition for ensuring termination).

The traditional approach to proof rules for languages with jumps uses a generalized form of postconditions, i.e. correctness assertions become of the form fpg C ff 1 : q 1 : : : n : q n gg where 1 : : : n correspond to the possible kinds of termination of C (including a special label denoting \normal" termination), and q 1 : : : q n are the corresponding postconditions. This corresponds to the idea that usual correctness assertions are suitable for single-entry, single-exit structures, and the above form is the natural generalization to single-entry, m ultiple-exit structures [START_REF] Abadi | A logic of object-oriented programs[END_REF][START_REF] Leino | Ecstatic: An object-oriented programming language with an axiomatic semantics[END_REF]. This point o f v i e w i s v ery useful when we think in a \precondition-driven" way, i.e. we w ant t o state, given a precondition p and a command C, which properties are expected to hold when the execution of C terminates, in some of the possible ways. Anyway, in this way there is no natural generalization of the notion of weakest precondition.

We take exactly the dual view (indeed, a correctness assertion like a b o ve corresponds in our proof systems to a judgment f pg C frg where ( i ) = q i for i 6 = , r = q i for i = ): our approach is \postcondition-driven", i.e. we w ant t o s t a t e , g i v en a postcondition r and a command C, which property m ust hold before C and which properties must hold before executing the corresponding handler/command in any case of abnormal termination, in order that the postcondition r is guaranteed to hold after C.

This paper is intended to be a rst step in analyzing the relationship between continuation style semantics and proof rules, and is mainly aimed at xing the correspondence and showing its consequences in some well-known cases. Hence the interest is not in the results, which are standard, but in the new point of view over them. The continuation of our work will be the application of this point of view to cases where there is no clear idea of how a good proof system should be.

In particular, we a r e i n terested in proof systems for the object oriented paradigm, which only recently have been the subject of some proposal 2, 8]. We think that our approach could help both in giving a cleaner view of what should be in this case an axiomatic semantics and in allowing a simple integration with the treatment of jumps, leading to proof systems suitable for object oriented languages with exception handling like J a va.
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 1 Figure 1: Direct and continuation style semantics for the While language.
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 5 Set w = while B do C] ] cs . F rom the semantic clause, w is the least xpoint of the functional de ned by f r = cond( B] ] C] ] cs (f r ) r ): Whence, w r is the least xpoint of the continuous function de ned by q
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 2 Figure 2: Continuation style semantics of the Excp language
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  We d e n o t e b y FL(C) the set of the free labels in a command C, de ned in the usual way, and by C = ] the command obtained from C by substituting with in the usual way ( conversion).T ( skip ) = skip T ( I := E ) = I := E T (C 1 C 2 ) = T (C 1 ) T (C 2 ) T (if B then C 1 else C 2 ) = if B then T (C 1 ) else T (C 2 )T (while B do C) = begin : if B then T (C) goto else skip end for some 6 2 FL(T (C)) T (raise ) = goto T (trap in C 1 with C 2 ) = begin : ( T (C 1 = ]) goto !) : T (C 2 ) ! : skip end for some !6 2 FL(T (C 1 )) FL(T (C 2 )) T (goto ) = goto T (begin 1 : C 1 : : : n : C n end) = begin 1 : T (C 1 ) : : : n : T (C n ) end

Lemma 3 . 5

 35 For any C command of Goto, FL(C) = FL(T (C)) for any continuation environment, p r continuations, 6 2 FL(C), { q= ] f pg C frg i f pg C frg { q= ] f pg C = ] frg i q= ] f pg C frg. Proof. By structural induction. 2 Proof of Theorem 3.4 By structural induction. We s h o w the non trivial cases.
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 1 Proof system for the While language.

Table 2 :

 2 Additional rules for the Excp language 1. Immediate.
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 3 Additional rules for the Goto language the extended proof system.

Proposition 2.3 If ; `f;g ; f;g ContEnv Cont Com Cont is the relation inductively de ned by the previous proof rules plus (Raise) and (Tra p ) i n T able 2, then, for any 2 ContEnv, C command of Excp, p r continuations, f pg C frg i j = fpg C frg Proof. By structural induction and Prop. 2.2. 2 3 Proof Rules for Goto's

Table 4 :

 4 Elimination of while and trap commandsTheorem 3.4 For any continuation environment, C command of Goto, p r continuations

f pg C frg i f pg T (C) frg:

  To see that (1) implies (2), assume given a proof tree for H f Pg while B do C fRg. Analogously to the case above, we can conclude that there exists a formula I s.t. H f I Bg C fIg and the implications P ) I and I : B ) R hold. By inductive h ypothesis, H f X ^Bg C fXg i there exists a (U n

f Xg.

Adding P ) Q 0 h i, w e get the following set of constraints x = n ) X 0=y], X ^x 6 = 0 ) X y + 1 =y] x ; 1=x], X : (x 6 = 0 ) ) y = n which admits the easy solution X = ( x + y = n ^x 0). Note that, while in the traditional approach there are two steps, i.e. annotating the program (step left to the user) and producing the veri cation conditions from the annotated program (algorithmic step), our algorithm produces in parallel (the schema of) the annotated program and the veri cation conditions the part left to the user is now nding a solution of the system of equations.

Moreover, the algorithm inserts an annotation only in any point where (keeping in mind the above explained correspondence between annotations and labels) the denotation of a label would be recursively de ned (intuitively, it is possible to jump to this label from the continuation of the corresponding command).

On a generic call Gen(H C R V), the algorithm returns Q 0 F A Ulike a b o ve with the di erence that fX 1 : : : X n g = U n V and is a (U n V V)-substitution. The meaning is consequently generalized (see Theorem 4.3 below).

The algorithm Gen is given in Fig. 4. We s a y that a command C is well-formed w.r.t. a formula environment H if H( ) is de ned for all 2 FL(C). Given a substitution and a set of constraints F = fP i ) Q i j i 2 1::ng, w e write j = F i P i h i ) Q i h i is valid, for all i 2 1::n.

In order to prove the correctness of the algorithm (Theorem 4.3 below) we need the following fact and lemma. Fact 4.1 For any pair 1 2 of substitutions, 1 2 j = F i 2 j = Fh 1 i.

The lemma below formally expresses the fact that the result of the algorithm on a generic call is invariant modulo renaming of the (initially given) free formula variables. Lemma 4.2 Let H C R V be a formula environment, a command, a formula and a set of formula variables s.t. C is well-formed w.r.t. H and FV(H) FV(R) V . S e t Gen(H C R V) = (Q 0 F A U ). Then, for any (V W)-substitution s.

Proof. By structural induction on C. 2 Theorem 4.3 Let H C R V be a s i n L emma 4.2 and P a formula s.t. FV(P) V . Set Gen(H C R V) = ( Q 0 F A U ). Then, statments 1 and 2 are e quivalent:

1. H f Pg C fRg. 2. There e x i s t s a (U n V V)-substitution s.t. j = F f P ) Q 0 g.

Proof. By structural induction on C. W e s h o w t wo cases (for brievety w e omit the third component

of the output, i.e. the annotated command, since it is not relevant for the thesis). Input a f o r m ula environment H a command C well-formed w.r.t. H a postcondition R a nite set of variables V s.t. FV(H) FV(R) V Output a f o r m ula Q 0 (a candidate precondition of C w.r.t. R under H) a nite set of constraints F = fX i ) Q i j i 2 1::ng an annotated version A of C where the annotations are X 1 : : : X n a nite set U of formula variables (U = V f X 1 : : :

Gen(H begin 1 : C 1 : : : n : C n end R V ) = (X 1 F beginfX 1 g 1 : A 1 : : : fX n g n :

for some X 1 : : : X n 2 V n V , where V 1 = V f X 1 : : : X n g, H H X 1 = 1 : : : X n = n ],