
HAL Id: hal-02101845
https://hal-lara.archives-ouvertes.fr/hal-02101845

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circuits as streams in COQ: verification of a sequential
multiplier.

Christine Paulin-Mohring

To cite this version:
Christine Paulin-Mohring. Circuits as streams in COQ: verification of a sequential multiplier.. [Re-
search Report] LIP RR-1995-16, Laboratoire de l’informatique du parallélisme. 1995, 2+15p. �hal-
02101845�

https://hal-lara.archives-ouvertes.fr/hal-02101845
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Circuits as streams in Coq

Veri�cation of a sequential multiplier

Christine Paulin�Mohring September ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Circuits as streams in Coq

Veri�cation of a sequential multiplier

Christine Paulin�Mohring

September ����

Abstract

This paper presents the proof of correctness of a multiplier circuit formalized in
the Calculus of Inductive Constructions� It uses a representation of the circuit as
a function from the stream of inputs to the stream of outputs� We analyze the
computational aspect of the impredicative encoding of coinductive types and show
how it can be used to represent synchronous circuits� We identify general proof
principles that can be used to justify the correctness of such a circuit� The example
and the principles have been formalized in the Coq proof assistant�

Keywords� Speci�cation� Hardware Veri�cation� Co�inductive de�nitions

R�esum�e

Cet article pr�esente la preuve formalis�ee dans le Calcul des Constructions Inductives
de la correction d�un circuit r�ealisant la multiplication sur les entiers� Le circuit est
repr�esent�e par une fonction transformant la suite in�nie d�entr�ees en une suite in�nie
de sorties� Nous analysons l�aspect calculatoire de la repr�esentation impr�edicative
des d�e�nitions co�inductives et montrons comment cette repr�esentation peut servir
�a coder un circuit synchrone� Nous identi�ons des principes de preuve g�en�eraux
pour justi�er de tels circuits� Les exemples et les principes ont �et�e formalis�es dans
l�assistant �a la d�emonstration Coq�

Mots�cl�es� Speci�cation� V�eri�cation de Mat�eriel� D�e�nition Co�inductives

Circuits as streams in Coq

Veri�cation of a sequential multiplier

Christine Paulin�Mohring �

LIP� URA CNRS ����

Ecole Normale Sup�erieure de Lyon

	� All�ee d
Italie� ����	 Lyon cedex ��� France

September �
� ����

� Introduction

��� Motivations

General theorem provers such that NqThm ��� 	
 or HOL ��
 have been investigated in the domain
of hardware veri�cation� They are useful for doing abstract reasoning� A few investigations have
been done in this area using the Coq theorem prover�

When reasoning about a circuit� we need �rst to choose a certain view of it� corresponding
to the level of abstraction we are interested in� For a certain level of abstraction we need to
choose a mathematical representation and also an implementation of it in a particular theorem
prover� NqThm manipulates mainly functions� while HOL is a logical system in which one easily
represents relations� Coq implements both a programming language on which computation can
be done and a logical language in which one de�nes and reasons about relations� We try to take
advantage of these features to get more natural proofs�

S� Coupet and L� Jakubiec have �rst investigated proving simple circuits in Coq �factorial�
and the multiplier studied here
� After discussion with them about the representation of circuits
in various theorem provers� it came out that interpreting a circuit as a transformer of streams
could give new interesting proof schemes� This paper investigates this area�

The system Coq now provides primitive co�inductive de�nitions ��� �
 but at that time�
it was only possible to encode these in�nite structures using an impredicative encoding� The
encoding of co�inductive types in Girard�Reynolds second�order lambda�calculus was described
in ���
 and also used in a previous experiment proving Eratosthenes Sieve ��
� In this paper
we choose a representation of co�inductive types as greatest �xpoints using types de�ned by
constructors and higher�order quanti�cation� We insist on the computational aspect of this
representation which seems particularly well suited for the representation of circuits�

��� Outline

The remaining part of this section is devoted to the introduction of Coq notations used in this
paper� The section 	 gives a brief presentation of the impredicative representation of in�nite
objects in type theory� We emphasize the concrete aspect of this representation as a process� In
section � we show how to represent a generic sequential circuit speci�ed by the type of inputs�

�This research was partly supported by ESPRIT Basic Research Action �Types� and by the GDR �Program�

mation� co��nanced by MRE�PRC and CNRS�

�

outputs and registers� and both the output and updating functions� We derive proof principles
using invariants for this circuit� In section �� a circuit is formalized� speci�ed and �nally proven
using the methodology previously described� This circuit implements a multiplier and was taken
as an example by M� Gordon ��
 for the HOL theorem prover also studied in Coq ��
 using a
representation of the circuit by a primitive recursive function�

These developments have been formalized using the Coq proof assistant and are available
with the Coq distribution as a contribution�

��� Notations

The Calculus of Inductive Constructions which is the theoretical basis of the Coq system ��� �

is an higher�order typed lambda�calculus that is used both for the representation of functions�
propositions and proofs� It is not our purpose here to give a general presentation of the calculus
but we shall give an informal understanding of the constructions that will be used in this paper�

����� Terms and Types

The calculus manipulates terms and types�

Sorts � Set and Prop� The types are special objects of the calculus� They can be interpreted
both as ordinary data�types or as logical propositions using the well�known Curry�Howard iso�
morphism� In that case a term inhabiting the type witnesses a proof of the proposition�

The judgment A � Set will represent the fact that the type A is well�formed� while the
judgment A � Prop represents the fact that A is a well�formed logical formula�

A type can be abstracted or applied to terms in order to represent predicates or type families�

Types� Atomic type families are either variables or concrete types speci�ed by a set of con�
structors �also called inductive types
�

Composed types are built using quanti�cation �x � A
B� In case x does not occur in B� this
quanti�cation may be written A�B�

The quanti�cation can be read from di�erent ways� If both A and B are data�types� A�B

represents the type of functions from A to B� If both A and B are propositions then A�B

represents the proposition �A implies B�� If A is a data�type and B is a proposition then
�x � A
B represents the proposition �for all x of type A� B�� The variable x may also be
a type or predicate variable in which case� A represents its arity and we get an higher�order
quanti�cation like in �A � Set
A�A�

Terms� Terms are built from variables� using application and abstraction� The application
of the term t to the term u is written �t u
 with �t u� � � � uk
 representing �� � ��t u�
 � � �uk
�
The abstraction of the term t with respect to the variable x of type A is written �x � A
t with
�x�� � � �xk � A
t representing �x� � A
 � � � �xk � A
t and �x�� � � � � xk
t representing �x� � A�
 � � � �xk �
Ak
t when the types of the variables are clear from the context�

The constructors of a concrete type are terms corresponding to the introduction rules of
the corresponding proposition� There is a generic construction representing the elimination
rule written�P�Case x of f� � � � fn end� It corresponds to a de�nition by case analysis� The
term x should be in a concrete type speci�ed by n constructors� The whole expression has
type P �or more generally an instance of P given by x
� Each term fi represents how to
build a justi�cation of P in the case x starts with the i�th constructor ci� The expression
�P�Case �ci a� � � � ak
 of f� � � � fn end is intensionally equal to �fi a� � � �ak
�

The language contains the possibility to de�ne a function by structural recursion� but this
is not strictly needed in our development� so we shall not give more details on this aspect�

	

����� Examples

Representation of data�types We �rst de�ne the type unit with only one element tt� Then
we de�ne the type of booleans and the type of unary natural numbers�

Inductive unit � Set �� tt � unit�
Inductive bool � Set �� true � bool j false � bool�

Inductive nat � Set �� O � nat j S � nat�nat�

Sum and product It is possible to de�ne the disjoint sum and the product of two data�types
using concrete type de�nition� These types are parameterized by two types variables A and B�

Inductive sum �A�B � Set
 � Set �� inl � A��sum A B

jinr � B��sum A B
�

Inductive prod �A�B � Set
 � Set �� pair � A�B��pair A B
�

We shall use the following notations�

A� B �sum A B

A�B �prod A B

�a� b
 �pair A B a b

�f u� � � � uk� g v� � � � vk
 ��f u� � � � uk
� �g v� � � � vk

A�B�C A��B�C

�a� b� c
 �a� �b� c

Terms de�ned by case analysis Using the Case operator� it is easy to de�ne for instance�
the predecessor function� the If functional doing case analysis of booleans or the two projections
for products�

De�nition pred � nat�nat �� �n
�nat�Case n of O �p � nat
p end�

De�nition If � �C � Set
bool �C�C�C �� �C� b� x� y
�C�Case b of x y end�

De�nition fst � �A�B � Set
A�B�A �� �A�B� p
�A�Case p of �x� y
x end�

De�nition snd � �A�B � Set
A�B�B �� �A�B� p
�B�Case p of �x� y
y end�

De�nition trd � �A�B�C � Set
A�B�C�C �� �A�B�C� p
�snd �snd p

�

� Representation of in�nite objects

��� Encoding of in�nite objects

One way to represent in�nite objects in a strongly typed language uses the proof of existence of
greatest �xed points for monotonic operators on types�

Formally we do the following construction� Let F be a type transformer� such as for any
type X � �F X
 is a type� We assume F is a monotonic operator� it means that for each term f

of type A�B one can build a term �Fmon f
 of type �F A
� �F B
� This construction can
be automatically computed if X occurs only positively in �F X
�

����� Greatest �xed points in Coq

Building the greatest �xed point of F corresponds to �nding a type nu for which we have an
object Out of type nu� �F nu
 and an object Intro of type �F nu
�nu� These two operators
witnesses the fact that nu is a �xed point� We require also the existence of an object CoIter of
type �X� �F X

�X� nu representing the fact that nu is a greatest �xed point �actually
post��xed point of F
� A possible representation of nu in Coq is the following �

�

Inductive nu � Set �� CoIter � �X � Set
�X��F X

�X�nu�

A closed normal object of this type can be written �CoIter A f x
 with A � Set� f � A��F A
�
and x � A� This type can be seen as an encoding of the second�order existential quanti�er
�X � Set��X� �F X

� X � We shall give a more precise computational interpretation of this
type in the section 	���

From this de�nition� we get directly the operator CoIter with the expected type�
We get also the following elimination principles as particular cases of the general elimination

pattern for inductive types� The �rst one says that any object m is essentially built from a type
X � a function f with type X��F X
 and an object x with type X � such that in order to prove
�P m
 it is enough to prove �P �CoIter X f x

� The second one is similar but seen from the
computational point of view� from m one can build an object in a data P by using the above
X � f and x�

m � nu P � nu�Prop H � �X � Set
�f � X��F X

�x � X
�P �CoIter X f x

�P�Case m of H end � �P m

m � nu P � Set H � �X � Set
�X��F X

�X�P

�P�Case m of H end � P

The operator Case enjoys the following computational behavior �

�P�Case �CoIter X f x
 of H end � �H X f x

The operators Intro and Out can be deduced using the following terms �

De�nition Out � nu��F nu
 ��
�m
 ��F nu
� Case m of

�X � Set
�f � X��F X

�x � X
�Fmon �CoIter X f
 �f x

end�

De�nition Intro � �F nu
�nu �� �CoIter �F nu
 �Fmon Out

�

��� Streams

A typical example of a type built this way is the type StrA of streams �in�nite lists of objects
in a given type A
� It is obtained with the operator F � �X � Set
�A�X
�

In that case� the function Fmon can be de�ned as �

De�nition Fmon � �X� Y � Set
�X�Y
��A�X
��A�Y
 �� �X� Y� f� p
�fst p� f �snd p

�

From the function Out of type StrA�A�StrA and the projections� we get easily the two functions
Hd � StrA�A and Tl � StrA�StrA giving respectively the head and tail of a stream� We can
also derive a more convenient operator for constructing streams �

De�nition StrIt � �X � Set
�X�A
��X�X
�X�StrA ��
�X� h� t� x
�CoIter X �y � X
�h y� t y
 x
�

The following computational rules hold �

�Hd �StrIt X h t x

� �h x
 �Tl �StrIt X h t x

� �StrIt X h t �t x

�

��� Concrete representation of coinductive constructions

We explain now the computational aspect of this representation of in�nite objects�
As we said before� a closed normal term of type nu is equal to �CoIter X f x
� It means

that it is a structure with three elements� a type X � an object x of type X and a function f of
type X��F X
�

We can represent this object with a picture �

x � X

f � X��F X

We call this object a process� X is the type of the state variable whose value is x and f is
the transformation function that can give raise to new processes built on the same type and to
various �observational� values� This type behaves like an abstract data type� which means that
if we have an object s of type StrA we know it has the form �CoIter X f x
 for some arbitrary
type X but we cannot access this type� In particular when we build from s an object in a type
T � this type T cannot mention X �

����� Pictorial speci�cation of streams

In case of the type of streams� the Hd and Tl functions can be represented the following way �

x � X

f � X�A�X
Tl
��

�snd �f x

 � X

f � X�A�X

Hd �
�

�

�

�
�fst �f x

 � A

����� Other coinductive types

In�nite integers Assume F is �X � Set
�unit�X
 then Nw � �nu F
 represents the type of
possibly in�nite integers�

Given a �nite integer n of type nat one can represent the corresponding in�nite integer by
the process �

n � nat

�x
�unit � nat�Case x of �inl tt
 inr end � nat�unit � nat

The in�nite integer can be represented by the simple process �

tt � unit

inl � unit�unit � unit

The Out function gives from an object in Nw an object in unit � Nw representing the
predecessor�

When this object is a left injection� it means that the process represents � and taking the
predecessor has the e�ect to end the process� when it is a right injection we got the process
representing the predecessor�

Pictorially we have one of the two situations �

x � X

p � X�unit �X
�� �
 when �p x
 � �inl tt

x � X

p � X�unit �X
��

y � X

p � X�unit �X
when �p x
 � �inr y

�

In�nite binary trees Assume F is �X � Set
�A�X �X
 the type Trw � �nu F
 represents
the type of in�nite binary trees� The Out function gives from an object in Trw an object in
A�Trw�Trw built from the label in the node and the left and right sons of the tree�

More computationally� applying an Out step to an object in Trw raises the label of type A
plus two new processes of the same sort�

x � X

p � X�A�X�X
��

�

�

�

�a � A

� � when �p x
 � �a� l� r

l � X

p � X�A�X�X

r � X

p � X�A�X�X

��� Co�iteration vs Co�recursion

We can remark that the Out step applied to an object of type M � �nu F
 seen as a process
produces a composite object in which may appear one or several objects of type M which are
processes sharing the same implementation than the original object� It means that the type X
of the implementation and the transformation function are the same� Only the state� that is the
particular value of type X changes�

If we see a stream as a process then any tail of the stream will represent the same process
but at various stages of its life�

Sometimes this only way to build streams is too rigid� For instance� how can we build the
function for the concatenation of an element a of type A in front of a stream s �
We want the �rst Out step to give us the pair �a� s
 and then the next Out steps to behave like
the Out steps of s�

Using the CoIter operator� one can implement the concatenation function by adding a
boolean information for the identi�cation of the �rst step� The following stream implements
the concatenation of a to s�

�true� s
 � bool�StrA
�x
�If �fst x
 �a� false� s
 �Hd �snd x
� false�Tl �snd x

 � bool�StrA � A�bool�StrA

but it does not look like a very e�cient implementation because each step tests whether it is
the �rst one� � �

One may prefer to use a more powerful scheme CoRec known as co�recursion which has type
�X � Set
�X�A��StrA �X

�X�StrA�

If a stream s is built from �CoRec X f x
 then �f x
 has type A��StrA �X

If �f x
 is �a� inl s�
 with s� � StrA� we expect �Tl s
 to be s�� If �f x
 is �a� inr y
 with y � X � we
expect �Tl s
 to be �CoRec X f y
�

Computationally� it means that the transformation step may not only modify the current
value of the state like in the iterative case� but instead it may provide a new process built on a
new implementation�

Pictorially� if a stream de�ned as �CoRec X f x
 is represented by

x � X

f � X�A��StrA �X

we have one of the two following situations �

x � X

f � X�A��StrA �X

Tl
�� s � StrA when �snd �f x

 � �inl s

x � X

f � X�A��StrA �X

Tl
��

y � X

f � X�A��StrA �X

when �snd �f x

 � �inr y

�

The cons operation becomes trivial when using the co�recursion scheme� Given a � A and
s � StrA it can be implemented e�ciently as�

tt � unit

�x � unit
�a� inl s
 � unit�A��StrA � unit

General co�recursion More generally� for an arbitrary functor F the type of the recursion
scheme is �

CoRec � �X � Set
�X��F �nu�X

�X�nu

As was noticed by H� Geuvers� one can easily build a coinductive type enjoying a co�recursion
scheme instead of a co�iteration scheme �

Inductive nur � Set �� CoRec � �X � Set
�X��F �nur�X

�X�nur�

This approach has the drawback that our inductive de�nition mechanism should accept the
occurrence of nur to be positive in �F �nur�X

�

With this de�nition we can easily build the Outr function�

De�nition Outr � nur��F nur
 ��
�m
 ��F nur
� Case m of

�X � Set
�f � X��F nur�X

�x � X

�Fmon �z � nur�X
�nur�Case z of �m � nur
m �y � X
�CoRec X f y
 end

�f x

end�

Consequently the following reduction trivially holds �

�Outr �CoRecX f x

� �Fmon �z � nur��F nur

�nur�Case z of �m
m �y
�CoRecX f y
 end �f x

One can notice that we only make use of the existence of the Case operator for the type nur�
it means that we do not use the fact that it is a least �xed point in order to build the Outr

function� This representation provides also an easy way to program the Intror function�

De�nition Intror � �F nur
�nur �� �m
�CoRec �F nur
 �n � �F nur

�Fmon inl n
 m
�

Furthermore we get� assuming �Fmon �f � g

 � �Fmon f
 � �Fmon g
 and �Fmon �x � X
x
 �
�x � �F X

x the fact that �Outr �Intror m

 is convertible with m�

�Outr �Intror m

 � �Fmon �z � nur�X
�nur�Case z of �m � nur
m Intror end �Fmon inl m

� �Fmon �z � nur
�nur�Case �inl z
 of �m � nur
m Intror end m

� �Fmon �z � nur
z m

� m

We shall not use this type in our encoding of circuits for which the iterative representation is
computationally more relevant�

Anyway it is well�known that a kind of co�recursion operator can be mimicked with the
iterative version of coinductive types� Given X � Set� f � X��F �nu�X

 and x � X � an object
of type nu representing an object de�ned by co�recursion �CoRec X f x
 can be implemented
as �

�inr x
 � nu�X

�z
�F �nu�X
�Case z of �m
�Fmon inl �Out m

 f end � �nu�X
��F �nu�X

But this operator does not enjoy exactly the expected reduction rules� The corresponding
equalities are only provable in an extensional way �we can only prove that the two streams
generates equal values
�

�

����� Streams versus functions

Obviously there is a correspondence between streams of elements of a type A and functions
from nat to A� It is easy to build a function nth which takes an integer n and associates to an
arbitrary stream the n�th element of this stream�

We �rst de�ne iteratively the function which takes the n�th tail of a stream�

�nthtl s O
 � s �nthtl s �S n

 � �Tl �nthtl s n

Then we de�ne the function which picks the n�th element of the stream by

�nth s n
 � �Hd �nthtl s n

Reciprocally� given a function f there is a uniform way to build a stream s such that �nth s n

reduces to �f n
 for instance � �StrIt nat f S O
�

But obviously� the two representations does not have the same computational behavior� The
computation of the n�th value of s using an eager evaluation always computes the sequence
�f �
 � � ��f n � �
 which may not be very e�cient� On the other side� assume f is de�ned in
a primitive recursive way� ��f �
 � x� �f n � �
 � �g n �f n

 such that the computation
of �f n
 takes n steps� In order to compute the sequence �f �
 � � ��f n � �
 with a functional
representation it will take n� steps� But if we choose a clever stream representation as

�CoIter A�nat �na � A�nat
�fst na� g �snd na
 �fst na
� S �snd na

 �x��O

then the cost of the computation of the sequence will be linear�
Clearly the co�iterative representation of streams is closer to the physical representation of

circuits� Our purpose will be to use this representation internally in order to reason about
circuits in Coq�

� Circuits

We shall now describe the representation of a circuit as a stream transformer� In that case�
streams de�ned using the co�iteration principle suits perfectly�

��� Speci�cation of a sequential circuit

When we are describing a circuit� we have to choose the level of representation� The circuit
realizes a function from the set of inputs to the set of outputs� When we have a combinational
circuit� the function which is realized depends only on the structure of the circuit�

When the circuit contains registers �sequential circuit
� the output is computed from the
inputs and the current value of registers� the new value of registers is also obtained from the old
values of registers and the current value of inputs� So the function which is realized depends in
general on the value of the registers� The value of the registers is itself a function which depends
on the structure of the circuit� the initial value of the register and the �nite list of previous
values of inputs� One way to represent the function realized by a synchronous sequential circuit
is to add as an extra parameter an integer n representing the current stage of the circuit�

From the structure of the circuit we can deduce two functions one �called output
 computing
the output from the input and registers� the other one �called update
 updating the registers
from the inputs and current values of registers� Let us call TI the type of inputs� TO the type
of outputs and TR the type of registers� we have output � TI�TR� TO and update � TI�
TR�TR�

�

Circuits as functions It is possible to represent the inputs as a function input � nat �
TI� Assume the initial value of registers is r�� we can de�ne a function register � nat� TR

representing the value of registers at each time and �nally the function circuit � nat � TO

representing the value of outputs� These functions can be de�ned in a primitive recursive way
by �

�register �
 � r� �register �S n

 � �update �input n
 �register n

�circuit n
 � �output �input n
 �register n

This approach is taken for the veri�cation of the multiplier circuit in Coq done by S� Coupet
and L� Jakubiek ��
�

��� Representing a circuit as a stream transformer

In this paper we choose another approach namely to represent the circuit as a function from the
stream of inputs to the stream of outputs whose implementation makes reference to the type of
registers�

More precisely the previous circuit will be represented as a process built on the type StrTI�TR�
Assume the current state is a pair �s� r
� the process will �rst consume the stream of inputs s to
produce the current input i and the stream of remaining inputs t� the output will be �output i r

and the next value of the state will be �t� �update i r

�

This can be represented pictorially the following way �

�si� ri
 � StrTI�TR

�sr
�A�StrTI�TR�Case sr of �s� r
�output �Hd s
 r�Tl s� update �Hd s
 r
 end

De�nition � The Coq code for a circuit of entry type TI� output type TO� updating function
update and output function output is the following �

De�nition circ � TR�StrTI�StrTO ��
�ri� si
�CoIter StrTI�TR

�sr
�TO�StrTI�TR� Case sr of

�s� r
�output �Hd s
 r�Tl s� update �Hd s
 r

end

�si� ri

�

��� Reasoning on circuits

Clearly this particular representation suggests also particular proof methods for reasoning on
circuits�

One property which has to be checked for circuits is �given two circuits� prove that they
realize the same relation between inputs and outputs�� Usually one circuit represents the im�
plementation to be checked and the other one the speci�cation which is another implementation
using a less e�cient but more comprehensible circuit� The drawback of this kind of veri�cation
is that the speci�cation has to be given as a circuit which can itself contains errors� Another
kind of veri�cation can be to check that a circuit satis�es a certain logical property�

Usually� assume we have a circuit speci�ed by the functions output and update as before�
Let us call circ the same function of type TR�StrTI�StrTO as de�ned above in de�nition ��
Given an input stream I and an initial value for register R� we denote by CIRC the object of
type StrTO build as �circ R I
� We want to prove that a certain relation holds on outputs that
will depend on the stream input I and also on a time parameter� From now on we write s�n

instead of �nth s n
� We assume given a property Q � nat� TO� Prop� And we expect to
prove�

�n � nat��Q n CIRC�n

�

This property can be proven� as an instance of a more general scheme applicable to any
iteratively de�ned function�

��� Properties of iteratively de�ned functions

Assume we have a type X � a function f of type X �X � and x of type X � one can de�ne a
function iter of type nat�X such that �iter n
 iterates n times f from x�

Let Q be a property of type nat� X � Prop� we are interested by proving two kinds of
properties of Q with respect to iter� The �rst one is �n � nat��Q n �iter n

 �written in Coq

as �n � nat
�Q n �iter n

 and the second one is �n � nat��Q n �iter n

 �written in Coq as
�Ex �n � nat
�Q n �iter n

Both can be proven using the existence of an invariant Inv with type nat�X�Prop�
We now give the precise lemmas�

Lemma � If one can �nd Inv � nat�X�Prop� such that the following is provable �

�n � nat
�y � X
�Inv n y
��Q n y
� �Inv �S n
 �f y

�Inv O x

then there is a proof of �n � nat
�Q n �iter n

�

Proof� One �rst prove �n � nat
�Inv n �iter n

 by induction on n and the result follows
immediately�
�

Lemma � If one can �nd Inv � nat�X�Prop� Rel � nat�X� nat�X� Prop such that the
following is provable �

�Acc Rel �O� x

 �ie there is no in�nite decreasing sequence for Rel starting from
�O� x
�
�n � nat
�y � X
�Inv n y
��Q n y
	 ��Inv �S n
 �f y

 � �Rel �S n� f y
 �n� y

�Inv O x�

then there is a proof of �Ex �n � nat
�Q n �iter n

�

One �rst prove �p � nat
�Acc Rel �p� x

� �Inv p x
� �Ex �n � nat
�Q �plus p n
 �iter n

 by
well�founded induction on �p� x
 from which the result follows�
�

Remark The fact that nat is involved in the well�founded relation may seem unnecessarily
complicated� It is actually very useful� for instance in order to express that the object of type
X will decrease only after a �nite number of steps�

��� Application to streams and circuits

��	�� Universal properties

Lemma � Let Q be a relation of arity nat�A� Prop� and s a stream of type StrA� If there
exists Inv which has type nat�StrA�Prop such that the following property holds�

�n � nat
�s � StrA
�Inv n s
��Q n �Hd s

 � �Inv �S n
 �Tl s

�Inv O s

then we have � �n � nat
�Q n s�n

�

Proof� It is just the lemma � with the function Tl for the iterated function and the predicate
�n � nat
�s � StrA
�Q n �Hd s

�
�

��

Invariant on implementation If we know the implementation of the stream� then we can
derive a more precise principle using an invariant on the implementation itself�

Lemma � Let Q be a relation of arity nat�A�Prop� Let X be a type� f be a function with
type X�A�X and x� an element of type X� If there exists Inv which has type nat�X�Prop

such that the following property holds�

�n � nat
�x � X
�Inv n x
��Q n �fst �f x

� �Inv �S n
 �snd �f x

�Inv O x�

then we have � �n � nat
�Q n �CoIter X f x�
�n

Proof� It is still the application of lemma � with the iterated function �x � X
�snd �f x

 and
the predicate �n � nat
�x � A
�Q n �fst �f x

�
�

Invariant on a circuit In the case of a circuit we furthermore can use the properties �

�Hd �circ s r

 � �output �Hd s
 r
 �Tl �circ s r

 � �circ �Tl s
 �update �Hd s
 r

Corollary ��� If there exists an invariant inv which has type nat� StrTI� TR� Prop such
that the following properties hold�

�n � nat
�s � StrTI
�r � TR

�inv n r
��Q n �output �Hd s
 r

� �inv �S n
 �Tl s
 �update �Hd s
 r

�inv O I R

then he have� �n � nat
�Q n CIRC�n

Proof� We apply lemma � with X � StrTI �TR� x� � �I� R
 and the invariant �n � nat
�x �
StrTI�TR
�inv n �fst x
 �snd x

�
�

We can also use the fact that the stream of inputs is the input stream I at time n�

Corollary ��� If there exists an invariant inv which has type nat�TR� Prop such that the
following properties hold�

�n � nat
�r � TR
�inv n r
��Q n �output I�n
 r

� �inv �S n
 �update I�n
 r

�inv O R

then we can prove� �n � nat
�Q n CIRC�n

Proof� We apply the previous corollary with the invariant� �n � nat
�s � StrTI
�r � TR
�s�
�nthtl I n

 � �inv n r

�

��	�� Existential properties

We can apply the lemma 	 to various instances in order to get proofs that the property Q will
be reached� We only give here the counterpart of the lemma ��	�

Lemma 	 If there exists an invariant inv which has type nat�TR�Prop and a relation Rel

with type nat�TR�nat�TR�Prop such that the following properties hold�

��

�n � nat
�r � TR
�inv n r
� �Q n �output I�n
 r

	��inv �S n
 �update I�n
 r

 � �Rel �S n� update I�n
 r
 �n� r

�inv O R

�Acc Rel �O�R

then the following property holds �Ex�n � nat
�Q n CIRC�n

Proof� We apply the lemma 	 to�

the function implementing the circuit�
the invariant � �n � nat
�p � StrTI�TR
��fst p
��nthtl I n

 � �inv n �snd p

�
the property �n � nat
�p � StrTI�TR
�Q n �output �Hd �fst p

 �snd p

�
and to the relation �p� q � nat�StrTI�TR
�Rel �fst p� trd p
 �fst q� trd q

� The multiplier circuit

We study a very simple example introduced in ��
� This circuit implements a multiplier�

��� Description

We give a graphical representation of the circuit in �gure ����

t

tt

tt

t

t

pred

pred

If

pred zerob zerob

plus

orb

zerobzerob

If If If

reg�

reg�

reg�

inp� inp�

done res

Figure �� A multiplier circuit

��� Representation

Each combinational part of the circuit can be interpreted as a Coq function working on nat�
ural numbers and booleans� For the de�nition and the speci�cation of the circuit� we use the

�	

Coq modules Arith and Bool which de�nes the basic operations �plus� mult� pred
 on natural
numbers� �orb� zerob
 on booleans and provide proofs of the basic properties of this operations�

Now we can introduce the functions for computing the outputs and updating the registers�
Each function depends a priori on the values of the inputs inp� and inp	 of type nat and of

the values of the registers reg�� reg	 of type nat and reg� of type bool�

Section de�nitions�

Variables i�� i	 � nat�
Variables r�� r	 � nat�
Variables r� � bool�
De�nition upd� � nat �� �If r� i� �pred r�

�
De�nition upd� � nat �� �If r� �If �zerob i�
 O i	
 �plus �If �zerob i�
 O i	
 r	

�
De�nition upd� � bool �� �orb �zerob �If r� �pred i�
 �pred �pred r�

 �zerob i	

�
De�nition res � nat �� r	�
De�nition done � bool �� r��
End de�nitions�

The types for registers� entries and outputs are de�ned using the macro command Record which
is equivalent to the de�nition of an inductive de�nition with only one constructor representing a
product and which furthermore automatically build the projections whose names are speci�ed�

Record TR � Set �� reg freg� � nat� reg	 � nat� reg� � natg�
Record TI � Set �� inp finp� � nat� inp	 � natg�
Record TO � Set �� out fres � nat� done � boolg�

The initial values for reg� and reg	 can be arbitrary� we call them ri��ri�� The initial value of
reg� needs to be true� The update and output function can easily be de�ned� as well as the
initial value�

De�nition update � TI�TR�TR ��
�i� r
�reg �upd� �inp� i
 �reg� r
 �reg� r

�upd	 �inp� i
 �inp	 i
 �reg	 r
 �reg� r

�upd� �inp� i
 �inp	i
 �reg� r
 �reg� r

�

De�nition output � TI�TR�TO �� �i� r
�out �reg	 r
 �reg� r

�
De�nition init � TR �� �reg ri� ri� true
�
De�nition circ mult � StrTI�StrTO �� �circ output update init
�

��� Speci�cation

The informal speci�cation of the circuit is the following� assume the values of inp� and inp	 are
constants equal to X and Y then the next time done will be true� the value of out will be equal
to X
 Y �

In order to express the speci�cation� we introduce the property stable with type nat�Prop

which means that for all k � n� I�k
��inp X Y
� We shall use the following properties of this
predicate�

�stable O

�n � nat
�stable �S n

��stable n

�n � nat
�stable �S n

� I�n
��inp X Y
�

The property to be proved for this circuit is �

De�nition Q � nat�TO�Prop ��
�n� o
�stable n
�n��O��done o
�true��res o
��mult X Y
�

��

For the invariant� we use the construction IfProp with type Prop� Prop� bool� Prop such
that �IfProp A B b
 is equivalent to �b�true�A
 � �b�false�B
� The invariant is de�ned as�

De�nition InvM � nat�TR�Prop ��
�n� r
�stable n

��IfProp �n��O
��reg	 r
��mult X Y

�pred �reg� r

��O �X ��O � �plus �mult �pred �reg� r

 Y
 �reg	 r

��mult X Y

�reg� r

�

Formally we have to check the two properties stated in proposition ��	� The second condition
which checks that the invariant is satis�ed by the initial state of the circuit is trivially true by
absurdity because at the initial stage r� is equal to true and n�O�

The second property requires a bit more working�

��� Proof of termination

It is not enough to prove that we get the expected result when done is equal to true� one need
also to show that at some point done will be equal to true�

For this� it is enough to apply the lemma � with the property �n � nat
�o � TO
n��O��done o
�
true� We have to �nd both a decreasing relation and an invariant� It is easy to remark that
for the register r if �reg� r
�false then �reg� r
��O and consequently �reg� r
 decreases strictly�
This is true except for the �rst step� consequently we can take the order�

De�nition Rel � nat�TR�nat�TR�Prop ��
�p� q
�lt �fst q
 �fst p

� ��lt O �fst q

��lt �reg� �snd p

 �reg� �snd q

This order can be proven to be well�founded �the �rst component increases a �nite number of
times then the second component decreases
�

The invariant will be �n � nat
�r � TR
�reg� r
�false��reg� r
��O which satis�es the expected
properties�

��� Conclusion

In this paper we �rst showed the concrete representation of coinductive de�nitions �encoded
impredicatively
 as a sort of simple process�

Then we applied this representation to the type of streams� We showed principles using
invariants for proving that a property holds for any element of the stream or for one of them�
Finally we showed how to represent a sequential circuit as a function from a stream of inputs to
a stream of outputs starting from functions describing how to update the registers and produce
the outputs� Using this representations and the proof principles over streams� we completely
derived the proof of a simple multiplier circuit�

The type of streams of objects of type A is isomorphic to the type of functions from nat to
A� Consequently the development we made and principles we proved could equivalently have
been done with functions like in ��
�

The di�erence between the two types is intentional� a stream is a process which can iteratively
produce values while a function is an arbitrary method to produce outputs from inputs� The
notion of streams seems closer to the actual structure of a circuit� and we consequently believe
that it should model it more accurately and suggests interesting proof methods� Besides the kind
of proofs done in this paper� we can prove the equivalence of two circuits using a bisimulation
or try to develop the circuit starting form its speci�cation using parameterized streams like was
experimented in ��
�

��

Many experiments in hardware veri�cation have been done with the NqThm or HOL theorem
provers� In NqThm� circuits are represented as functions and proofs are done using induction
and computation over functions� while in HOL they are represented as relations and proofs are
done at the logical level� In Coq� we can freely choose one or the other representations as well
as mixing them together or use other representation like the streams suggested in this paper�
Few experiments have been performed on this topic� and further investigations remains to be
done in order to see the advantages of Coq in this area�

Acknowledgments

We thank the team on hardware veri�cation at Universit�e de Provence in Marseille� especially
S� Coupet and L� Pierre for fruitful discussions on the way circuits were represented for formal
veri�cation� These discussions suggested the study of this example�

References

��
 R� S� Boyer and J� S� Moore� A computational logic� ACM Monograph� Academic Press�
�����

�	
 R� S� Boyer and J� S� Moore� A computational logic handbook� Academic Press� �����

��
 C� Cornes� J� Courant� J��C� Filli�atre� G� Huet� P� Manoury� C� Mu�noz� C� Murthy� C� Par�
ent� C� Paulin�Mohring� A� Sa !bi� and B� Werner� The Coq Proof Assistant Reference
Manual version ����� Rapport Technique ����� INRIA�Rocquencourt�CNRS�ENS Lyon�
July ����� Available by anonymous ftp on ftp�inria�fr�

��
 S� Coupet�Grimal and L� Jakubiec� Veri�cation formelle de circuits avec Coq� In Journ�ee
du GDR�Programmation� Lille� September ����� Also available as a Coq contribution�

��
 E� Gim�enez� Co�inductive types in Coq� Technical report� Projet Coq� INRIA Rocquen�
court� CNRS ENs Lyon� July ����� To appear�

��
 E� Gim�enez� Implementation of co�inductive types in Coq� an experiment with the alter�
nating bit protocol� Rapport de recherche� LIP�ENS Lyon� ����� In preparation�

��
 M� Gordon� Why higher�order logic is a good formalism for specifying and verifying hard�
ware� In G� Milne and P� A� Subrahmanyam� editors� Formal Aspects of VLSI Design�
����� also issued as University of Cambridge Computer Laboratory Technical Report No�
��� �����

��
 G� Huet� G� Kahn� and C� Paulin�Mohring� The Coq proof assistant � a tutorial� Rapport
Technique ����� Projet Coq�INRIA Rocquencourt�ENS Lyon� July ����� Available by
anonymous ftp on ftp�inria�fr�

��
 F� Leclerc and C� Paulin�Mohring� Programming with streams in Coq� a case study � The
sieve of eratosthenes� In H� Barendregt and T� Nipkow� editors� Types for Proofs and
Programs� Types� 	
� volume ��� of LNCS� Springer�Verlag� �����

���
 G� C� Wraith� A note on categorical data types� In D�H� Pitt� D�E� Rydeheard� P� Dybjer�
A�M� Pitts� and A� Poign�e� editors� Category Theory and Computer Science� Springer�
Verlag� ����� LNCS ����

��

