N

N

A Realistic Model and an Efficient Heuristic for
Scheduling with Heterogeneous Processors

Olivier Beaumont, Vincent Boudet, Yves Robert

» To cite this version:

Olivier Beaumont, Vincent Boudet, Yves Robert. A Realistic Model and an Efficient Heuristic
for Scheduling with Heterogeneous Processors. [Research Report] LIP RR-2001-37, Laboratoire de
Iinformatique du parallélisme. 2001, 2+18p. hal-02101846

HAL Id: hal-02101846
https://hal-lara.archives-ouvertes.fr /hal-02101846
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101846
https://hal.archives-ouvertes.fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Laboratoire de I’ nformatique du Parallélisme

(@]
%‘ Ecole Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON rP 5668

A Realistic Model and an Efficient Heuristic
for Scheduling with Heterogeneous
Processors

Olivier Beaumont
Vincent Boudet
Yves Robert

September 2001

Research Report N° 2001-37

Ecole Normale Supérieure de Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France
I" Téléphone : +33(0)4.72.72.80.37 1 N R I A
Télécopieur : +33(0)4.72.72.80.80 .

Adresse électronique : 1ip@ens-1lyon.fr

A Realistic Model and an Efficient Heuristic
for Scheduling with Heterogeneous Processors

Olivier Beaumont
Vincent Boudet
Yves Robert

September 2001

Abstract

Scheduling computational tasks on processors is a key issue for high-
performance computing. Although a large number of scheduling heuristics
have been presented in the literature, most of them target only homogeneous
resources. Moreover, these heuristics often rely on a model where the number
of processors is bounded but where the communication capabilities of the tar-
get architecture are not restricted. In this paper, we deal with a more realistic
model for heterogeneous networks of workstations, where each processor can
send and/or receive at most one message at any given time-step. First, we
state a complexity result that shows that the model is at least as difficult
as the standard one. Then, we show how to modify classical list scheduling
techniques to cope with the new model. Next we introduce a new scheduling
heuristic which incorporates load-balancing criteria into the decision process of
scheduling and mapping ready tasks. Experimental results conducted using six
classical testbeds: (LAPLACE, LU, STENCIL, FORK-JOIN, DOOLITTLE,
and LDM¢t) show very promising results.

Keywords: heterogeneous processors, scheduling, mapping, scheduling heuristics, complexity

Résumé

Nous nous intéressons a l’ordonnancement de graphes de taches avec des res-
sources de calcul hétérogénes. Nous pensons que le modéle usuel macro-dataflow
n’est pas adapté, car les contentions sur les communications ne sont pas prises
en compte. Nous proposons d’utiliser plutdt le modéle one-port, ott un proces-
seur donné peut envoyer/recevoir un seul message a tout instant. Ce modéle
s’avére aussi difficile que le modéle usuel: I’'ordonnancement d’un simple graphe
fork est prouvé NP-complet. Nous montrons comment adapter les heuristiques
de liste classiques au modéle one-port. Enfin, nous proposons une nouvelle heu-
ristique, dont la caractéristique principale est de traiter un ensemble de taches
prétes (plutot qu’une seule) simultanément: le but est d’assurer un meilleur
équilibrage de charge et de minimiser les communications.

Mots-clés: processeurs hétérogénes, heuristiques d’ordonnancement, distribution, équilibrage de charge,
complexité

1 Introduction

The efficient scheduling of application tasks is critical to achieving high performance in parallel and dis-
tributed systems. The objective of scheduling is to find a mapping of the tasks onto the processors, and to
order the execution of the tasks so that: (i) task precedence constraints are satisfied; and (ii) a minimum
schedule length is provided.

Task graph scheduling is usually studied using the so-called macro-dataflow model, which is widely used
in the scheduling literature: see the survey papers [16, 1, 4, 7] and the references therein. This model
was introduced for homogeneous processors, and has been (straightforwardly) extended for heterogeneous
computing resources. In a word, there is a limited number of computing resources, or processors, to execute
the tasks. Communication delays are taken into account as follows: let task T be a predecessor of task 7"
in the task graph; if both tasks are assigned to the same processor, no communication overhead is paid, the
execution of 7" can start right at the end of the execution of T'; on the contrary, if T and T" are assigned to two
different processors P; and Pj, a communication delay is paid. More precisely, if P; finishes the execution
of T at time-step ¢, then P; cannot start the execution of 7" before time-step ¢ + comm(T,T', P;, P;),
where comm(T,T', P;, P;) is the communication delay (which depends upon both tasks 7" and 7" and both
processors P; and P;). Because memory accesses are typically one order of magnitude cheaper than inter-
processor communications, it makes good sense to neglect them when T and T' are assigned to the same
processor.

However, the major flaw of the macro-dataflow model is that communication resources are not limited.
First, a processor can send (or receive) any number of messages in parallel, hence an unlimited number of
communication ports is assumed (this explains the name macro-dataflow for the model). Second, the number
of messages that can simultaneously circulate between processors is not bounded, hence an unlimited number
of communications can simultaneously occur on a given link. In other words, the communication network
is assumed to be contention-free, which of course is not realistic as soon as the processor number exceeds a
few units.

We strongly believe that the macro-dataflow task graph scheduling model should be modified to take com-
munication resources into account. Recent papers [12, 13, 23, 22|, made a similar statement and introduced
variants of the model (see the discussion in Section 2). In this paper, we suggest to use the bi-directional
one-port architectural model, where each processor can communicate (send and/or receive) with at most
another processor at a given time-step. In other words, a given processor can simultaneously send a mes-
sage, receive another message, and perform some (independent) computation. The next section (Section 2)
is devoted to a brief discussion of all these scheduling models: (i) the macro-dataflow model extended to
deal with heterogeneous resources, (ii) the variants suggested in the literature referenced above, and (iii) the
bi-directional one-port model.

The new one-port model turns out to be computationally even more difficult than the macro-dataflow
model: in Section 3, we prove that scheduling a simple fork graph with an unlimited number of homogeneous
processors is NP-hard. Note that this problem has polynomial complexity in the macro-dataflow model [10]:
we have to resort to fork-join graphs to get NP-completeness in the macro-dataflow model [4].

An impressive list of scheduling heuristics has been proposed in the literature for the macro-dataflow
model with a limited number of homogeneous processors (see the tutorial [1] and the references therein).
More recently, several heuristics have been introduced to deal with different-speed processors [15, 17, 26, 21,
3]. Unfortunately, all these heuristics assume no restriction on the communication resources, which renders
them somewhat unrealistic to model real-life applications. Section 4 is devoted to the design and analysis
of a new heuristic targeted to scheduling task graphs with a limited number of different-speed processors,
under the bi-directional one-port communication model.

In Section 5, we report simulation results from comparisons conducted using six classical testbeds:
LAPLACE, LU, STENCIL, FORK-JOIN, DOOLITTLE, and LDMt. We obtain very favorable results.
Finally, some concluding remarks are given in Section 6.

2 Models

2.1 The macro-dataflow model

In this section, we briefly recall the macro-dataflow model, which is widely used in the scheduling litera-
ture [1]. This model was introduced for homogeneous processors but has been extended to deal heterogeneous
computing resources. For each task scheduling algorithm, the input is composed of two entities:

1. A directed vertex-weighted edge-weighted acyclic graph G = (V, E,w, ¢), that models the application
to be scheduled.

2. A set of computing resources P = (P,t, link) that models the target computing resources (processors
and communication network).

The relationships between G and P are the following:

Computation

e V={v;:i=1,--- ,N}isaset of N nodes (or tasks). Each task v has a nonnegative computation
cost w(v) € N which is defined as the amount of computation cycles needed to process it.

e P={P, :i=1,---,p}is a set of p processors. Each processor P; has a cycle-time t;, which is
defined as the inverse of its (relative) speed. For instance if processor P; is twice faster, say, than
processor Ps, then ty = 2¢t;.

e The number of time-steps required to execute a task v on processor P; is the product w(v) X t;
of the task computation cost by the processor cycle-time'. If all processors are identical, then we
let t; =1for 1 <i<p.

e For each task v;, o(v;) is the time-step at which its execution begins. We let alloc(v;) be the

number of the processor which v; is assigned to.

e Any processor can compute and communicate simultaneously, but can execute at most one task
at each time-step. Tasks are non-preemptive: once started on a given processor, their execution
must continue until completion.

Precedence constraints

e Each edge e; ; € F corresponds to a precedence constraint from task v; to task v; and is labeled
with a communication volume data(i, 7), which is the number of data items to be transferred from
v; to v; after the execution of v;.

e For each edge e;; : v; = vy, if v; is executed on processor P, and v; on processor P, (in other
words if alloc(v;) = ¢ and alloc(vj) = r), we have the scheduling constraint

o(vi) + w(v;) x ty + comm(i, j,q,r) < o(vj)

which states that the execution of v; on P, cannot start before the end of the execution of v;
on Py, ie. o(v;) +w(v;) x ty, plus some communication overhead comm(i, j, ¢, r) that is detailed
below (and chosen to be zero whenever ¢ = 7).

Communication

e The communication matrix link models the time needed to transfer a single data item from one
processor to another. As stated above, we assume that the main diagonal of the 2D matrix link
is composed of zero entries.

IThis is the so-called consistent restriction of a more general model where the cost of executing a task on a processor is
given by the corresponding entry of a two-dimensional matrix. When the rows of this matrix are not comparable, it means
that a processor P; which executes a task v faster than another processor P; may well be slower than P; for the execution for
another task v’, hence the name inconsistent in this general setting. All the results and heuristics of this paper can directly be
extended to cope with the fully general model.

e The communication overhead comm(i, j,q,r) is equal to
comm(i, j,q,r) = data(i, j) x link(q,r),
i.e. the product of the message length by the capacity of the communication link.

Objective
The objective is to minimize the makespan, or scheduling length, i.e.

e (o(v) + w(v) X taoe(v)) -

This scheduling problem is NP-complete in the macro-data flow model, even for simple fork-join graphs
with an infinite number of same-speed processors (t; = 1 for all 7), and a fully homogeneous communication
network (link(i,j) = 1 forall i # j): see [4].

2.2 Communication-aware models from the literature

Communication-aware models restrict the use of communication links in various manners. In the model pro-
posed by Sinnen and Sousa [23, 22, 24], the underlying communication network is no longer fully-connected.
There are a limited number of communication links, and each processor is provided with a routing table
which specifies the links to be used to communicate with an other processor (hence the routing is fully static).
The major modification is that at most one message can circulate on one link at a given time-step, so that
contention for communication resources is taken into account.

Similarly, Hollermann et al. [12] and Hsu et al. [13] target networks of processors and introduce the
following model: each processor can either send or receive a message at a given time-step (bidirectional
communication is not possible); also, there is a fixed latency between the initiation of the communication by
the sender and the beginning of the reception by the receiver. Still, the model is rather close to the standard
one-port model discussed below.

Finally, note that there are several other papers that include restrictions on the communication resources:
these include work by Tan et al. [25], Orduna et al. [18] and Roig et al. [20].

2.3 The bi-directional one-port model

As stated above, communication resources are taken into account for the bi-directional one-port model. This
is quite natural, and quite similar to the assumptions made for computation resources in the macro-dataflow
model.

Formally, we keep all previous notations and scheduling rules, and we add the following new rule: at a
given time-step, any processor can communicate with at most another processor in both directions: sending to
and receiving from another processor. We also assume communication/computation overlap (but as before,
a processor can execute at most one task at each step). Note that several communications can occur in
parallel, provided that they involve disjoint pairs of sending/receiving processors. The one-port model nicely
models switches like Myrinet that can implement permutations [5] or even multiplexed bus architectures [14].

Several variants could be considered: no communication/computation overlap, uni-directional communi-
cations, or even a combination of both restrictions. But the bi-directional one-port model seems closer to
the actual capabilities of modern processors.

Serializing communications performed by the processors has a dramatic impact on the scheduling makespan.
Consider the following simple example of the task graph represented in Figure 1: w(v;) = 1for 0 <i <6
and data(0,i) = 1 for 1 < ¢ < 6. Assume five same-speed processors and a fully homogeneous network:
t; =1for 1 <i <5 and link(i,j) =1 for 1 <i,j <5,i # j. In the macro-dataflow model, we assign vy and
the first two children v; and vy to processor Py. We assign one of the remaining children vs, vy, v5 and vg
to each remaining processor. Processor P, executes task vg at time-step 0; then Py can perform all the four
communications in parallel at time-step 1. The total makespan is then equal to 3. In the one-port model,
the same allocation of tasks to processors would lead to a makespan at least 6: 1 for the parent task, 4 for
the four messages to be sent sequentially, and 1 for the last task to be executed. One optimal solution is

Figure 1: Task graph for the example: all weights (nodes and communications) are equal to 1.

wo

Figure 2: A fork-graph

to assign three children tasks to Py and one remaining child task to a distinct processor (which makes one
processor useless), for a makespan equal to 5. It is clear that communications from the parent node to the
children has become the bottleneck. Of course we could use larger task graphs and greater communication
costs to come up with arbitrarily large differences in the makespans.

3 Complexity

In this section, we prove a NP-completeness result for the one-port scheduling model. A N-children fork-
graph is a task-graph of N + 1 nodes labeled vg,v1,...,vy, as illustrated in Figure 2. There is an edge
directed from the parent node vg to each child node v;, 1 < i < N. To simplify notations, we let w; = w(v;)
for 0 <7 < N and d; = data(0,7) for 1 < i < N. We target a simple architecture with an unlimited number of
same-speed processors and a fully homogeneous communication network. With the above notations, p = N+1
(we never need more processors than tasks), t; = 1 for 1 < i < p, link(i,j) = 1 for 1 <i,j < p,i # j (and
link(i,i) = 0 for 1 <i < p).

Given a fork graph and the target architecture (unlimited number of same-speed processors connected
through a fully homogeneous network), the decision problem is the following:

Definition 1 FORK-SCHED(G,P,T): Given a fork-graph G of N +1 nodes, a set P of an unlimited number
of same-speed processors connected through a fully homogeneous network, and given a time-bound T, is there
a valid schedule o whose makespan is not greater than T ¢

Theorem 1 The FORK-SCHED(G,P,T) decision problem is NP-complete.

Proof We use a reduction from 2-PARTITION, a well-known NP-complete problem [8]: given a set of n
integers A = {ay,...,a,}, is there a partition of {1,...,n} into two subsets .4; and Ay such that

Z a; = Z a; 7
i€AL i€A2

We start with an arbitrary instance of 2-PARTITION, i.e. aset A = {ay,...,ay} of n integers. We have
to polynomially transform this instance into an instance of the FORK-SCHED problem which has a solution
iff the original instance of 2-PARTITION has a solution.

We let 25 = Y7 | a; (if the sum is odd there is no solution to the instance of 2-PARTITION). Let
M =maxi<i<n a; and m = min;<;<, a;. We construct the following instance of FORK-SCHED:

e the fork-graph has N + 1 nodes, where N =n + 3
e the parent node vy has weight wy =0

e for 1 <i < n, the i-th child node v; has weight w; = 10(M + a; + 1)

the last three children have the same weight wy,11 = wp12 = wyys = 10(M +m) + 1. Let wmin denote
this common value, this is indeed the minimum of w;, 1 <i <n + 3.

data volumes: for 1 <i<n+ 3, d; = w;

time bound: 7' = £ 37 | w; 4+ 2wmin = 5n(M + 1) 4+ 10S + 20(M + m) + 2

Note that wmin < w; < 2wmin for 1 < i < n (straightforward verification). Clearly, the size of the constructed
instance of FORK-SCHED is polynomial (even linear) in the size of the original instance of 2-PARTITION.

Assume that the original instance of 2-PARTITION admits a solution: let A; and A be a partition of
{1,...,n} such that 3 ;. 4 ai =) ;c4,a = S. We derive a scheduling for the instance of FORK-SCHED
as follows:

e Processor Py is assigned the execution of node vg, nodes v;, i € A; and nodes v, 11 and v, 5. Obviously,
Py needs exactly T units of time to process these tasks.

e Each other node is assigned to a distinct processor, hence we are using |.Az2| + 1 processors in addition
to PO

e The ordering of the communication messages sent by Py is by increasing values of the index i; in
particular, the last message sent by Py is to node vy3

e The processor responsible for node v, 3 completes the reception of the message from Py at time-step
Zi€A2 d; + dp+3, and terminates the execution at time-step Ei€A2 di + dpt3 + wmin =T

e All the other processors terminate their execution earlier, because they receive their message not later
than Eie As d; and their execution time w; is not greater than 2wpin

Therefore, we have derived a valid scheduling that matches the time-bound, hence a solution to the FORK-
SCHED instance.

Reciprocally, assume that the FORK-SCHED instance admits a solution, i.e. a valid scheduling o that
achieves the time-bound T'. Let P, be the processor which executes vy, and A4 = {i,1 < i < n+3, alloc(v;) =
0} be the index set of the tasks assigned to Py. The processing time of Py is thus at least A = EieA wj.
All the remaining tasks are assigned to other processors than Py. The processor which receives the last
message from Py to execute a task, say, vigst (whose index is not in A), cannot complete execution be-
fore time-step B = } s 4 1<i<nisdi + Wlage- Since o achieves the time bound, max(A,B) < T. But
A+ B = 2?213 w; + wiaet = 2T + Wiygt — Wmin, hence A = B = T and wj,gy = Wmin. Since A = B,
A = B mod 10, hence A contains exactly two indices of the set {n + 1,n + 2,n + 3}. We let A; be equal
to A minus these two indices and As = {1,...,n} \ A1 to derive a solution to the original instance of
2-PARTITION. [|

4 Heuristics

In this section, we introduce a new heuristic for the one-port model. This heuristic builds upon ideas from
the HEFT heuristic and from the ILHA heuristic, both designed for the macro-dataflow model. We briefly
review these heuristics before discussing their adaptation to the one-port model.

4.1 HEFT for the macro-dataflow model

In this section we briefly describe the Heterogeneous Earliest Finish Time (HEFT) heuristic introduced by
Topcuoglu, Hariri and Wu [26] for the macro-dataflow model. This heuristic is a natural extension of list-
scheduling heuristics to cope with heterogeneous resources. More in particular, HEFT builds upon the old
Modified Critical Path heuristic [9, 6] and use bottom levels to assign priorities to tasks.

More precisely, the HEFT heuristic works as follows:

e the task graph is traversed so that the bottom level of each task is computed. The bottom level of a
task is defined as the length of the longest path that leads to an exit node in the graph (intuitively,
the longer the path, the more urgent the task).

e bottom levels are used to assign priorities to tasks

e at each step, a ready task (i.e. a task whose predecessors have all been scheduled) with highest priority
is selected for scheduling

e the task is assigned to the processor that allows the earliest completion time, taken into account all
previous decisions; the task is then marked “scheduled” and the list of ready tasks is updated

Further explanations are in order. First, how to compute bottom levels with different speed processors?
Because the length of a path in the graph is the sum of computation and communication times, we need to
properly average those to define bottom levels in this context, as explained below.

As for computation times, assume that there are p available processors of respective cycle-times ¢1, ..., t,.
Assume also that there is a collection of several independent tasks of total weight W. Ideally, these tasks
should be distributed to processors so that the load is equally balanced. Processor P; should receive a
fraction ¢; (with 0 < ¢; < 1) of the total weight W such that its processing time (¢;1W)t; is the same as that

of all processors. We derive
1
t;
P 1
i=11;

Ci =

The tasks are processed within <2 time-units by the p processors. We deduce that the weight w(T) of

i=11%;
a given task should be estimated by the quantity %XPL(TL) when computing bottom-levels.
i=1t;
Similarly, the weight of a communication should be multiplied by a factor estimated to the average
bandwidth of the links (replace link(q,r) by the inverse of the harmonic mean). Note that all communication
costs are accounted for in the calculation of bottom levels. In other words, it is (conservatively) estimated

that communications cannot be avoided (by assigning the source and the sink to the same processor).

4.2 ILHA for the macro-dataflow model

In a previous paper [3], we have introduced the Iso-Level Heterogeneous Allocation (ILHA) heuristic for the
macro-dataflow model. In a word, the main characteristic of the ILHA heuristic is a better load-balancing
at each decision step, which is achieved by considering a chunk of several ready tasks rather than a single
one; the idea is to allocate to each processor a number of the tasks in the chunk that is proportional to its
computing power.

We have outlined how to achieve a good load-balancing in the previous section: each processor P; with
cycle-time t¢; should receive a fraction ¢; of the total work of size W to be executed. There is a slight
complication due to the fact that tasks are indivisible units of computation, so that the values ¢; may have
to be replaced by approximations. For instance when W corresponds to n independent tasks, each requiring

the same amount of work, P; receives ¢;n tasks, which is an integer for all 1 <i < p only if n is a multiple
of C =lem(ty,ta,--- ,tp) ?:1 tl—j, a quantity that may be very large. For the general case, the following
algorithm provides the best solution [2]:

OPTIMAL DISTRIBUTION
1
1:Vie{l,...,p}, ¢ = \‘pi—L an .
i=1%;
2form=c +c2+...+¢cpton
3: find k € {1,...,p} such that t; x (¢ +1) = min{t; x (¢; + 1))}
4 ck =cr+ 1

We are ready for a first outline of the ILHA heuristic. We split the task graph into levels made up of
independent tasks, by considering the tasks that will be ready at the same time-step. In other words, two
tasks belong to the same level if they have the same top-level, using the terminology of [27]. This is done by
a traversal of the graph. Initially, the 0-level is composed of the entry tasks. The (i 4+ 1)-th level groups the
tasks that are ready when the i-th level is achieved. A first version of the ILH A algorithm is the following:
we traverse the task graph to split it into levels made of independent tasks. We compute the number of
tasks that we allocate to each processor using the load-balancing algorithm. Once this is done, we have to
determine exactly which task is given to each processor. The criteria is to minimize the communication costs.
So for each task of the level, we consider its predecessors. If they are all allocated to the same processor, we
try to allocate the task to the same processor (i.e. if the processor may receive another task), otherwise, we
allocate the task to the fastest processor that is not yet saturated (able to receive new tasks according to
the load-balancing strategy).

In the previous version of the ILHA algorithm, we process all the ready tasks at each step. In some cases,
it would be better to take into account the bottom level of the ready tasks and to consider first the tasks on
a critical path. To this purpose, we sort the ready tasks according to their bottom level. Then, we introduce
a parameter B, the maximal number of ready tasks that will be considered at each step. We consider those
B tasks with the higher bottom levels and we allocate them using the load balancing algorithm. Then, we
update the set of ready tasks (indeed some new tasks may have become ready) and we re-sort them according
to their bottom level. Thus, we expect that the tasks on a critical path will be processed as soon as possible.
Unfortunately, we face a tradeoff for choosing an appropriate value for B. On one hand if B is large, it will
be possible to better balance the load and minimize the communication cost. On the other hand, a small
value of B will enable us to process the tasks on the critical path sooner. Of course B must be at least
equal to the number of processors, otherwise some processors would be kept idle. The choice of B will be
discussed furthermore in the Section 5.

We obtain the final version of the ILH A algorithm:

THE ILHA ALGORITHM
1: Compute the bottom level of each task
2: ReadyTask < {Entry tasks} sorted by decreasing value of their bottom level
3: While ReadyT ask is not empty
Take the B first tasks of the ReadyT ask
Compute the optimal distribution with B tasks
For each task t of ReadyT ask

If all predecessors of ¢t are on p and p is free

Assign t to p

For each task t of ReadyT ask not yet assigned
10: Assign ¢ to the first free processor
11: Update the list of ReadyT ask by inserting the new ready tasks in the sorted list
12:End while

The ILHA heuristic was compared [3] with five heuristics taken from the literature: the minimum Partial
Completion Time static priority (PCT) heuristic [15], the Best I'maginary Level (BIL) heuristic [17], the

Critical Path on a Processor (CPOP) heuristic [26], the Generalized Dynamic Level (GDL) heuristic [21]
and the previous HEFT heuristic. For the experimental comparisons, we have used six classical testbeds
(LAPLACE, LU, STENCIL, FORK-JOIN, DOOLITTLE, and LDMt:see Section 5). All these comparisons
showed that the best results are obtained for HEFT and ILHA. We now proceed to adapting these two
heuristics to the one-port model.

4.3 HEFT for the one-port model

Modifying HEFT for the one-port model is not difficult. When the highest priority ready-task is selected,
we still search for the processor that allows earliest completion time. But now we have to take constraints
in communication resources. This means that in addition to scheduling the selected task we must also
schedule eventual incoming communications. Since we have access to current communication schedules for
all processors, we can assign the new communications as early as possible, in a greedy fashion.

Consider the following example with three processors P;, P, and P;. Assume that the selected task T'
has two incoming edges, one from a task T; already allocated to processor P, and the other from a task
T, already allocated to processor P,. If we try to allocate the selected task to P, we can neglect the
first communication. We schedule the communication from P, to P; as soon as possible, with the one-
port constraint: we look for the first available time-interval during which P is not sending and P; is not
receiving. This interval must start after the completion of the source task on P, and must be long enough
so that the entire communication, of duration comm(Ty,T, P, P1) = data(Ty,T) x link(P», P;), can take
place. In passing, note that the model can easily be extended to the case where the interconnection network
is such that messages must be routed between some processor pairs: if there is no direct link from P> to Py,
we redo the previous step for all intermediate messages between adjacent processors. Having scheduled the
communications, we can now look at the computation schedule of P; to find the earliest possible starting
time for the execution of the selected task. We thus derive the completion time on P;. We take the minimum
completion time on P;, P>, and P; to decide which processor will execute the task.

4.4 ILHA for the one-port model

Modifying ILHA for the one-port model is more challenging. This is because several ready tasks are dealt
with simultaneously, which leads to handle many more communications.

As before, we select B (independent) ready tasks of highest priority (i.e. of largest bottom level). Let W
be the sum of the weights of these B tasks. To minimize the number of communications, we then proceed
in two steps:

Step 1 We scan the list of B tasks (starting with highest priorities first), and check whether a given task T
can be assigned without generating any communication , i.e. whether all the parents of T have already
been allocated to the same processor, say P;. In that case, we allocate T" to processor P;, provided that
the current workload of P; does not exceed the fraction ¢;WW of the total work. Here ¢; is the value
returned by the load-balancing algorithm discussed above; if P; happens to have already received its
share of the work, we do nothing and proceed to the next task in the list, until the list is exhausted.

Step 2 At the end of Step 1, some tasks have been allocated to processors. We suppress them from the list
of B ready tasks, which we scan a second time, in the same order. We use the same strategy as in
HEFT to allocate the tasks: we select the processor that allows for the earliest completion time.

To exemplify the differences between HEFT and ILHA, consider the toy-example represented in Figure 3
and assume two same-speed processors Py and P, are available (tg = ¢, = link(Py, P;) = 1). The bottom
level of all the children nodes is the same, so assume they are ranked in the order ay, a2, as, aby, abs, bs, b2, by .
In the following, a task that would end at the same time-step on both processors is always assigned to Py
(this is just an arbitrary way to break ties).

HEFT first schedules ag on Py and by on P;. Then a; is assigned to Py. Next as is assigned to Py again,
because of the tie-breaking rule. After that a3 goes to P;, and so on: see Figure 4.

ILHA also start by scheduling ag on Py and by on P;. After that, if B > 8, ILHA benefits from its
global view: it assigns no-communication tasks, i.e. a;, ay and as to Fy and bs, by and by to P;. Note that

Figure 3: A toy example: all computation and communication costs are equal to 1.

1 HEFT 6 1 ILHA 5
| | Lot | | | 1

‘ I [‘ [I

=) | | | | | J | | | | | |

'ag{al'ag ab1 b2 [aglallaglaglabl‘
o= Brpeon o
as CLbQ CLbQ

Pl | | | | | | | | | | | | |

| bo as abg b3 b1 | bo l b3 ! b2 l b1 ICLbQ‘
P P o] 5
ab1 b2 ab1

Figure 4: HEFT and ILHA scheduling for the toy example.

c1 = c2 = 0.5, hence each processor could receive up to 4 tasks in this allocation step. Next we turn to
HEFT scheduling, as outlined in Figure 4. Note that the makespan is smaller, but also that the number
of communication has dramatically been reduced. Reducing communications while achieving a good load
balance is the objective that has guided the design of ILHA.

Note that several variations in the design of ILHA could be implemented. First, there is no reason to
limit the scan of the B ready tasks to those tasks incurring no communication. We could add another
scan for tasks that can be scheduled at the price of a single communication, and so on. Second, and more
importantly, we could limit the use of HEFT at Step 2 to a pre-allocation of tasks to processors, and re-
schedule all communications in a third step. In other words, after Step 2 all tasks have been allocated to
processors. We can forget about the schedule times computed during Step 1 or during Step 2 (using HEFT)
and keep only the allocation function. We then try to re-schedule the whole set of B tasks: indeed, the
scheduling has been made simpler, because the allocation is known. Unfortunately, this scheduling problem
remains NP-complete (see the proof in the Appendix). Still, we could use greedy-like heuristics to improve
the scheduling after the allocation resulting from the two scans.

5 Simulation results

5.1 Testbeds

In order to compare the different algorithms, we consider six classical kernels representing various types of
parallel algorithms. The selected task graphs are:

e LU: LU decomposition

LAPLACE: Laplace equation solver

STENCIL: stencil algorithm

FORK-JOIN: fork-join graph
DOOLITTLE: Doolittle reduction

LDMt: LDM! decomposition

Miniature versions of each task graph are shown in Figure 5.

5.2 Weights and speeds

Task weights For the LAPLACE, STENCIL, and FORK-JOIN testbeds, all tasks have same weight,
which we normalize to 1. For the linear algebra testbeds, i.e. LU, DOOLITTLE and LDMt, the situation
is more complicated, because the amount of work to be done at each step of the algorithm is not constant
(see [11, 19]). For the LU kernel, the weight of a task at level k is N — k, where N is the size of the graph.
For the DOOLITTLE and LDM¢t kernels, the the weight of a task at level k is k, where k varies from 1 to
N, the size of the graph.

Processor speeds We use 10 processors: five processors with cycle time 6, three processors with cycle
time 10, and two processors with cycle time 15. Remember that the time to execute a task is the product
of its weight by the processor cycle-time. The speedup that can be achieved with these 10 processors is
bounded as follows:

With this set of processors, the smallest value to perfectly load-balance the work is B = 38. Indeed we
give 5 tasks to each processor of cycle time 6 (hence 30 tasks), 3 tasks to each processor of cycle time 10
(hence 9 tasks) and finally 2 tasks to each processor of cycle time 15 (hence 4 tasks). So in 30 time-units
we process 25 + 9 + 4 = 38 tasks. To compute these 38 tasks in a sequential way, using one of the fastest
processors, we would need 38 x 6 = 228 time-units. So we may improve the sequential time by a factor at
most % = 7.6. Note that this is only an upper bound, since all communication costs are neglected here,
and since it is assumed that no dependence would keep any processor idle at any time-step.

Communication costs For each testbed, we let the communication costs be proportional to the task
weights: indeed in each kernel, we always communicate the data that has just been updated. In other words,
the communication cost from a task v to a task v’ is equal to ¢ times the weight of v, where ¢ is a parameter
that models the communication-to-computation ratio of the target platform. Because we want to stress the
impact of communication costs, we use a large value for ¢: we let ¢ = 10, which is rather representative of
workstations linked with a slow (Ethernet) network.

5.3 Results

We start with the FORK-JOIN kernel: see Figure 6. We see that HEFT and ILHA lead to the same
scheduling. The value of B has no impact on ILHA in this case (we used B = 38 in the experiments). The
speedup is quite limited: the gain is 1.58, to be compared with the theoretical bound of 7.6. But in fact,
the scheduling found by both heuristics is efficient. Indeed, to reach a speedup factor s with homogeneous
processors, we would have to generate % x N communications, where N is the number of intermediate
nodes in the graph. Even if we succeeded in overlapping all these communications with computations, we
would not do better than ¢ x £=L x N 4+ 3 x wt time-steps, where w is the task weight, ¢ the processor
cycle-time and ¢ the communication cost. The sequential time is equal to (N + 2) x wt, hence the speedup
is s~ % (with N large enough). This leads to s < th + 1. Here with t =6, ¢ = 10 et w = 1, the bound
is 1.6: contrarily to the appearances, 1.58 turns out to be a very good result!

We continue with the LU decomposition kernel: see Figure 7. Here the best value for B has been
experimentally found to be B = 4. This small value can be explained as follows: the shape of the LU task
graph is such that the critical path must be executed rapidly, hence the need for a smaller value of B. We

10

-

The LAPLACE task graph
The LU task graph

e

The stencil task graph The fork-join task graph

The DOOLITTLE reduction task graph
The LDM? decomposition task graph

Figure 5: The different testbeds.

ratio (execution time)/(sequential time)

153 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

Problem size

Figure 6: Comparison of HEFT and ILHA for the FORK-JOIN problem, with 10 processors and a commu-
nication cost equal to 10.

point out that HEFT and ILHA achieve similar performances for n = 100, but ILHA gains more and more
as the problem size increases. For n = 500 ILHA obtains a speedup equal to 5, while HEFT is limited to
4.5.

Results are similar for the LAPLACE, LDM* and DOOLITTLE kernels (see Figures 8,9 and 10). For each
of them, ILHA roughly gains 10% over &8 HEFT. For LAPLACE we used B = 38: all nodes are on a critical
path, and a larger value of B allows both to load-balance computations and to minimize communications.
For n = 500, ILHA achieves a speedup equal to 5.6. For DOOLITTLE and LDM?, the best value for B is
B = 20, a tradeoff between a good load-balancing and an early processing of the critical path. The speedup
for LDM? is 4.9, and for DOOLITTLE, it is equal to 4.4. The gain over HEFT is significant.

Finally for the STENCIL kernel (see Figure 11), we observe a new phenomenon: for both heuristics, the
speedup decreases as the problem size increases. This can be explained as follows: as the graph becomes
larger, we have to use all processors in parallel on each row of the graph, and this induces many communi-
cations to be done sequentially, and these become the bottleneck. ILHA obtains a low speedup equal to 2.7,
slightly better than HEFT which reaches 2.4. The optimal value for B is B = 38.

We point out that the best results for ILHA have been obtained by trying several values for B. Unfor-
tunately, we have not found any systematic technique to predict the optimal value of B. Note however that
the range of B is limited: with equal-size tasks and p processors of cycle-times ¢1,%,...,t,, we can sample

the interval [1..M], where the value M = lem(ty, to,...,t,) > 0, tl ensures a perfect load balancing.

6 Conclusion

In this paper we have argued that the (bi-directional) one-port scheduling model was more realistic than
the macro-dataflow model to design and analyse the execution of parallel algorithms onto networks of work-
stations. Indeed, the scarcity of communication resources is fully taken into account, just as the scarcity of
commputing resources was dealt with in the macro-dataflow model with a limited number of processors.
We have assessed the intrinsic complexity of task graph scheduling under the one-port model. The
NP-completeness result obtained for fork graphs is no surprise at all, but motivates the design of efficient
heuristics. We have shown how to extend the HEFT heuristic [26] to cope with the new model. The HEFT

12

ratio (execution time)/(sequential time)

38 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

Problem size

Figure 7: Comparison of HEFT and ILHA for the LU problem, with 10 processors and a communication
cost equal to 10.

5.8 T T T T T T

ratio (execution time)/(sequential time)

5 - -
I U [e -
a8 | e E
a6l .
44 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

Problem size

Figure 8: Comparison of HEFT and ILHA for the LAPLACE problem, with 10 processors and a communi-
cation cost equal to 10.

13

ratio (execution time)/(sequential time)

44t |
e e S
a2t -
»_«,,_,,,,_%//'
st
| i
38 ; I : : L 1 1 1
100 150 200 250 300 350 200 = J
Problem size

Figure 9: Comparison of HEFT and ILHA for the LDM! problem, with 10 processors and a communication
cost equal to 10.

4.6 T T T T T T

ratio (execution time)/(sequential time)

38t T .
3.6 [e o E
34| g
3.2 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500
Problem size

Figure 10: Comparison of HEFT and ILHA for the DOOLITTLE problem, with 10 processors and a com-
munication cost equal to 10.

14

2.75

2.7
__ 265
(o)
£
8 26 e
c
(]
3
o
&8 255 -
o
£
= 25 i
S
E
(5} ~
3 245¢ E
o))
8 e
24 E
235 | e T
23 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500
Problem size

Figure 11: Comparison of HEFT and ILHA for the STENCIL problem, with 10 processors and a communi-
cation cost equal to 10.

heuristic was already an extension of critical path scheduling to heterogeneous computing resources, and we
showed how to serialize communications in accordance to the one-port constraint.

We have also introduced a new heuristic, ILHA, whose design is motivated by (i) the search for a better
load-balance and (ii) the generation of fewer communications. These goals are achieved by scheduling a
chunk of ready tasks simultaneously, which enables for a global view of the potential communications.
Preliminary results conducted on six classical testbeds demonstrate very promising results. Still, there is
room for further analysis and improvements of the ILHA heuristic, as well as more extensive experimental
validation and comparisons.

7 Appendix

In this section, we prove that scheduling the communications in a bipartite graph, after having allocated the
tasks to the processors, is a NP-complete problem. The link with ILHA is obvious: one subset of the nodes
represent the B ready tasks which are currently under examination, and the other subset represents their
parents: communication links are directed from the latter to the former.

Definition 2 COMM-SCHED(G,P,T): Given a bipartite graph G of task nodes V.=V, UVa, a finite set P of
same-speed processors connected through a fully homogeneous network, such that each task node is assigned a
processor number in P, and edges from V| to Va are assigned a communication cost, and given a time-bound
T, is there a valid schedule o whose makespan is not greater than T ?

Theorem 2 The COMM-SCHED(G,P,T) decision problem is NP-complete.

Proof As for the FORK-SCHED problem, we use a reduction from 2-PARTITION. We start with an
arbitrary instance of 2-PARTITION, i.e. a set A = {a1,...,a,} of n integers. We have to polynomially
transform this instance into an instance of the COMM-SCHED problem which has a solution iff the original
instance of 2-PARTITION has a solution, i.e. iff there exists a partition of {1,...,n} into two subsets A;

15

Figure 12: The instance of COMM-SCHED.

and As such that

Y=Y

€A i€ A2

We let 25 = " | a; (if the sum is odd, there is no solution to the instance of 2-PARTITION). We
construct the following instance of COMM-SCHED:

e there are 3n + 1 tasks: a fork-graph with parent vy and children vy, vs, ..., v,, and n separated pairs of
tasks (Vont1,Unt1), (V2nt2, Unt2), -« -y (V3n, V2,); each pair has an edge vay, i — Upti: see Figure 12).

e there are 2n + 1 processors Py, Py, ..., P, of same speed: t; =1,0<i<n

e task v is assigned to Py and for 1 < i < n, tasks v; and v,41 are assigned to processor P;
e for 1 <i < mn, task ve,4; is assigned to processor P, ;

e all computation times are equal to zero: w(v;) = 0,0 <i < 3n

e communication times: for 1 < i < n, d; = data(vo, v;) = a; and data(venyi, Vnri) = S.

e homogeneous network: link(P;, P;) =1if i # j

e time bound: T = S

Clearly, the size of the constructed instance of COMM-SCHED is polynomial (even linear) in the size of
the original instance of 2-PARTITION.

Assume that the original instance of 2-PARTITION admits a solution: let A; and A be a partition of
{1,...,n} such that ;. 4 a;i = > ;c4, @ = S. We derive a scheduling for the instance of COMM-SCHED
as follows:

16

e At time-step t = 0, processor P, ; sends its message to processor P;, 1 <i <n

e Processor Py sends messages to nodes v; such that i € A; (in any order); then, at time-step .S, it sends
messages to sends messages to nodes v; such that i € A, (in any order)

e If i € Ay, processor P; first executes v;, as soon as it has received the data from Py. Then, no later
than at time-step S = Zi€A2 d;, it executes task vy

e If i € A, processor P; first executes task v,4;; then it executes task v;, as soon as it has received the
data from P,

Therefore, we have derived a valid scheduling that matches the time-bound, hence a solution to the COMM-
SCHED instance.

Reciprocally, assume that the COMM-SCHED instance admits a solution, i.e. a valid scheduling o that
matches the time-bound 7. Then Py sends all its n messages without any idle-time. If at time-step S
processor Fp is in the middle of an emission, say that of message number j, then processor P; has not
enough time to receive data from P, ; for task v,4;, either before or after receiving the message from F.
Hence at time-step S Py is just completing the sending of one message, hence the solution to 2-PARTITION.

For the reader that would be worried with execution times equal to 0, it is not difficult to modify the
construction to derive an instance with execution times equal to 1 (but this slightly complicates the proof,
hence our choice).

References

[1] B.A.Shirazi, A.R. Hurson, and K.M. Kavi. Scheduling and load balancing in parallel and distributed
systems. IEEE Computer Science Press, 1995.

[2] Vincent Boudet, Fabrice Rastello, and Yves Robert. A proposal for a heterogeneous cluster ScaLAPACK
(dense linear solvers). In Hamid R. Arabnia, editor, International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99). CSREA Press, 1999. Extended version available
as LIP Technical Report RR-99-17.

[3] Vincent Boudet and Yves Robert. Scheduling heuristics for heterogeneous processors. In 2001 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’2001),
pages 2109-2115. CSREA Press, 2001. Extended version available (on the Web) as Technical Report
2001-22, LIP, ENS Lyon.

[4] P. Chrétienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors. Scheduling Theory and its Applica-
tions. John Wiley and Sons, 1995.

[5] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Approach. Morgan
Kaufmann, San Francisco, CA, 1999.

[6] A. Darte, Y. Robert, and F.Vivien. Scheduling and Automatic Parallelization. Birkhaiiser, 2000.

[7] H. El-Rewini, H.H. Ali, and T.G. Lewis. Task scheduling in multiprocessing systems. Computer,
28(12):27-37, 1995.

[8] Michael R. Garey and Davis S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1991.

[9] Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuristics for scheduling DAGs on
multiprocessors. J. Parallel and Distributed computing, 16(4):276-291, December 1992.

[10] Apostolos Gerasoulis and Tao Yang. On the granularity and clustering of directed acyclic task graphs.
IEEFE Trans. Parallel and Distributed Systems, 4(6):686-701, 1993.

17

[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Gene H. Golub and Charles F. Van Loan. Matriz computations. Johns Hopkins, 2 edition, 1989.

L. Hollermann, T.S. Hsu, D.R. Lopez, and K. Vertanen. Scheduling problems in a practial allocation
model. J. Combinatorial Optimization, 1(2):129-149, 1997.

T.S. Hsu, J. C. Lee, D.R. Lopez, and W.A. Royce. Task allocation on a network of processors. IEEE
Trans. Computers, 49(12):1339-1353, 2000.

K. Hwang and Z. Xu. Scalable Parallel Computing. McGraw-Hill, 1998.

M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm for heterogeneous
computing systems. In Seventh Heterogeneous Computing Workshop. IEEE Computer Society Press,
1998.

M.G. Norman and P. Thanisch. Models of machines and computation for mapping in multicomputers.
ACM Computing Surveys, 25(3):103-117, 1993.

Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous processors. In Proceedings
of Europar’96, volume 1123 of LNCS, Lyon, France, August 1996. Springer Verlag.

J.M. Orduna, F. Silla, and J. Duato. A new task mapping technique for communication-aware scheduling
strategies. In T.M. Pinkston, editor, Workshop for Scheduling and Resource Management for Cluster
Computing (ICPP’01), pages 349-354. IEEE Computer Society, 2001.

Yves Robert, Michel Cosnard, Mounir Marrakchi, and Denis Trystram. Parallel Gaussian elimination
on a MIMD computer. Parallel Computing, 6:275-296, 1988.

C. Roig, A. Ripoll, M.A. Senar, F. Guirado, and E. Luque. Improving static scheduling using inter-task
concurrency measures. In T.M. Pinkston, editor, Workshop for Scheduling and Resource Management
for Cluster Computing (ICPP’01), pages 375-381. IEEE Computer Society, 2001.

G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-constrained heteroge-
neous processor architectures. IEEE Transactions on Parallel and Distributed Systems, 4(2):175-187,
1993.

O. Sinnen and L. Sousa. Comparison of contention-aware list scheduling heuristics for cluster computing.
In T.M. Pinkston, editor, Workshop for Scheduling and Resource Management for Cluster Computing
(ICPP’01), pages 382-387. IEEE Computer Society, 2001.

O. Sinnen and L. Sousa. Exploiting unused time-slots in list scheduling considering communication
contention. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, editors, FuroPar’2001 Parallel
Processing, pages 166—170. Springer-Verlag LNCS 2150, 2001.

Oliver Sinnen and Leonel Sousa. Scheduling task graphs on arbitrary processor architectures considering
contention. In High Performance Computing and Networking, pages 373-382. Springer-Verlag LNCS
2110, 2001.

M. Tan, H.J. Siegel, J.K. Antonio, and Y.A. Li. Minimizing the aplication execution time through
scheduling of subtasks and communication traffic in a heterogeneous computing system. [FEE Trans-
actions on Parallel and Distributed Systems, 8(4):857-1871, 1997.

H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous processors. In
Eighth Heterogeneous Computing Workshop. IEEE Computer Society Press, 1999.

Tao Yang and Apostolos Gerasoulis. DSC: Scheduling parallel tasks on an unbounded number of
processors. IEEE Trans. Parallel and Distributed Systems, 5(9):951-967, 1994.

18

