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Abstract

We want to perform compile-time analysis of an SPMD program and
place barriers in it to synchronize it correctly, minimizing the runtime
cost of the synchronization. This is the barrier minimization problem.
No full solution to the problem has been given previously.

Here we model the problem with a new combinatorial structure, a nested
family of sets of circular intervals. We show that barrier minimization
is equivalent to finding a hierarchy of minimum cardinality point sets
that cut all intervals. For a single loop, modeled as a simple family
of circular intervals, a linear-time algorithm is known. We extend this
result, finding a linear-time solution for nested circular intervals families.
This result solves the barrier minimization problem for general nested
loops.

Keywords: Barrier synchronization, circular arc graph, nested circular interval graph,
SPMD code, nested loops

Résumé

Le but de ce rapport est de montrer comment, apres une analyse statique
de code, on peut synchroniser, & ’aide de barriéres, un programme de
type SPMD tout en minimisant le temps de synchronisation a I’exécu-
tion. C’est le probleme de minimisation des barrieres. Aucune solution
complete n’a été donnée a ce jour.

Nous modélisons le probleme par une nouvelle structure qui généralise
la notion de graphe d’arcs circulaires, une famille d’intervalles circu-
laires imbriqués. Nous montrons que le probleme de minimisation de
barrieres revient a trouver une hiérarchie d’ensembles, de tailles mini-
males, de points du code (ou placer les barriéres) qui  coupent Z tous
les intervalles. Pour une boucle simple, modélisée par un graphe d’arcs
circulaires traditionnel, un algorithme linéaire est connu. Nous 1’éten-
dons en un algorithme linéaire pour une famille d’intervalles circulaires
imbriqués. Ce résultat résout le probleme de minimisation des barrieres
pour des boucles imbriquées.

Mots-clés: Barriere de synchronisation, graphe d’arcs circulaires, graphe d’intervalles
circulaires imbriqués, code SPMD, boucles imbriquées
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Abstract

We want to perform compile-time analysis of an SPMD program and place barriers in it to
synchronize it correctly, minimizing the runtime cost of the synchronization. This is the barrier
minimization problem. No full solution to the problem has been given previously.

Here we model the problem with a new combinatorial structure, a nested family of sets of
circular intervals. We show that barrier minimization is equivalent to finding a hierarchy of min-
imum cardinality point sets that cut all intervals. For a single loop, modeled as a simple family
of circular intervals, a linear-time algorithm is known. We extend this result, finding a linear-
time solution for nested circular intervals families. This result solves the barrier minimization
problem for general nested loops.

1 The problem of static optimization of barrier synchronization

A multithreaded program can exhibit interthread dependences. Synchronization statements must
be used to ensure correct temporal ordering of accesses to shared data from different threads. Ex-
plicit synchronization is a feature of thread programming (Java, POSIX), parallel shared memory
models (OpenMP), and global address space languages (UPC [15], Co-Array Fortran [7]). Program-
mers write explicit synchronization statements. Compilers, translators, and preprocessors generate
them. In highly parallel machines, synchronization operations are time consuming [1]. It is there-
fore important that we understand the problem of minimizing the cost of such synchronization.
This paper takes a definite step in that direction, beyond what is present in the literature. In
particular, we give for the first time a fast compiler algorithm for the optimal barrier placement
problem for a program with arbitrary loop structure.

The barrier is the most common synchronization primitive. When any thread reaches a barrier,
it waits there until all threads arrive, then all proceed. The barrier orders memory accesses: memory
operations that precede the barrier must complete and be visible to all threads before those that
follow. Even with the best of implementations, barrier synchronization is costly [11]. All threads
wait for the slowest. Even if all arrive together, latency grows as logn with n threads. Finally, the
semantics of a barrier generally must include a memory fence, which causes all memory operations
that precede the barrier to be fully completed and globally visible before the start of any memory
operation that follows the barrier.



Programmers and compilers add barriers to guarantee correctness. Experimental evidence [13]
shows that programmers oversynchronize their codes. This is perhaps because it is hard to write
correct parallel code, free of data races. We would therefore like to be able to minimize the cost
of barriers through compiler optimization. A practical, automatic compiler barrier minimization
algorithm would make it appreciably easier to write fast and correct parallel programs by hand and
to implement other compiler code transformations, by allowing the programmer or other compiler
phases to concentrate on correctness and rely on a later barrier minimization phase for reducing
synchronization cost.

We call an algorithm correct if it places barriers so as to enforce all interthread dependences,
and optimal if it is correct and among all correct barrier placements it places the fewest possible
in the innermost loops, among such it places the fewest at the next higher level, etc. In their
book on the implementation of data parallel languages, Quinn and Hatcher mention the barrier
minimization problem [9]. They discuss algorithms for inner loops but not more complicated
program regions. O’Boyle and Stohr [13] make several interesting contributions. Extending the
work of Quinn and Hatcher, they give an optimal algorithm for an inner loop with worst-case
complexity O(n?), where n is the number of dependences, and an algorithm that finds an optimal
solution for any semiperfect loop nest, i.e., a set of nested loops with no more than one loop nested
inside any other. Its complexity is quadratic in the number of statements and exponential in the
depth of the nest. Finally, they give a recursive, greedy algorithm for an arbitrarily nested loop,
and finally for a whole program. This algorithm is correct, and it will place the fewest possible
barriers into innermost loops. But it doesn’t always minimize the number of barriers in any loop
other than the innermost loops.

We describe (for the first time) and prove correct and optimal an algorithm for barrier min-
imization in a loop nest of arbitrary structure. The algorithm is fast enough to be used in any
practical compiler: it runs in time linear in the size of the program and the number of dependence
relations it exhibits.

Remarks Note that, in this report, we don’t consider two important optimizations related to
synchronization, a) statement reordering and b) the use of lighter weight synchronizations.

a) We have chosen to look at a model of the problem in which barriers must be placed without
other changes to the program. In particular, we disallow reordering of statements and changes to the
loop nesting structure, such as loop fusion and distribution might provide. We do not advocate this
as a global program optimization strategy. Indeed, others have shown that such transformations
may be beneficial. In the end, however, after such transformations have been applied by the
optimizer, the problem that we address here remains: minimize the barriers without other code
modifications. Barrier minimization with statement reordering is a scheduling problem. Barriers
divide time into interbarrier epochs, and the problem is to schedule work into epochs such that the
total length of the schedule is minimized. Callahan [5] and Allen, Callahan, and Kennedy [3] made
basic contributions to the theory of program transformation to reduce schedule length. Note that
statement reordering, even when legal, may not be advisable, principally because it can worsen
memory performance, which is often a critical performance limiter. Thus, the problem at hand,
nested loops with no reordering, is of considerable interest.

b) Some dependence relations do not require barriers: they are enforceable by lighter weight
synchronization, such as event variable synchronization or point-to-point communication (see for
example [14]). These dependences can be so enforced, and the code modified accordingly, before
we consider the barrier minimization problem. It may be necessary, after this is done, to annotate
the code so as to avoid the detection and enforcement (with a barrier) of a dependence that has



been synchronized by event variables. We ignore this possibility for the remainder of the paper,
and assume that barrier is the only primitive used for synchronization.

2 The program model and a statement of the problem

We assume a program with multiple threads that share variables. Each thread executes a sepa-
rate copy of an identical program (single-program, multiple data, or SPMD). Threads know their
own thread identifier (mythread) and the number of threads (threads). By branching on mythread,
arbitrarily complicated MIMD behavior is possible. The threads call a barrier routine to synchro-
nize. Barriers divide time into epochs. The effects of memory writes in one epoch are visible to all
references, by all threads, in the following epochs.

Clearly, if any thread hits a barrier then all threads must execute a barrier or there will be
a deadlock, with some threads waiting forever. So in a correct program, all threads make the
same number of barrier calls. We make a stronger assumption: following Aiken and Gay, we
assume that the program is structurally correct [2], which means that all threads synchronize
by calling the same barrier statement, at the same iteration of any containing loops. The simple
way to understand this is as a prohibition on making a barrier control-dependent on any mythread-
dependent condition. Structural correctness may be a language requirement as in the Titanium
language [17]. Titanium uses the keyword single to allow a programmer to assert that a private
variable takes only thread-independent values. We can also optimize programs in looser SPMD
languages such as UPC [6] and Co-Array Fortran [12] if we discover at compile time that they have
no structural correctness violations.

We don’t view structural correctness as a significant restriction on the programmer’s ability
to express important and interesting parallel algorithms. Here’s why. Aiken and Gay presented
empirical evidence that actual shared-memory parallel applications rarely violate structural cor-
rectness, even in dialects that allow it. They implemented static single-valuedness analysis as well
as the single keyword in an extension of the SPMD language Split-C [4]. In this dialect, they were
able to implement and statically verify the structural correctness of a variety of typical parallel
scientific benchmark codes (cholesky, fft, water, barnes, etc.) by making a small number of uses
of single [2]. Also, structural correctness is a natural property of any SPMD implementation of a
program written originally in a traditional fork/join model of parallelism such as OpenMP. Threads
will synchronize with (one and the same) barrier at the end of each parallel construct.

We can analyze and optimize any program region consisting of a sequence of loops and state-
ments, which we call a properly nested region. We can change any properly nested region into
a single loop nest, by adding an artificial outer loop (with trip count one) around the region. We
can, therefore, take the view from now on that the problem is to minimize barriers in some given
loop nest. In a loop nest, the depth of any statement is the number of loops that contain it. The
loop statement is itself a statement and has a depth: zero if it is the outermost loop. The nesting
structure is a tree, with a node for each loop. The outermost loop is at the root, every other loop
is a child of the loop that contains it. The height of a loop is zero if it is a leaf in the nesting tree,
otherwise it is one greater than the height of its highest child.

We make the following assumptions:

e Loops have been normalized so that the loop counters are incremented by one. We don’t
really need this, but it allows us to simply write ¢ + 1 when we mean the next value of the
loop index 3.

e Loops do not contain IF-THEN-ELSE statements. Otherwise we solve the barrier placement



in each branch first (as O’Boyle and Stohr do), before treating the rest of the loop nest. This
is correct but sub-optimal. Therefore, our algorithm is optimal only for a loop nest with no
dependences between statements in IF-THEN-ELSE.

e There are no zero-trip loops. This ensures that a barrier placed in the body of a loop L
will enforce any dependence from a statement executed before L to another executed after L.
Again, this assumption simplifies the discussion, but it is not really necessary for correctness.
This because we can assume this property, solve the barrier placement problem, then re-
analyze the program and determine those loops containing a barrier that enforces such a
“long” dependence (from before the loop to after it) and that may possibly be zero-trip, and
insert an alternative for the case where the loop does not execute, containing another barrier:

for (i = LB; i < UB; i++) { ... barrier; ...}
if (UB <= LB) {barrier;}

2.1 Barriers, temporal partial ordering, dependence relations, and correctly
synchronized programs

Our problem is to place barriers to enforce interthread dependence relations. To reason about
these, we need some preliminary notions. We denote by S (;5) the operation that corresponds
to the (static) statement S and the particular values of the loop counters, specified by the integer
vector ig, for the loops, if any, in which S is nested. In an SPMD program, each operation S (;S)
has many instances, one for each thread that executes the portion of code that contains it. To
distinguish between instances, we denote by S(tg,ig) the instance of S(is) executed by the thread
whose number or identifier is tg.

If statement instances s and ¢ are executed by the same thread then we write s <gq t to
indicate that s precedes t in sequential control flow. On the other hand, the barrier B synchronizes
S(tg,is) and T(tp,ip), instances from different threads, if there is an operation B(ig) such that
S(ts, ;g) ~<seq Blts, fB) and B(tr, 53) <seq T(tr, ;T) The two individual barrier calls B(tg, ;B) and
B(tr,ip) are calls to the same operation B(ip) of a single barrier B; because we target structurally
correct programs, such calls always synchronize with one another.

For operations, let us write S (;5) ~seq T(ZT) if sequential control flow orders their instances on
each individual thread. We say that the barrier B synchronizes operations S(ig) and T(ZT) if there
is an operation B(ig) such that S(ig) <seq B(15) <seq T'(i). Formally, S(ig) <seq T( 7) is defined
as follows Let ¢ be the number of loops that surround both of S and T'. Then S (25) ~seq T(zT) if
either ig is lexicographically smaller than ir in their first ¢ components (those that refer to their
common containing loops) or the two index vectors are equal in their first ¢ components and S
precedes T' in the program text.

An interthread dependence relation Rgr between statements S and T is a set of pairs of oper-
ations. At least one of S or T is a write to a shared variable. For each pair (S(is), T(ir)) € Rsr,
there is some barrier in the source code that synchronizes them. And finally, there are instances
of S (;S) and T(fT), not both on the same thread, that reference the same shared variable, or at
least we cannot determine at compile time that they do not, so they must be correctly ordered in
time. From now on, when we talk of dependences we shall mean these interthread dependences.
A barrier B enforces a dependence R if it synchronizes every pair of operations in the relation. In
this case, we have S(ig) <seq B(iB) <seq T(it), in other words, the barriers in the given SPMD pro-
gram define a temporal partial order (sub-order of the order <s.q) on operations, which determines
the dependence relations.



2.2 Barriers, dependence level, and NCIF

For our purposes, it is enough to analyze dependence, find the instance relations, ignore the in-
trathread pairs, project each instance relation (that has interthread pairs) into a relation on oper-
ations, and determine the loop, if any, that carries it. We informally introduce these ideas here,
and define things carefully later. For now, consider the SPMD program fragment:

for (i = 0; i < nj; i++) {
for (j = 0; j < m; j++) {
bl[i]l [j + m*mythread] = f(c[i] [j + m*mythread]);
if (14 > 0) ali][j + m*mythread] = bl[i-1][g(j + m*mythread)];
}
barrier;

}

Consider the write of b[i] [j+m*mythread] and the read of b[i-1] [g(j+m*mythread)]. If the
compiler cannot analyze the behavior of the indexing function g, it must assume that the thread
that writes an element of b is different from the thread that reads this element — so this is an
interthread (flow) dependence. The compiler can know, however, that the dependence relation
consists of instances (s,t) for which the iteration vector if s is (i,5) and that of ¢ is (i + 1, j').
Because the i loop is the outermost loop for which the dependent pairs occur in different loop
iterations, we say that this loop carries the dependence and that the dependence is loop-carried.

The barrier in the example code enforces this dependence. There are other places where a
barrier could be placed to do this. It could occur before the inner loop:

for (i = 0; i < n; i++) {
barrier;
for (j = 0; j <m; j++) {
bli] [j + m*mythread] = f(c[i][j + m*mythread]);
if (i > 0) alil[j + m*mythread] = bl[i-1] [g(j + m*mythread)];

}

It would also suffice to have a barrier in the inner loop:

for (i = 0; i < n; i++) {
for (j = 0; j <m; j++) {
bli] [j + m*mythread] = f£(c[i][j + m*mythread]);
if (i > 0) alil[j + m*mythread] = bli-1] [g(j + m*mythread)];
barrier;

¥

This solution might be overkill, however. Clearly there are more barriers executed (assuming m > 1)
than for the other solutions. On the other hand, if there were some other dependence, carried by
the j loop or not carried by any loop, that required a barrier inside the j loop, then this might be
the best way to also enforce to dependence involving the array b. This is the case, for example,
in the code hereafter. Note that the inner-loop barrier enforces a flow loop independent (i.e., not
carried by any loop) dependence involving the array a, an antidependence on the array c, and also
the flow dependence on the array b, by virtue of our certainty that the inner loop executes at least
once for every iteration of the outer loop.



for (i = 0; i < mn; i++) {
for (j = 0; j <m; j++) {
bl[i] [j + m*mythread] = f(c[i] [j + m*mythread]);
if (1 > 0) ali][j + m*mythread] = b[i-1][g(j + m*mythread)];
barrier;
if (mythread > 0) c[i][j + m*mythread] = 2 * a[i] [j + m*(mythread-1)]

We now define more formally the relations between barrier placements and loop-carried /loop-
independent dependences. We consider a properly nested region, which is turned into a single loop
nest, as above. A set of dependences between statement instances is found by analysis of the given
loop nest. ' The dependence relations between statement instances are projected into a set of
relations between operations, each of which is either loop-independent or is carried at some loop
level, as described next.

Consider a dependence from operation S(i) to T(j): we know that S(i) <sq T(j). Let ¢ be
the number of loops that surround both S and T i and ; have at least ¢ components. We use
the standard notion of dependence level [16]: if the first ¢ components of i and ; are equal, the
dependence is loop-independent at level ¢, otherwise it is loop-carried at level k where k < ¢ is
the largest integer such that the first k —1 components of i and j are equal. We view the statements
of the program as laid out from the earliest (in program text order) on the left to the last on the
right. Thus, “to the left of” and “leftmost” mean earlier and earliest (with respect to program text
order). We describe the dependences as circular intervals, which we define below.

First consider the case of a loop-independent dependence. An example is depicted in Figure 1
from S to T, at level ¢ = 1: a white box represents a DO, a grey box an ENDDO, the arrow from S
to T represents the control flow. The dependence is represented by an open interval |S, T (see the

[] []
[] N [ [ []
[] [] u T

s~ T
1 i
] i

Figure 1: Interval for a loop-independent dependence (basic case).

bottom of Figure 1), and any barrier placed inside this interval enforces the dependence. All cases
of loop-independent dependences can be represented by such an interval. For example, if we know
that a loop containing S at depth > ¢ (i.e., not around T") executes at least once before the control
flow goes to T', we represent the dependence with a larger interval from the DO of this loop to T’
(see Figure 2). If, likewise, a loop surrounding 7" iterates at least once before reaching 7', then the
interval is extended on the right to the appropriate ENDDO.

Now consider a loop-carried dependence. An example from S to T, of level k = 2, is depicted in
Figure 3 where T strictly precedes S in the program text and jr = it + 1. The control points where
a barrier needs to be inserted (and any such control point is fine) can be represented by a circular

!The mechanism and the precision of dependence analysis is not the subject of this paper, so we will not go into
any detail as to how the dependence relations are determined. We specify here how the dependences are represented,
and analyze where barriers can be placed to enforce dependences.



Figure 2: Case of an interval, for a loop-independent dependence, left-extended to a DO.

interval from S to T through the ENDDO and DO of the loop at depth k — 1 shared by S and T'.
In the example, this means that any barrier insertion between S and the ENDDO of the second
loop, or between the DO of the second loop and 71" enforces this dependence. If, on the other hand,
k is 1, the interval would be extended through the ENDDO and DO of the first loop. Again, if we
know more about additional iterations of a loop deeper than k surrounding either S or T', we may
be able to use a wider circular interval, whose endpoints may be a DO earlier than S (the fourth
DO in the example) or an ENDDO after T (the ENDDO of the third loop in the example).

Figure 3: Circular interval for loop-carried dependence (basic case).

A wrap-around dependence, which spans more than one full iteration of loop k, where k is the
level of the dependence, can also be represented by an open interval from the DO at depth k — 1
to its ENDDO. Such a dependence can also simply be ignored if we know that the loop contains at
least another dependence that will require a barrier anyway.

To summarize, we distinguish two types of dependence. A dependence can be:

Type A aloop-independent dependence at level k represented by an interval |z, y[ where x (resp. y)
is a statement or a DO (resp. ENDDO), z is textually before y, and = and y are surrounded
by exactly k common loops: a barrier needs to be inserted textually after x and before y, and
any such barrier does the job.

Type B a loop-carried dependence represented by an interval |x,y[ and an integer k, where z
(resp. y) is a statement or a DO (resp. ENDDO), x is textually after y, and they have at
least k£ common loops: a barrier needs to be inserted textually after  and before the common
surrounding ENDDO whose depth is & — 1, or after the common surrounding DO whose
depth is k — 1 and before y, and any such placement is fine. (A wrap-around dependence is
represented as a particular Type B dependence, from a DO to the corresponding ENDDO.)

Thus, our model of the barrier placement problem is a linear arrangement of control points and a
set of circular intervals. We refer to such a model as a nested circular interval family (NCIF).
A barrier placement is equivalent to a set of points (at which to insert barrier statements) between



the control points of the NCIF. It is correct if each interval in the NCIF is “cut” by (i.e., contains)
one or more barriers.

2.3 When is one solution better than another?

We represent the cost of a barrier placement P for a loop nest by a vertex-weighted tree T' = cost(P),
whose structure is that of the nesting structure of the loop nest. Each vertex v (interior or leaf)
has a weight b(v) given by the number of barriers in the strict body of the loop (i.e., not in a deeper
loop) to which v corresponds. Define a partial order < among tree costs as follows:

Definition 1 Let T and U be the tree costs of two barrier placements for a loop nest. Lett and u
be the roots of T and U, and (T;)1<i<n and (U;)i1<i<n be the subtrees (rooted at the children of t
and w) of T and U. We say that T is less than or equal to U (denoted T < U ) if

o T, R U, foreachi, 1 <i<n,
e if, for each i, 1 <i<mn, T; =U,, then b(t) < b(u),
If T <=U and T # U, we say that T is less than U (denoted T < U ).

Now we can compare barrier placements: P is better than @ if cost(P) < cost(Q). We say
that a barrier placement P is optimal if it is correct and is as good or better than every other
correct barrier placement. This definition of optimality is not the same thing as saying “there is
no placement better than this one.” It asserts that an optimum cannot be incomparable with any
other placement, but must be as good as or better than all others. Observe that the existence of
optimal placements is not immediate, since the relation =< is only a partial order. The next lemma
shows that optimal placements always exist. Moreover, the recursive definition of < implies that,
for a given loop L, all optimal placements have the same tree cost and that the restriction of any
optimal placement for L to any loop L’ contained in L is optimal for L’. We can therefore talk
about the cost of a loop nest, defined to be the tree-cost of any optimal placement.

Lemma 1 For any two solutions P and Q, there is a solution as good or better than both P and Q.
Consequently, optimal solutions exist.

Proof. The proof is by induction on the height of the loop, i.e., the number of nested loops it
contains.

For a loop L of height 0, i.e., for an innermost loop, P is as good or better than @ if P places
no more barriers in L than ). Thus, any two solution costs are comparable, and either P is better
than @ (so use P), or the converse (use @), or they are equally good (use either).

For a loop L of height h > 0, containing the loops (L;)1<i<n, consider two solutions P and @
such that P is not as good or better than @ and @ is not as good or better than P (otherwise, there
is nothing to prove), i.e., two solutions whose tree costs are not comparable by <. Let T' and U be
their respective tree costs, and P; and (); be the restrictions of P and @) to L;, with tree costs T;
and U;. By definition of =<, there exist j and k, perhaps equal, such that T; A U; and U, 2 Tj.
By the induction hypothesis, there exist solutions R; for every subtree L;, as good or better than
both P; and @;. In particular, each R; is a correct placement for L;, therefore they enforce all
dependences not carried by L and not lying in the body of L. We can extend the local solutions
R; to a solution R for L by placing a barrier after each statement in the body of L (this is brute
force, but enough for what we want to prove). We have cost(R;) = T; for all 4, and cost(R;) < T}
(indeed, cost(R;) = T} is not possible since this would imply 7; < U;). Thus R is better than P.
Similarly R is better than Q.



What we just proved is correct even if we restrict to the finite set of solutions that place in each
loop at most as many barriers as statements plus one (i.e., one barrier between any two statements).
Therefore, the fact that any two solutions have a common as good or better solution implies that
there are optimal solutions. |

Note that two placements with the same tree cost (even if they differ in the exact position of
barriers inside the loops) lead to the same dynamic barrier count. The key point is that to get an
optimal placement for a nest, one must select the right set of optimal placements for the contained
loops. Consider the example in Figure 4 with dependences from G to A (carried by the outer

Figure 4: A 2D example and its (unique here) optimal placement.

loop, i.e., with £ = 1) and from C to F (loop-independent at level 1). The dependences internal
to the inner loops are (A, D) and (C, B), as well as (F, H) and (G, F). These allow for two local
optima for each of the inner loops: a barrier may be placed just before B or just before D, and just
before F' or just before H. Clearly, there are four possible combinations of two local optima, but
only the choice of barriers just before D and just before H leads to a global optimal, because with
this choice (uniquely) of local optima, no barriers are needed at depth 1.

For completeness, let us point out that if every loop iterates at least twice whenever encoun-
tered, an optimal placement executes the smallest possible number of barriers among all correct
placements.

Lemma 2 If each loop internal to the nest iterates at least twice for each iteration of the surround-
ing loop, then an optimal solution minimizes, among all correct placements, the number of barrier
calls that occur at runtime.

Proof. It suffices to show that if @, with tree cost U, is not optimal (in terms of <), then there
exists a better solution P, with tree cost T' < U, such that P does not induce more dynamic barriers
than Q.

Consider @ a solution for L with tree cost U, not optimal with respect to <. Let L’ be a
loop of minimal height such that the restriction of @ to L', with tree cost U’, is not optimal. By
construction, U’ is a subtree of U and all subtrees of U’ are optimal tree costs for their corresponding
subloops. Furthermore, for the solution @, the number of barriers in the strict body of L’ (i.e.,
b(u) where u is the root of U’) is strictly larger than in any optimal solution for L’. Replace in @
the barriers in L’ (i.e., in L’ and deeper) by the barriers of any optimal solution for L’. This gives
a partially correct solution: all dependences are enforced except maybe some dependences that
enter L' or leave L’. To enforce them, add a barrier just before L’ and a barrier just after L', so as
to get a new correct solution P. The tree cost T of P is obtained by replacing in U the subtree U’
by the optimal subtree T” of L’. The root ¢ of T” is such that b(t) < b(u) — 1.

By construction, P is better than @ in terms of < since b(t) < b(u). It remains to count the
number of dynamic barriers induced by P and (). There is no difference between P and @, in
terms of tree cost, for loops inside L’. So they have the same dynamic cost. This is the same for
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all other loops, except for the strict body of L’ and for the loop strictly above L’. Consider any
iteration of this loop: the difference between the number of dynamic barriers for J and the number
of dynamic barriers for P is N(b(u) — b(t)) — 2 where N is the number of iterations of L’ for this
particular iteration of the surrounding loop. Since N > 2 and b(t) — b(u) > 1, P does not induce
more dynamic barriers than Q). |

3 Inner-loop barrier minimization

In this section, we recall results for one-dimensional cases: the case of a straight-line code and the
case of a single innermost loop.

For a straight-line code (i.e., no loop), a simple greedy linear-time algorithm does the job:
Find the first (leftmost) right endpoint of any interval, and cut with a barrier just to the left of
this endpoint. Repeat while any uncut intervals remain. This technique was used by Quinn and
Hatcher [9] and by O’Boyle and Stohr [13]. Next, these authors leverage this process to get a
quadratic-time algorithm for simple loops: Try each position in the loop body for a first barrier,
which cuts the circle making it a line; next apply the linear-time algorithm above to get the
remaining barriers; and finally choose the solution with the fewest barriers.

Surprisingly, it seems that none of the previous work on barrier placement recognized that the
problem for a straight-line code is nothing but the problem of finding a minimum clique cover
in an interval graph. (The algorithm of [9, 13] is exactly the well-known greedy algorithm for
this problem [8]). Generalized to an inner loop, the problem is to find a minimum linear clique
in a circular interval family, for which there exists a very simple linear-time (thus better than
quadratic) algorithm [10]. Our technique to solve optimally the case of general loops and to reduce
the complexity of the barrier placement algorithm (even in cases for which an optimal algorithm
has already been given) is based on this linear-time algorithm for finding a minimum linear clique
cover in a circular interval family. We introduce these concepts and explain the corresponding
algorithms next.

3.1 Straight-line code and minimum clique cover of an interval graph

In a straight-line code, only loop-independent dependences exist (dependences of type A). They
correspond to intervals I; = |h;,t;| where h; and ¢; are integers such that h; < t;, i.e., intervals
on a line. The classical graph associated to intervals on a line is the so-called interval graph, an
undirected graph with a vertex per interval and an edge between two intervals that intersect.

An independent set is a set of intervals, such that no two of them intersect. A clique is a set
of intervals that defines a complete subgraph in the corresponding interval graph, i.e., a set of
intervals, each pair of which intersect. In such a clique, consider an interval I; with largest head
(i.e., largest h;) and an interval I; with least tail (i.e., least ¢;). By definition, the interval |h;, ;[ is
not empty (since I; and I; intersect) and is contained in each interval of the clique. Any point z in
this interval belongs to all intervals in the clique; if a barrier is placed at z, it enforces (or “cuts”) all
intervals of the clique. Conversely, any barrier defines a clique, which is the set of intervals enforced
by this barrier (they all intersect since they all contain the point where the barrier is placed). Such
a clique is called a linear clique.

We just showed that any clique in an interval graph is a linear clique and that any barrier
corresponds to a linear clique. Thus, finding an optimal barrier placement amounts to find a
minimum (linear) clique cover, i.e., a set of cliques, of smallest cardinality, such that each interval
belongs to at least one of these cliques. Consider an optimal barrier placement, i.e., a minimum
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clique cover and modify it as follows. Move the first (i.e., the leftmost) barrier as much as possible
to the right, while keeping correctness, i.e., place it just before the first tail of any interval. Do the
same for the second barrier, move it as much as possible to the right, i.e., place it just before the
first tail of any interval not already enforced by the first barrier. Do the same for all remaining
barriers, one after the other, until all intervals are enforced. This mechanism leads to a correct
barrier placement, with the same number of barriers, thus optimal. Furthermore, this solution
can be found in a greedy manner, in linear time, provided that the endpoints t; are sorted, as in
Algorithm 1. Since barriers are placed just before the tail of independent intervals, this also shows
that the maximum size o(G) of an independent set in an interval graph G is equal to the minimum
size 6(G) of a clique cover (of course a(G) < (G) for any graph G).

Algorithm 1 Barrier placement for a straight-line code
Input: 7 is a set of n > 1 intervals I; =]h;,t;[, 1 <i < n, with h; <t; and i < j=1t; <t;
Output: an optimal barrier placement for 7
procedure GREEDY(Z)
1=1
repeat
z=1 > tail of the first uncut barrier so far
insert a barrier just before z
repeat
t=14+1
until (: > n) or (h; > z) > until one finds an uncut barrier
until i > n
end procedure

3.2 Inner-loop barrier minimization and the Hsu-Tsai algorithm

A circular interval family (CIF) ? is a collection F of open subintervals of a circle in the plane,
where points on the circle are represented by integer values, in clockwise order. Each circular
interval I; in F is defined by two points on the circle as |h;,t;[, where h; and ¢; are integers, and
represents the set of points on the circle lying in the clockwise trajectory from h; to t;. For example,
on the face of a clock, ]9, 3[ is the top semicircle. By convention, |¢,t[U{t¢} represents the full circle.
Two circular intervals that do not overlap are independent. A set of intervals is independent if
no pair overlaps; let a(F) be the maximum size of an independent set in F. A set of intervals, each
pair of which overlaps, is a clique and, if they all contain a common point z, is a linear clique.
In this case, they can be cut (by a barrier) at the point z. Note that in a circular interval family
there can be nonlinear cliques: take, for example, the intervals |0, 6], ]3,9], and |8, 2[. A set of linear
cliques such that each interval belongs to at least one of these cliques, is a linear clique cover;
let O(F) (resp. 0;(F)) be the minimum size of a clique cover (resp. linear clique cover). It is easy to
see that the problem of finding the smallest set of barriers that enforces all dependences in an inner
loop is equivalent to the problem of finding a minimum linear clique cover (MLQC) for the CIF F
given by the dependences. It is important to note that, as long as the intersections of intervals (and
thus cliques) are concerned, a circular interval family is fully described by the clockwise ordering
of the endpoints of the intervals, i.e., the exact value and position of endpoints is not important.
The MLQC problem for an arbitrary CIF was solved with a linear-time algorithm — O(nlogn)
if the endpoints are not sorted; ours are, given the program description — by Hsu and Tsai [10]. We

2The graph algorithms literature also uses the term circular arc graph for the graph with an edge between two
overlapping intervals. Hsu and Tsai use the term circular arc family (CAF) for the set of circular intervals.
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use this fast solver as the basis of our algorithm for solving the nested loop barrier minimization
problem. Let us summarize here how it works.

To make explanations simpler, let us assume first, as Hsu and Tsai do, that all the endpoints
of the intervals in F are different. Given an interval I; =|h;, t;[, define NEXT(7) to be the integer j
for which I; =]h;,t;[ is the interval whose head h; is contained in |¢;,¢;[ and whose tail ¢; is the
first encountered in a clockwise traversal from ¢;. The function NEXT defines a directed graph
D = (V,E), whose vertex set V is F (the set of intervals) and E is the set of pairs of intervals
(13, I;) with j = NEXT(7). The out-degree of every vertex in D is exactly one; therefore, D is a set
of directed “trees” except that in these trees, the root is a cycle. An important property is that any
vertex with at least one incoming interval in D (it is the NEXT of another interval) is minimal
meaning that it does not contain any other interval in F. Hsu and Tsai define GD(i) to be the
maximal independent set of the form I; , ..., I;, , with ¢; = ¢, and 4y = NEXT(i;—1), 2 <t < k, and
they let LAST (i) = NEXT(ig).

Theorem 1 (Hsu and Tsai [10]) Any interval I; in a cycle of D is such that GD(i) is a maz-
imum independent set, and so |GD(i)| = a(F). Furthermore, if a(F) > 1, placing a barrier just
before the tail of each interval in GD(i), and if LAST(i) # i, an extra barrier just before the tail of
LAST(i), defines a minimum linear clique cover, which is also a minimum clique cover.

Algorithm 2 Barrier placement for an inner loop

Input: F is a set of n > 1 circular intervals I; =]h;, ¢;[, 1 < < n, such that i < j =t; < t;

Output: NEXT(¢) for each interval I; and a MLQC for F, i.e., an optimal barrier placement
procedure HSUTSAI(F)

i=1,7=1
fori:=1tondo
if i = j then > ¢, current interval, may have “reached” j, current potential next
5: Jj =1INc(i,n) > INC(7,n) is equal to i 4+ 1 if 4 < n, and 1 otherwise
end if
while h; ¢ [t;,t;] do > intervals still overlap
Jj =1Inc(j,n) > INC(j,n) is equal to j+ 1 if j < n, and 1 otherwise
end while
10: NEXT(:) = j; MARK(i) =0
end for > at this point, NEXT(7) is computed for all ¢
i=1 > start the search for a cycle, could start from any interval actually

while MARK(:) = 0 do
MARK(i) = 1; i = NEXT(i)

15: end while > until we get back to some interval (cycle is detected)
—
repeat
insert a barrier just before ¢;; j = NEXT(j) > intervals in GD(4)

until I; and I; overlap
20: if j # i then
insert a barrier just before ¢; > special case for LAST(7) # 4
end if
end procedure

If a(F) =1, F is a clique, so that §(F) = 1 as well. Thus, Theorem 1 shows that for a circular
interval family, 6(F) is either a(F) or a(F) + 1. It gives a way to construct an optimal barrier
placement for inner loops. It also gives a constructive mechanism to find a minimum clique cover
when «(F) > 1, and this clique cover is even formed by linear cliques. In Algorithm 2, Lines 1-11
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compute the function NEXT for each interval, the last lines from 12 compute GD(7) and place the
barriers accordingly. The test 3, Line 7, is satisfied if i = j thus the case where NEXT(i) = i is
taken into account correctly. The fact that tails are in increasing order is used to start the search
for NEXT(i + 1) from NEXT(7). This implies that j traverses at most twice all intervals and that
the algorithm has linear-time complexity. To make the study complete, it remains to consider two
special cases: a) what happens when «(F) = 1, b) what happens when some endpoints are equal.

Lemma 3 When o(F) =1, Algorithm 2 is still valid to find a minimum linear clique cover.

Proof. When a(F) =1, F itself is a clique, and «(F) = 0(F) = 1. But what about a minimum
linear clique cover? Let us show that, actually, the procedure in Theorem 2 still leads to a minimum
linear clique cover, for any interval I; in a cycle of D, so Algorithm 2 is still correct for optimal
barrier placement.

If one barrier is necessary (i.e., F is nonempty) and sufficient to cut all intervals (i.e., if there
is a linear clique cover of size 1), consider such a barrier and let ¢; be the first tail encountered in a
clockwise traversal from this barrier. Let j be any other interval. In a clockwise traversal from h;,
one gets the barrier, then ¢; (since I; is cut by the barrier). Furthermore, ¢; occurs between the
barrier and t;, by definition of i, thus between h; and ¢;. Thus NEXT(i) = i. Conversely, if I;
is such that NEXT(i) = 4, place a barrier just before ¢;. By definition of NEXT, the head h; of
any interval I; is not in [t;,¢;], thus ¢; belongs to I}, i.e., I is cut by the barrier. In this case, one
barrier is enough, and thus optimal.

To show that Algorithm 2 is correct, we need to prove more: we need to prove that if there
is a cycle of length 1, then any cycle is of length 1 so that the number of barriers placed by the
algorithm does not depend upon the choice of the cycle in Lines 12-16. Assume this is not the case
and consider two intervals I; and I;, with NEXT(i) = i and NEXT(j) # j, and such that |¢;,t;[
does not contain the tail of an interval in a cycle of D. Since I; is cut by a barrier just before ¢;,
we get hj, then ¢;, and ¢; in a clockwise traversal from h;. Consider k& = NEXT(j); then k # i
(otherwise I; is not in a cycle). By choice of ¢ and j, t; appears before ¢ in a clockwise traversal
from t;. Thus, in a clockwise traversal from ¢;, one finds ¢;, t;, hg, tx, t;, but this is impossible
since [y is cut by the barrier before ;.

It remains to consider the case where D does not contain a cycle of length 1. In this case, we
know that at least 2 barriers are needed (previous study) and that for any interval I; in a cycle of D,
NEXT(7) # i. Since NEXT(7) overlaps with i (a(F) = 1), NEXT(i) = LAST(4) and Algorithm 2
will thus place 2 barriers, one just before ¢; and one just before ¢; with j = LAST(4). It remains
to prove that this barrier placement is correct. Assume the converse and let I be an interval, not
cut by any of these 2 barriers. By definition of j, ¢, cannot appear between ¢; and ¢; in a clockwise
traversal from ¢; (otherwise it is cut by the barrier before t;), therefore ¢; is between ¢; and t¢;.
Then, hj, must be in |t;, ;] also, otherwise I}, is cut by one of the barriers. But since j = NEXT(7)
and I; and I; overlap, in a clockwise traversal from t;, we get t;, hj, t;, h;, hi, ti, t;, and I, is
contained in I;, which is not possible since I; is in a cycle of D, thus minimal. |

Lemma 4 Algorithm 2 is correct even if not all endpoints are different.

Proof. It is easy to see that from any set Z of open circular intervals I; =|h;, t;[, one can build
a set I’ of open circular intervals I/ =]h},;[, all endpoints being different, which needs the same
minimum number of barriers. For that, it suffices to sort the endpoints following a total order <

3The test is equivalent to h;j €]t;,t;] since endpoints are all different, but we use h; € [t;,¢;[ instead to handle the
case of equal endpoints correctly; further discussion of equal endpoints follows shortly.
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among points that keeps the original strict inequalities (i.e., p < ¢ whenever p < ¢, p and ¢ head or
tail) and places tails before heads in case of equality (i.e., p < ¢ if p = ¢, p is a tail and ¢ is a head).

Given a barrier placement for Z, one can get a barrier placement for 7/, with same number of
barriers, as follows. First, move each barrier, in the clockwise order, and place it just before the
first encountered tail. Then, for each barrier b placed just before t; in Z, place a barrier ¥’ in Z just
before any tail that corresponds to the value ¢; in Z (thus in particular after any head in Z’ that
corresponds to a head in 7 strictly before ¢; in clockwise order). It is easy to see that if I; is cut
by bin Z, then I} is cut by b’ in 7. The converse is obviously true.

As for Algorithm 2, one can first change Z into Z’ so that all endpoints are different. But, as
already noted, only the relative positions of the endpoints according to < matters. Algorithm 2
works implicitly with the order <. Heads are considered after tails in case of equality (because
intervals are open) thanks to the test h; ¢ [t;, ;] (instead of h; € ]t;,¢;[), Line 7. Also, in case of
equality, tails are considered in some fixed order so that the function NEXT is defined in a coherent
way, the order < given by the input. Note also that when j = ¢ in Line 7, we need to go out of
the loop because NEXT(7) is indeed equal to i. This is correct since h; € [t;, t;] (full circle), even if
h; = t;, while this would not be correct with the test h; ¢ t;,t;] for the very particular case of a
single interval |¢, ¢[. This shows that Algorithm 2 is correct in all cases. [

4 Optimal barrier placement in nested loops of arbitrary structure

The setting now is a loop nest of depth two or more. An algorithm for optimal barrier placement
is known only for a semiperfect (only one loop in the body of any other loop) loop nest. Here, we
provide such an algorithm for a nest of any nesting structure.

If a barrier placement is optimal with respect to the hierarchical tree cost of Section 2.3, then
it places a smallest allowable number of barriers in each innermost loop. The number of barriers
in the strict body of a loop L of height > 1 is the smallest possible among all correct barrier
placements for L whose restriction to each loop that L contains is optimal for the contained loop.
As optimality is defined “bottom-up,” it is natural to begin to try to solve the problem that way.

4.1 Basic bottom-up strategy

Before explaining our algorithm, let us consider a basic (in general sub-optimal) bottom-up strategy.
A similar strategy is used by O’Boyle and Stohr to handle the cases that are not covered by their
optimal algorithm, i.e., the programs with IF-THEN-ELSE or loops containing more than one inner
loop. This strategy is optimal for innermost loops but, except by chance, not for loops of height > 1.

To place barriers in a loop L, Algorithm 3 places barriers in each inner loop L’ first (Line 5).
For L', only the dependences that cannot be cut by a barrier in L are considered (the set D'),
in other words, in L', only the the essential constraints are considered. Then, depending on the
placement chosen for L/, it may happen that, in addition to dependences in D', some others,
entering L' (i.e., with tail in L’) or leaving L’ (i.e., with head in L’), are cut by an inner barrier
(Line 6). These dependences need not be considered for the barrier placement in L (Line 7). Next,
any remaining dependence that enters (resp. leaves) a deeper loop must be changed to end before
the DO (resp. start after the ENDDO) of this loop (Lines 8 and 9), because it must be cut by a
barrier in L. Finally, the modified L is handled as an inner loop (Line 11).

Algorithm 3 yields an optimal placement if each loop has a single optimal placement or if, by
chance, it picks the right optimal placement at each level. The problem is therefore to modify Al-
gorithm 3 so that it can select judiciously, among the optimal placements for contained loops, those
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Algorithm 3 Bottom-up heuristic strategy for barrier placement in a loop nest

Input: A loop nest L, and a set D of dependences, each with a level
Output: A correct barrier placement, with minimal number of barriers in each innermost loop

1: procedure BoTTOMUP(L, D)
2 for all loops L’ included in L do
3 let ug and vy correspond to the DO and ENDDO of L’
4: D' ={d= (u,v) €D |ue Ll vel, level(d) > depth(L")} > need to be cut in L'
5: BortoMUP(L', D) > give a barrier placement in L’
6 CUT ={d € D | d cut by a barrier in L'} >D' C CUT
7 D =D\ CUT
8 for each d = (u,v) € D, v € L' do v = wy. > dependence enters L’
9: for each d = (u,v) € D, u € L' do u = vp. > dependence leaves L'
10: end for
11: HsuTsal(D) > or any other algorithm optimal for a single loop

12: end procedure

that cut (Line 6) incoming and outgoing dependences so that the number of barriers determined
in L (Line 11) for the remaining dependences (Line 7) is minimized. Our main contribution is to
explain how to do this, and, moreover, how to do it efficiently.

4.2 Summarizing inner loop barrier placements: weaving/unraveling

To get the optimal placement for an outer loop, one needs to be able to determine the right optimal
placement for each loop L it contains. In particular, one needs to understand how dependences
that come into L or go out of L are cut by an optimal placement in L. Our technique is to capture
(as explained next) how barriers in L interact with these incoming and outgoing dependences.

Let us first define precisely what we call an incoming, an outgoing, or an internal dependence. A
dependence d = (u,v) is internal for a loop L if it needs to be cut by a barrier inside L (in the strict
body of L or deeper), i.e.,if u € L, v € L, and level(d) > depth(L). The set of internal dependences
for L determines the minimal number of barriers for L. Incoming and outgoing dependences for a
loop L are dependences that may be cut by a barrier inside L, but can also be cut by a barrier in
an outer loop: they are not internal for L, but have either their tail in L (incoming dependence)
or their head in L (outgoing dependence). An incoming dependence is cut by a barrier placement
for L if there is a barrier between the DO of L and its tail. An outgoing dependence is cut by a
barrier placement for L if there is a barrier between its head and the ENDDO of L. Note that a
dependence d = (u,v) can be simultaneously incoming and outgoing for a loop L, when u € L,
v € L, and level(d) < depth(L). For such a dependence, when we say that, considered as an
incoming dependence, it is not cut by a barrier placement for L, we mean that there is no barrier
between the DO and the tail of the dependence, even if there is a barrier between its head and
the ENDDO (and conversely when the dependence is considered as outgoing). This precision is
important to correctly (and with a brief explanation) handle such dependences.

Let L be an innermost loop, with internal dependences represented by a CIF F. Let 6;(F) be
the number of barriers in any optimal barrier placement for L, or equivalently the size of an MLQC
for F. We can find 6;(F), and optimal placements, with the Hsu-Tsai algorithm. Each optimal
barrier placement for L is a set of barriers placed at precise points in the loop body; obviously, one
of these inserted barriers is the leftmost and one of them is the rightmost. Let d be an incoming
dependence that can be cut by some optimal barrier placement for L. Denote by RIGHTMOST(d)
the rightmost point before which a barrier is placed in an optimal barrier placement for L that
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cuts d. (This will be the tail of d, the tail of an internal dependence, or the ENDDO of L.)
If d and d’ are two incoming dependences, with the tail of d to the left of the tail of d’, then
RIGHTMOST(d) is to the left of RIGHTMOST(d’) (they are possibly equal). We will explain later
how we can compute the function RIGHTMOST in linear time for all incoming dependences.

To capture the influence of the inner loop L on the barrier placement problem for its parent
loop, the key idea is that the inner solution is determined by the rightmost incoming and the
leftmost outgoing dependences that it cuts. The same information can be gleaned if we change the
tail of each incoming dependence d to RIGHTMOST(d), remove the intervals internal to L, then
“flatten” the NCIF by raising the body of L to the same depth as the DO and ENDDO, meaning
that in defining an optimal placement for this flattened NCIF, the tree cost function treats barriers
between the DO and ENDDO as belonging to the tree node of the parent of L. If L had some
internal dependences, an interval from DO to ENDDO is added in their place, guaranteeing that
a barrier will be placed between them. This operation, which we call weaving, is described in
Algorithm 4. After weaving an innermost loop L for an NCIF F, we obtain a new NCIF F’ that
corresponds to a nest with same tree structure as F except that the leaf node of L is gone.

Algorithm 4 Weaving of an innermost loop

Input: Aninnermost loop L, a set D of internal dependences, Dj,, of incoming dependences, Dyt of outgoing
dependences. (Reminder: Dj, N Doyt may be nonempty.)
Output: Modify incoming and outgoing dependences, and return a special dependence dj,.
procedure WEAVING(L, D, Diy, Dout)
let up and vy be the DO and ENDDO of L (statements in the parent loop of L)
for all d = (u,v) € Dy, do
if d is not cut by any optimal barrier placement in L then
5: V= U > change its tail to the DO of L
else > summarize the rightmost solution
v = RIGHTMOST(d) > new endpoint considered as a statement in the parent loop of L
if d is also in Doyt and v is now to the right of u then > possible only if d € Dy, N Doyt
uU=v > new wrap-around dependence, represented as |v, v|
10: end if
end if
end for
for all d = (u,v) € Doyt do
if d is not cut by any optimal barrier placement in L then
15: U = v > change its head to the ENDDO of L
end if
end for
if D # () then
create a new dependence dy, = (ug, vp), loop independent at level depth(L)
20: return dj,
else
return |
end if
end procedure

Assume we generate an optimal placement for the flattened NCIF. The process to go from an
optimal placement P’ for F’ to an optimal placement P for F is called unraveling. The idea is
to find the optimal barrier placement in the body of L that cuts the same incoming and outgoing
intervals as were cut by those in P’. Unraveling works as follows. In P’, there will be either zero,
one, or two barriers between the DO and ENDDO of L (considered as statements in the parent loop
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of L); not more, because barriers after DO and before ENDDO suffice to cut the special interval dj,
(Line 19 in Algorithm 4) and all transformed incoming and outgoing intervals. If zero, then no
barriers are needed in L. If two, the one to the left can be moved to just before the DO (so it
cuts all incoming intervals) with no loss of correctness. Thus, we can assume there is one. It may
occur just before ENDDO (i.e., the tail of dy,), in which case we would select the rightmost optimal
solution for L. Or it may occur before the tail of an incoming interval d, which in the original
NCIF F had a different tail. The inner solution we need is then the rightmost one that cuts this
incoming dependence in F, i.e., whose leftmost barrier is to the left of the original tail of d, because
it will cut exactly the same set of intervals in F as were cut by the one barrier in F’. This is
the unraveling process. The following theorem shows more formally that this weaving/unraveling
process is correct.

Theorem 2 Weaving an innermost loop and unraveling the resulting placement produces an opti-
mal placement.

Proof. Let F be obtained from F by weaving L. The codes corresponding to F and F’ are equal
except that, in the code for F/, the innermost loop L has been replaced by simple statements, those
which correspond to the new tails defined Line 7 of Algorithm 4. We assume that L has at least
one internal dependence, otherwise it is clear that F and F’ are equivalent representation of the
dependences since L does not contain any barrier in an optimal barrier placement for F.

Let P be an optimal barrier placement for F. A barrier placement @ for F’ is obtained as
follows. First place all barriers in P, which are outside L, at the same place in (). This cuts all
dependences of F’ that correspond to dependences of F cut by a barrier outside L. Now, add
an extra barrier in () as explained next. In P, the placement of the barriers in L is an optimal
placement for L. Consider the leftmost incoming dependence d in F cut by this inner placement
and place in @ a barrier just before its (new) tail in 7’ defined Line 7. If d does not exist, place
a barrier in () just before the tail of the new special dependence dj, defined Line 19. It is easy
to see that () is a valid barrier placement for F'. Indeed, this additional barrier cuts dy, it cuts
any dependence that “flows above” L, it cuts any incoming dependence not cut outside L in P
since it cuts the leftmost such dependence (the new tail of such a dependence is to the right of
this additional barrier because of the non-decreasing property of RIGHTMOST), and it cuts all
outgoing dependences not cut outside L in P (i.e., cut by the inner placement) thanks to the
definition of the new tails, Line 7.

Conversely, consider an optimal barrier placement @ for F'. The special dependence dj, (defined
in Line 19 of Algorithm 4) is cut by some barrier in Q). Consider b the rightmost such barrier and
move it as much as possible to the right without changing the way dependences are cut: b is now
just before the tail of some dependence d (note that d = dy, is possible), and by construction, it
corresponds to the rightmost possible barrier placement in an optimal solution that cuts d (or in a
rightmost solution for L if d = dr). Define a barrier placement P for F by first placing barriers in L
according to such a rightmost solution. Then, place all other barriers in P as they are in @), except
that each barrier (# b) in @ that cuts dr, is moved to the left just before the DO of L (otherwise
this would increase the number of barriers in L) *. It is easy to see that the barriers in P cut all
dependences in F.

This proves that there is direct correspondence between optimal solution for F and F': weaving
a non-trivial (i.e., with some internal dependences) innermost loop L has the following effects:

e it removes the leaf corresponding to L in the tree cost;

“In our implementation however, this case will never happen, see explanations hereafter, after Lemma 7.
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e in the tree cost, it adds 1 to the father of the removed leaf, i.e., the inner solution for L is
represented by an additional barrier in the loop that surrounds it.

This enables us to “swallow” leaves of the tree, one by one, until the tree is a simple leaf, i.e.,
corresponds to a CIF. |

Algorithm 5 Optimal algorithm for barrier placement in a NCIF — bottom-up pass

Input: A loop L, with a set £ of dependences, each with at least one endpoint in L

Output: a dependence dj, that “summarizes” L (and incoming/outgoing dependences are modified)
procedure OPTIMALBOTTOMUP(L, &)

D={d=(u,v) €D |u€L,veL,level(d) =depth(L) + 1} > exclude incoming/outgoing
for all loop L’ included in L do

E={d=(u,v)e€|uel orvel} > internal, incoming, or outgoing

dr, = OpTIMALBOTTOMUP(L, £’)

D=Du{dy} > add special dependence, unless no barrier in L’ (when dp, = 1)
end for

Din={d=(u,v) € E\D |veEL}; Dout ={d = (u,v) e E\D |uecL}
return WEAVING(L, D, Diy,, Dout)
end procedure

The weaving/unraveling process leads to a two-passes algorithm, a first bottom-up pass for
weaving loops, a second top-down pass for unraveling them. To summarize, we find the optimal
placement for a loop nest as follows. First build its NCIF model. Then weave (and remove)
innermost loops one at a time until one loop with a simple CIF model remains (see Algorithm 5
for the bottom-up phase). Use the Hsu-Tsai method to find an optimal placement for it. Then
successively apply the unraveling process to inner loops in a top-down manner until an optimal
placement for the entire nest is obtained. We illustrate this process below on two examples.

Consider again the example of Figure 4. The first innermost loop L has 2 internal dependences
di = (A, D) and dy = (C, B). All optimal placements have one barrier. The rightmost places a
barrier just before D (which cuts the only outgoing dependence dy = (C, F')); the only incoming
dependence d3 = (G, A) is not cut by any optimal placement thus the weaving procedure moves its
tail to the DO of L;. We introduce a new dependence dy,, to capture the rightmost placement from
the DO to the ENDDO of L; (remembering that if a barrier is placed just before the tail of dr,, for
barrier placement in an outer loop, this means placing a barrier just before D in the inner loop).
For the second innermost loop Lo, the situation is the same for internal dependences, one barrier
is enough, and the rightmost placement is with a barrier just before H. However, this time, the
incoming dependence dy is cut by an optimal placement and RIGHTMOST (dy4) is the tail of d4 (so
no change of tails is needed here, this is a particular case). A new dependence dy, is introduced
similarly. The simple CIF obtained after weaving both inner loops is depicted in Figure 5.

ds i -

dr,

1

Figure 5: Woven CIF for the NCIF of Figure 4.
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We have NEXT(d3) = dr,, NEXT(dr,) = dr,, NEXT(dr,) = dr,, and NEXT(dy) = ds.
Therefore, the Hsu-Tsai algorithm tells us that two barriers are needed, one before the tail of dy,,
one before the tail of dr,. The unraveling procedure interprets this, following Theorem 2, as using
the rightmost placement for L1, i.e., placing a barrier just before D, and the rightmost placement
for Lo, i.e., placing a barrier just before H, as depicted in Figure 4.

Figure 6: A 3D example from O’Boyle and Stohr.

Consider now an example of O’Boyle and Stohr [13], Figure 6. Only one barrier is needed in the
innermost loop L; for the internal (loop-carried) dependence dy = (C, B). The rightmost placement
places a barrier just before the ENDDO of L;. This cuts the outgoing dependence d3 = (B, D).
The incoming dependence d; = (A, C) can also be cut by an optimal placement in the innermost
loop, with a (rightmost) barrier before B — so d; is (A4, B) now — but in this case, d3 is not cut.
Therefore, weaving the innermost loop leads to the NCIF in Figure 7.

dr,

Figure 7: Woven NCIF for the NCIF of Figure 6.

Now, the innermost loop Lo has 2 internal dependences, dr, and ds, and only one barrier is
needed. The incoming dependence d; cannot be cut by an optimal placement (if a barrier cuts dy,
it cannot cut dsz). Thus, weaving Ly leads to the simple CIF in Figure 8. Two barriers are needed,
one before the tail of da, i.e., just before the DO of the second loop, and one before the tail of dy,.
This second barrier is interpreted as the rightmost placement for Lo, i.e., a barrier just before the
tail of dr,,. This one again is interpreted as the rightmost placement for L, i.e., a barrier just before
the ENDDO of this loop. The final barrier placement, in Figure 6, has one barrier at depth 3 and
one barrier at depth 1. This solution is optimal: it has lower tree cost than the alternative, barriers
before B (depth 3) and D (depth 2).

]/~ []
A [] 0 !

Figure 8: Woven CIF for the NCIF of Figure 7.

In these two examples, the recursive calls to the top-down unraveling barrier placement were
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always done with the special dependences dy, (i.e., the rightmost placement in each inner loop was
always selected). This is not always the case. It may happen that the recursive call is done with an
incoming dependence d that indicates the rightmost optimal placement that cuts d. For example,
if in the NCIF of Figure 6, dy ends strictly after C, then it can be cut by an optimal placement
for Ly (with a barrier just before its tail) that cuts all dependences. In Figure 7, d; and d3 will
then overlap, and an optimal placement for Ly will cut both. The tail of d; will not be moved to
the DO, so in Figure 8, d; and dr,, will overlap, and d; will be selected by the Hsu-Tsai algorithm,
with only one barrier needed. This barrier will be interpreted as the rightmost placement for Lo
that cuts dy, i.e., with a barrier before the tail of di, and this barrier will be interpreted deeper as
the rightmost placement for Ly that cuts di, i.e., with a single barrier before the tail of d;.

4.3 A linear-time algorithm to compute the function RIGHTMOST

In Algorithm 4, we did not explain how to compute RIGHTMOST(d) for an incoming dependence d
for a loop L and, in particular, the rightmost solution among all optimal solutions that cut d too. An
obvious (but inefficient) strategy is as follows. First, compute the minimal number of barriers for L
using the Hsu-Tsai algorithm (Algorithm 2) applied to F, the internal dependences for L. Then,
add d = (u,v) to F, reasoning as if it starts just after the DO (i.e., u = ), and run Algorithm 2
again. If one extra barrier is needed, d can never be cut by an optimal solution for L and we are in
the case of Line 5. Otherwise, add to F U {d}, one at a time, each outgoing dependence e = (w, x),
reasoning as if it ends just before the ENDDO (i.e., z = vg), and run Algorithm 2 again. If one
extra barrier is needed, the outgoing dependence cannot be cut by an optimal solution for L that
also cuts d. If all outgoing dependences can be cut this way, run Algorithm 2 again with an extra
“outgoing” dependence that starts and ends just before the ENDDO of L to capture the possibility of
a rightmost barrier just before the ENDDO. This way, we can identify RIGHTMOST(d) by finding
the outgoing dependence with rightmost head that is cut by an optimal solution for L that cuts d
too. The total complexity is O(n3) — O(n?) calls to Algorithm 2 — to compute RIGHTMOST(d)
for all incoming dependences d.

To get a linear-time algorithm for optimal barrier placement for a NCIF, the previous strategy
is not enough. We need to be able to compute the function RIGHTMOST (for a non empty CIF F)
in linear time for all incoming dependences. For that, we analyze more precisely the structure of
rightmost placements in a CIF.

We start with an elementary property, similar to the main property of Hsu and Tsai (Theorem 1).
We use the notations of Section 3. Remember that a(F) is the maximum size of an independent
set in F and 6;(F) is the minimum size of a linear clique cover for F, which is also the optimal
number of barriers for F.

Lemma 5 For any minimal interval I; in F, placing a barrier just before the tail of each interval in
GD(i), and if LAST(i) # i, an extra barrier just before the tail of LAST(i), defines a valid barrier
placement P;. If LAST(i) = i, then |GD(i)| = 0,(F) = a(F) and P; is optimal. Furthermore, if
0,(F) = a(F) + 1 then, for any minimal interval I;, LAST(i) # i, |GD(i)| = 6;(F) — 1, and P; is
optimal.

Proof. The sequence GD(7) is defined as I;,, ..., I;, with i; =4 and iy = NEXT(i4—1),2 <t <k,
and LAST(i) = NEXT\(iy) overlaps with I;. Let us prove that P; is valid. Any interval in F whose
head is between (clockwise) the tail of I;, , and the tail of I;, has its tail after the tail of I;, by
definition of the function NEXT. Therefore it is cut by the barrier placed just before the tail of I;.
Similarly, when LAST(¢) = 4, an interval whose head is between the tail of I;, and the tail of I; is
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cut by the barrier placed just before the tail of I; and, when LAST (i) # 4, an interval whose head is
between the tail of I;, and the tail of LAST (i) = NEXT(iy) is cut by the barrier placed just before
the tail of LAST(7). In this latter case, it remains to consider an interval whose head is between
the tail of LAST(¢) (which belongs to I;) and the tail of I;. Since I; is minimal, the tail of such an
interval must be after the tail of I; and therefore is cut too. This proves that P; is valid.

Since P; is valid, we get |GD(4)| > 6;(F) if LAST(i) = ¢ and |GD(4)| + 1 > 6;(F) otherwise.
Furthermore, |GD(i)| < a(F) since a(F) is the maximum size of an independent set and a(F) <
0;(F). These inequalities show that 6;(F) = «(F) = |GD(i)| whenever there exists a minimal
interval I; such that LAST (i) = i. Conversely, this means that if 6;(F) = «(F) + 1, then, for any
interval I;, LAST(¢) # ¢. And, in this latter case, we have |GD(7)| < a(F) < 6;(F) < |GD(%)| + 1,
i.e., |GD(7)| = 6;(F) — 1, and P; is optimal since it uses |GD(i)| + 1 = 6;(F) barriers. [ |

For each loop-independent interval I;, we define GDR(7) the maximal sequence I;,, ..., I;, of
independent intervals such that i; = i, iy = NEXT(i;—1) for 2 < t < n, and the tail of I;, is to the
right of the tail of I;, ,: GDR(7) is similar to GD(4) (it is a subset) except that we stop the sequence
when we have to go back to the beginning of the loop (GDR stands for GD to the Right). All
intervals in GDR(7) are loop-independent. We define RIGHT (i) = i,, and LENGTH(:) = n. The
functions RIGHT and LENGTH can be computed, for all intervals in F, in linear time. Indeed, we
just propagate values for RIGHT and LENGTH backwards, in the graph D defined by the function
NEXT, starting from the loop-independent intervals whose NEXT is to the left of them, thanks to
the relation RIGHT (i) = RIGHT(NEXT (7)) and LENGTH(i) = LENGTH(NEXT(7)) + 1.

To identify the rightmost placement for a CIF F for a loop L, we first check whether an optimal
placement with a barrier just before the ENDDO of L exists. For that, define FIRST(F) = ¢ such
that I; is the loop-independent interval with leftmost tail in F, and let n = LENGTH(i) (if I;
does not exist, F has only loop-carried intervals and we let n = 0). When n > 1, I; is minimal by
construction. Let j = RIGHT (i) and kK = NEXT(j). If I} is loop-independent then, by definition of
FIRST(F), k = i, thus GDR(i) = GD(4) and, according to Lemma 5, n = |GD(i)| = 6;(F) = a(F).
If I is loop-carried, then two cases are possible. If I; does not overlap with I; then, by definition
of FIRST(F), NEXT(k) = ¢ thus |GD(i)] = |GDR(i)| + 1 = n 4+ 1 and, according to Lemma 5,
n+1=0/(F) = aF). If I overlaps with I;, then LAST(i) = k # i, GDR(i) = GD(3), and,
according to Lemma 5, if 6;(F) = a(F) + 1, then n = 0;(F) — 1, otherwise n can be either 0;(F) or
0,(F) — 1.

Lemma 6 A loop L with a CIF F has an optimal barrier placement (with 6;(F) barriers) with
a barrier just before the ENDDO if and only if n = 6;(F) — 1, where i = FIRST(F) and n =
LENGTH(i). In this case, we get a rightmost placement by placing a barrier just before the tail of
each interval in GDR(i), plus a barrier just before the ENDDO of L.

Proof. If F has only loop-carried intervals (i.e., n = 0), then 6;(F) = 1 and a barrier just before
the ENDDO does cut all intervals in F. Otherwise, let ¢ = FIRST(F) and n = LENGTH(i). We
add to F (virtually, just for the reasoning) a new loop-independent interval I; = (u,v), where u
and v are both to the right of any other endpoint in F. F has an optimal barrier placement with
a barrier just before the ENDDO if and only if 6;(F) barriers are sufficient to cut all intervals in
F' =FU {Ij}, ie., iff ;(F) = 91(.7:1)

By construction, we have NEXT(RIGHT (7)) = j and NEXT(j) = ¢. Thus, these intervals form
a cycle in the graph D’ defined by the function NEXT for F’, which shows, thanks to Theorem 1,
that n + 1 barriers are needed for F'. Furthermore, placing one barrier just before the tail of each
interval of GD(7) (defined in F’), i.e., one barrier just before the tail of each interval in GDR(%)
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(defined in F) and one just before the ENDDO (the tail of I;), is an optimal solution for F'. No
additional barrier is needed compared to F if and only if n = 6;(F) — 1. n

Lemma 7 If a loop L with a CIF F has no optimal barrier placement with a barrier just before
the ENDDO of L, a rightmost placement is obtained by placing a barrier just before the tail of each
interval in GD(i) (plus an extra barrier before the tail of LAST(i) if LAST(i) # i) where I; is the
interval with rightmost tail in a cycle of D, the graph defined by the function NEXT.

Proof. Let i = FIRST(F), n = LENGTH(i). To identify the rightmost point in an optimal
solution for F, we introduce, as in the previous lemma, a new loop-independent interval I; = (u,v)
where v is just before the ENDDO of the loop (i.e., to the right of any other endpoint in F) and
we identify the rightmost position for w for which 7' = F U {I;} needs only ¢;(F) barriers and not
0;(F) + 1. Let D" be the graph defined by the function NEXT for F'. Note that : = FIRST(F)
and NEXT(j) = 1.

Suppose that ;(F) barriers are enough for F/, i.e., 6;(F) = 6;(F’). Since there is no optimal
solution for F with a barrier just before the ENDDO, n = 6;(F) (Lemma 6). Thus, I; does not
belong to a cycle of D', otherwise n+ 1 = 6;(F) + 1 barriers would be needed following GD(j), and
possibly LAST(j), i.e., {I;} U GDR(i). Therefore, I; is cut because its head u is to the left of the
tail of some interval in a cycle of D'. Adding I; to F can only change the NEXT of some intervals
in F, those whose NEXT in F U {I;} are now j. Therefore, since I; is not in a cycle of D’, any
interval in a cycle of D’ was already in a cycle of D (the converse may not be true however). This
proves that u is to the left of the tail of some interval in a cycle of D. Conversely, if this is the case,
there is an optimal solution for F that cuts also I;, thus F’ needs only 6;(F) barriers.

In other words, the rightmost barrier in an optimal barrier placement for F is just before the
rightmost tail of an interval in a cycle of D. There is no need to consider other intervals. |

To study the optimal barrier placements for F in a loop L with respect to an incoming depen-
dence, i.e., a dependence whose tail v is in L, we treat it as an internal dependence I; = (u,v)
for L, where u is just to the right of the DO of L (i.e., to the left of any other endpoint in F) and
we study F' = F U {[;}, thanks to Lemmas 6 and 7. Below, we assume that I; does not contain
an interval in F (i.e., is minimal in F”), otherwise it is always cut by an optimal barrier placement
for F, and the rightmost such placement can be found thanks to Lemmas 6 and 7 applied to F.
Note that if I; is minimal in F’, then ¢ = FIRST(F).

Remark: we can now explain the footnote of Page 18. Apply the previous lemmas to F/,
assuming that F' needs also 6;(F) barriers, i.e., 6;(F) = 6;(F'). When n = 6,(F') — 1, the
rightmost barrier placement consists in placing a barrier just before the tail of each interval in
GDR(1), plus a barrier just before the ENDDO. Since an interval of the form dy, is, by construction,
minimal and loop-independent, it is going to be cut only once by such a barrier placement. When
n=6;(F) and 0;(F") = a(F’), then we will place barriers just before the tails of a sequence GD(j)
of independent intervals, thus again, an interval dj can be cut only once. The case n = 6;(F’)
and 0;(F') = a(F') + 1 is not possible as seen from the different cases analyzed previously (see
properties just before Lemma 6).

Thanks to Lemmas 6 and 7, we now have almost everything we need to find in linear time,
for each incoming dependence I;, the rightmost optimal barrier placement for F that cuts it. We
just need to define RIGHT(7), LENGTH(:), LAST (i), and LASTCUT (i) (we don’t update these
functions for intervals in F, this would be more costly and useless anyway) and to show how to
use them. We first compute j = NEXT(i) in F’. If I; is loop-independent and to the right of I,
we let RIGHT (i) = RIGHT(j), LENGTH(i) = LENGTH(j) + 1. Otherwise, we let RIGHT (i) =14
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and LENGTH(:) = 1. Then, if RIGHT () # ¢, we consider k = NEXT(RIGHT(¢)) as defined in F
(otherwise, k = j). Since the head of I; is before the tail of any interval in F, either the tail of I}
is to the right of the tail of I; and LAST(¢) = 4, or LAST (i) = k (I, is then loop-carried since I; is
minimal in F’). We also compute LASTCUT(4) = [ such that I; belongs to a cycle of D and the
tail of I; is the rightmost tail to the left of the tail of I; (the interval I; may not exist).

Computing the functions LASTCUT and NEXT for all incoming intervals can be done in linear
time, with an algorithm similar to what we did in Algorithm 2 for the function NEXT, provided
that internal intervals and incoming intervals are sorted by increasing tails. Given these functions,
the next theorem shows how to determine, in constant time, whether an incoming interval can be
cut by an optimal placement for F and, if this is the case, where is the rightmost barrier.

Theorem 3 Let I; be an incoming dependence for a loop L with a CIF F and let 6;(F) be the
minimal number of barriers for F. If I; contains an interval of F, then a rightmost placement
for F cuts I;. Otherwise:

e If LAST(i) = i and LENGTH(i) = 0;(F), I; is cut by an optimal placement for F with
barriers before the tails of intervals in GDR(i), the rightmost one just before RIGHT(i).

o [fLAST(i) # i and LENGTH(i) = 6;(F)—1, I; is cut by an optimal placement for F, barriers
before the tails of intervals in GDR(i), plus a rightmost barrier just before the ENDDO.

o If LAST(i) # i and LENGTH(i) > 0;(F), I; can be cut by an optimal placement for F if and
only if j = LASTCUT(i) exists. In this case, barriers are just before the tails of intervals in
GD(j), the rightmost barrier being just before the tail of It in GD(j) where NEXT(k) = j.

In all other cases, I; cannot be cut by an optimal barrier placement for F.

Proof. Consider I; the representation of an incoming dependence as an internal interval and
assume that I; is minimal in 7 = FU{I;}. We have i = FIRST(F’). We have n—1 < 0;(F) < n+1,
where 0;(F) is the minimal number of barriers for F and n = LENGTH(:) > 1.

Suppose first that LAST(i¢) = ¢. In this case, the sequence GDR(i) = GD(¢) forms a cycle in
the graph D’ defined by the function NEXT for F’. According to Theorem 1, ' needs n barriers
(thus n > 6;(F)). If n = 6;(F) + 1, I; cannot be cut by an optimal barrier placement for F. If
n = 6;(F), it can be cut and, according to Lemmas 6 and 7 applied to F’, the rightmost barrier is
just before the rightmost tail of an interval I; in a cycle of D" and not just before the ENDDO. Let
k = NEXT(j) in F'. I cannot be loop-carried otherwise LAST(i) # ¢ (the tail of RIGHT(i) is to
the left of (or equal to) the tail of I;, its NEXT would be loop-carried too). Thus, NEXT(j) = ¢ and
finally, following the function NEXT, j = RIGHT(i). Therefore, the case LAST (i) = ¢ is complete:
either n = 6;(F) + 1 and I; cannot be cut by an optimal solution for F, or n = 6;(F) and the
rightmost barrier is just before the tail of RIGHT(7).

Now suppose that LAST(i) # i. If n = 6;(F) — 1, according to Lemma 6 applied to F’, the
barrier placement defined from GDR(i), plus a barrier just before the ENDDO of the loop, is a
rightmost solution for F that cuts I; too. If n > 6;(F), suppose that F’' needs 6;(F) barriers too
(i.e., I; can be cut by an optimal solution for F). According to Lemmas 6 and 7, the rightmost
barrier is just before the rightmost tail of an interval I; in a cycle of D’ and not before the ENDDO.
But I; does not belong to a cycle of D’ otherwise, according to Theorem 1, 7’ needs n + 1 barriers,
i.e., more than F. Therefore, with the same reasoning as for Lemma 7, I; belongs to a cycle of D
and I; is cut by a barrier just before the tail of I}, with & = NEXT(j). Thus LASTCUT(4) exists.
Furthermore, I; is the unique interval in a cycle of D such that NEXT(j) = LASTCUT(%). Indeed,
consider I; whose tail is to the right of the tail of ;. Either NEXT(I) = k and then I; is not in a
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cycle of D’ since two different intervals in a cycle cannot have the same NEXT, or NEXT(l) = 4
and again I; is not in a cycle of D’ since I; is not in a cycle of D’. Conversely, if LASTCUT ()
exists, in this clear that F' needs only ;(F) barriers. Therefore, the case LAST(7) # 7 is complete
too: either n = 0;(F) — 1 and there is a solution with a rightmost barrier just before the ENDDO,
or n > 6;(F) and there is a solution if and only if LASTCUT(4) exists and the rightmost barrier is
just before the tail of I; such that I; is in a cycle of D and NEXT(j) = LASTCUT(3). n

Thanks to this theorem, we can find an optimal barrier placement for an NCIF in linear time.
During the whole weaving/unraveling process, each interval is examined a constant time for every
loop that it enters or leaves, and a constant time in the loop for which it is internal (as it will
eventually be, once inner loops are woven). The overall complexity is therefore O(nd) where n is
the number of intervals and d the height of the nest. If the endpoints of each interval are represented
by vector of dimension equal to the depth of each statement (so as to precise in each loop it belongs),
the complexity is O(n), where n is the size of the input.

5 Conclusion

We have presented a fast algorithm that solves the barrier minimization problem. As with most
claims for optimality in programming optimization, ours is true (at least we believe it) up to the
assumptions and definitions we have made. Other techniques, including statement reordering, loop
fusion and distribution, and other loop transformations, can affect the synchronization cost, and
ultimately the runtime, of parallel code. Some dependences can be enforced by point-to-point
synchronization at possibly lower cost that with a barrier. Removing barriers may change the load
balance characteristics of a program. Thus, considerable experience will be required to determine
the best combination of optimizations for practical application of the tools for parallel program
optimization that this and other theoretical research provide.
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