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Circuits as streams in Coq

Veri�cation of a sequential multiplier

Christine Paulin�Mohring

September ����

Abstract

This paper presents the proof of correctness of a multiplier circuit formalized in
the Calculus of Inductive Constructions� It uses a representation of the circuit as
a function from the stream of inputs to the stream of outputs� We analyze the
computational aspect of the impredicative encoding of coinductive types and show
how it can be used to represent synchronous circuits� We identify general proof
principles that can be used to justify the correctness of such a circuit� The example
and the principles have been formalized in the Coq proof assistant�

Keywords� Speci�cation� Hardware Veri�cation� Co�inductive de�nitions

R�esum�e

Cet article pr�esente la preuve formalis�ee dans le Calcul des Constructions Inductives
de la correction d�un circuit r�ealisant la multiplication sur les entiers� Le circuit est
repr�esent�e par une fonction transformant la suite in�nie d�entr�ees en une suite in�nie
de sorties� Nous analysons l�aspect calculatoire de la repr�esentation impr�edicative
des d�e�nitions co�inductives et montrons comment cette repr�esentation peut servir
�a coder un circuit synchrone� Nous identi�ons des principes de preuve g�en�eraux
pour justi�er de tels circuits� Les exemples et les principes ont �et�e formalis�es dans
l�assistant �a la d�emonstration Coq�

Mots�cl�es� Speci�cation� V�eri�cation de Mat�eriel� D�e�nition Co�inductives
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� Introduction

��� Motivations

General theorem provers such that NqThm ��� 	
 or HOL ��
 have been investigated in the domain
of hardware veri�cation� They are useful for doing abstract reasoning� A few investigations have
been done in this area using the Coq theorem prover�

When reasoning about a circuit� we need �rst to choose a certain view of it� corresponding
to the level of abstraction we are interested in� For a certain level of abstraction we need to
choose a mathematical representation and also an implementation of it in a particular theorem
prover� NqThm manipulates mainly functions� while HOL is a logical system in which one easily
represents relations� Coq implements both a programming language on which computation can
be done and a logical language in which one de�nes and reasons about relations� We try to take
advantage of these features to get more natural proofs�

S� Coupet and L� Jakubiec have �rst investigated proving simple circuits in Coq �factorial�
and the multiplier studied here
� After discussion with them about the representation of circuits
in various theorem provers� it came out that interpreting a circuit as a transformer of streams
could give new interesting proof schemes� This paper investigates this area�

The system Coq now provides primitive co�inductive de�nitions ��� �
 but at that time�
it was only possible to encode these in�nite structures using an impredicative encoding� The
encoding of co�inductive types in Girard�Reynolds second�order lambda�calculus was described
in ���
 and also used in a previous experiment proving Eratosthenes Sieve ��
� In this paper
we choose a representation of co�inductive types as greatest �xpoints using types de�ned by
constructors and higher�order quanti�cation� We insist on the computational aspect of this
representation which seems particularly well suited for the representation of circuits�

��� Outline

The remaining part of this section is devoted to the introduction of Coq notations used in this
paper� The section 	 gives a brief presentation of the impredicative representation of in�nite
objects in type theory� We emphasize the concrete aspect of this representation as a process� In
section � we show how to represent a generic sequential circuit speci�ed by the type of inputs�

�This research was partly supported by ESPRIT Basic Research Action �Types� and by the GDR �Program�

mation� co��nanced by MRE�PRC and CNRS�
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outputs and registers� and both the output and updating functions� We derive proof principles
using invariants for this circuit� In section �� a circuit is formalized� speci�ed and �nally proven
using the methodology previously described� This circuit implements a multiplier and was taken
as an example by M� Gordon ��
 for the HOL theorem prover also studied in Coq ��
 using a
representation of the circuit by a primitive recursive function�

These developments have been formalized using the Coq proof assistant and are available
with the Coq distribution as a contribution�

��� Notations

The Calculus of Inductive Constructions which is the theoretical basis of the Coq system ��� �

is an higher�order typed lambda�calculus that is used both for the representation of functions�
propositions and proofs� It is not our purpose here to give a general presentation of the calculus
but we shall give an informal understanding of the constructions that will be used in this paper�

����� Terms and Types

The calculus manipulates terms and types�

Sorts � Set and Prop� The types are special objects of the calculus� They can be interpreted
both as ordinary data�types or as logical propositions using the well�known Curry�Howard iso�
morphism� In that case a term inhabiting the type witnesses a proof of the proposition�

The judgment A � Set will represent the fact that the type A is well�formed� while the
judgment A � Prop represents the fact that A is a well�formed logical formula�

A type can be abstracted or applied to terms in order to represent predicates or type families�

Types� Atomic type families are either variables or concrete types speci�ed by a set of con�
structors �also called inductive types
�

Composed types are built using quanti�cation �x � A
B� In case x does not occur in B� this
quanti�cation may be written A�B�

The quanti�cation can be read from di�erent ways� If both A and B are data�types� A�B

represents the type of functions from A to B� If both A and B are propositions then A�B

represents the proposition �A implies B�� If A is a data�type and B is a proposition then
�x � A
B represents the proposition �for all x of type A� B�� The variable x may also be
a type or predicate variable in which case� A represents its arity and we get an higher�order
quanti�cation like in �A � Set
A�A�

Terms� Terms are built from variables� using application and abstraction� The application
of the term t to the term u is written �t u
 with �t u� � � � uk
 representing �� � ��t u�
 � � �uk
�
The abstraction of the term t with respect to the variable x of type A is written �x � A
t with
�x�� � � �xk � A
t representing �x� � A
 � � � �xk � A
t and �x�� � � � � xk
t representing �x� � A�
 � � � �xk �
Ak
t when the types of the variables are clear from the context�

The constructors of a concrete type are terms corresponding to the introduction rules of
the corresponding proposition� There is a generic construction representing the elimination
rule written�P�Case x of f� � � � fn end� It corresponds to a de�nition by case analysis� The
term x should be in a concrete type speci�ed by n constructors� The whole expression has
type P �or more generally an instance of P given by x
� Each term fi represents how to
build a justi�cation of P in the case x starts with the i�th constructor ci� The expression
�P�Case �ci a� � � � ak
 of f� � � � fn end is intensionally equal to �fi a� � � �ak
�

The language contains the possibility to de�ne a function by structural recursion� but this
is not strictly needed in our development� so we shall not give more details on this aspect�

	



����� Examples

Representation of data�types We �rst de�ne the type unit with only one element tt� Then
we de�ne the type of booleans and the type of unary natural numbers�

Inductive unit � Set �� tt � unit�
Inductive bool � Set �� true � bool j false � bool�

Inductive nat � Set �� O � nat j S � nat�nat�

Sum and product It is possible to de�ne the disjoint sum and the product of two data�types
using concrete type de�nition� These types are parameterized by two types variables A and B�

Inductive sum �A�B � Set
 � Set �� inl � A��sum A B

jinr � B��sum A B
�

Inductive prod �A�B � Set
 � Set �� pair � A�B��pair A B
�

We shall use the following notations�

A� B �sum A B

A�B �prod A B

�a� b
 �pair A B a b

�f u� � � � uk� g v� � � � vk
 ��f u� � � � uk
� �g v� � � � vk


A�B�C A��B�C

�a� b� c
 �a� �b� c



Terms de�ned by case analysis Using the Case operator� it is easy to de�ne for instance�
the predecessor function� the If functional doing case analysis of booleans or the two projections
for products�

De�nition pred � nat�nat �� �n
�nat�Case n of O �p � nat
p end�

De�nition If � �C � Set
bool �C�C�C �� �C� b� x� y
�C�Case b of x y end�

De�nition fst � �A�B � Set
A�B�A �� �A�B� p
�A�Case p of �x� y
x end�

De�nition snd � �A�B � Set
A�B�B �� �A�B� p
�B�Case p of �x� y
y end�

De�nition trd � �A�B�C � Set
A�B�C�C �� �A�B�C� p
�snd �snd p

�

� Representation of in�nite objects

��� Encoding of in�nite objects

One way to represent in�nite objects in a strongly typed language uses the proof of existence of
greatest �xed points for monotonic operators on types�

Formally we do the following construction� Let F be a type transformer� such as for any
type X � �F X
 is a type� We assume F is a monotonic operator� it means that for each term f

of type A�B one can build a term �Fmon f
 of type �F A
� �F B
� This construction can
be automatically computed if X occurs only positively in �F X
�

����� Greatest �xed points in Coq

Building the greatest �xed point of F corresponds to �nding a type nu for which we have an
object Out of type nu� �F nu
 and an object Intro of type �F nu
�nu� These two operators
witnesses the fact that nu is a �xed point� We require also the existence of an object CoIter of
type �X� �F X

�X� nu representing the fact that nu is a greatest �xed point �actually
post��xed point of F 
� A possible representation of nu in Coq is the following �

�



Inductive nu � Set �� CoIter � �X � Set
�X��F X

�X�nu�

A closed normal object of this type can be written �CoIter A f x
 with A � Set� f � A��F A
�
and x � A� This type can be seen as an encoding of the second�order existential quanti�er
�X � Set��X� �F X

� X � We shall give a more precise computational interpretation of this
type in the section 	���

From this de�nition� we get directly the operator CoIter with the expected type�
We get also the following elimination principles as particular cases of the general elimination

pattern for inductive types� The �rst one says that any object m is essentially built from a type
X � a function f with type X��F X
 and an object x with type X � such that in order to prove
�P m
 it is enough to prove �P �CoIter X f x

� The second one is similar but seen from the
computational point of view� from m one can build an object in a data P by using the above
X � f and x�

m � nu P � nu�Prop H � �X � Set
�f � X��F X

�x � X
�P �CoIter X f x



�P�Case m of H end � �P m


m � nu P � Set H � �X � Set
�X��F X

�X�P

�P�Case m of H end � P

The operator Case enjoys the following computational behavior �

�P�Case �CoIter X f x
 of H end � �H X f x


The operators Intro and Out can be deduced using the following terms �

De�nition Out � nu��F nu
 ��
�m
 ��F nu
� Case m of

�X � Set
�f � X��F X

�x � X 
�Fmon �CoIter X f
 �f x


end�

De�nition Intro � �F nu
�nu �� �CoIter �F nu
 �Fmon Out

�

��� Streams

A typical example of a type built this way is the type StrA of streams �in�nite lists of objects
in a given type A
� It is obtained with the operator F � �X � Set
�A�X
�

In that case� the function Fmon can be de�ned as �

De�nition Fmon � �X� Y � Set
�X�Y 
��A�X
��A�Y 
 �� �X� Y� f� p
�fst p� f �snd p

�

From the function Out of type StrA�A�StrA and the projections� we get easily the two functions
Hd � StrA�A and Tl � StrA�StrA giving respectively the head and tail of a stream� We can
also derive a more convenient operator for constructing streams �

De�nition StrIt � �X � Set
�X�A
��X�X
�X�StrA ��
�X� h� t� x
�CoIter X �y � X 
�h y� t y
 x
�

The following computational rules hold �

�Hd �StrIt X h t x

� �h x
 �Tl �StrIt X h t x

� �StrIt X h t �t x



�



��� Concrete representation of coinductive constructions

We explain now the computational aspect of this representation of in�nite objects�
As we said before� a closed normal term of type nu is equal to �CoIter X f x
� It means

that it is a structure with three elements� a type X � an object x of type X and a function f of
type X��F X
�

We can represent this object with a picture �

x � X

f � X��F X


We call this object a process� X is the type of the state variable whose value is x and f is
the transformation function that can give raise to new processes built on the same type and to
various �observational� values� This type behaves like an abstract data type� which means that
if we have an object s of type StrA we know it has the form �CoIter X f x
 for some arbitrary
type X but we cannot access this type� In particular when we build from s an object in a type
T � this type T cannot mention X �

����� Pictorial speci�cation of streams

In case of the type of streams� the Hd and Tl functions can be represented the following way �

x � X

f � X�A�X
Tl
��

�snd �f x

 � X

f � X�A�X

Hd �
�

�

�

�
�fst �f x

 � A

����� Other coinductive types

In�nite integers Assume F is �X � Set
�unit�X
 then Nw � �nu F 
 represents the type of
possibly in�nite integers�

Given a �nite integer n of type nat one can represent the corresponding in�nite integer by
the process �

n � nat

�x
�unit � nat�Case x of �inl tt
 inr end � nat�unit � nat

The in�nite integer can be represented by the simple process �

tt � unit

inl � unit�unit � unit

The Out function gives from an object in Nw an object in unit � Nw representing the
predecessor�

When this object is a left injection� it means that the process represents � and taking the
predecessor has the e�ect to end the process� when it is a right injection we got the process
representing the predecessor�

Pictorially we have one of the two situations �

x � X

p � X�unit �X
�� �
 when �p x
 � �inl tt


x � X

p � X�unit �X
��

y � X

p � X�unit �X
when �p x
 � �inr y


�



In�nite binary trees Assume F is �X � Set
�A�X �X
 the type Trw � �nu F 
 represents
the type of in�nite binary trees� The Out function gives from an object in Trw an object in
A�Trw�Trw built from the label in the node and the left and right sons of the tree�

More computationally� applying an Out step to an object in Trw raises the label of type A
plus two new processes of the same sort�

x � X

p � X�A�X�X
��

�

�

�

�a � A

� � when �p x
 � �a� l� r


l � X

p � X�A�X�X

r � X

p � X�A�X�X

��� Co�iteration vs Co�recursion

We can remark that the Out step applied to an object of type M � �nu F 
 seen as a process
produces a composite object in which may appear one or several objects of type M which are
processes sharing the same implementation than the original object� It means that the type X
of the implementation and the transformation function are the same� Only the state� that is the
particular value of type X changes�

If we see a stream as a process then any tail of the stream will represent the same process
but at various stages of its life�

Sometimes this only way to build streams is too rigid� For instance� how can we build the
function for the concatenation of an element a of type A in front of a stream s �
We want the �rst Out step to give us the pair �a� s
 and then the next Out steps to behave like
the Out steps of s�

Using the CoIter operator� one can implement the concatenation function by adding a
boolean information for the identi�cation of the �rst step� The following stream implements
the concatenation of a to s�

�true� s
 � bool�StrA
�x
�If �fst x
 �a� false� s
 �Hd �snd x
� false�Tl �snd x


 � bool�StrA � A�bool�StrA

but it does not look like a very e�cient implementation because each step tests whether it is
the �rst one� � �

One may prefer to use a more powerful scheme CoRec known as co�recursion which has type
�X � Set
�X�A��StrA �X

�X�StrA�

If a stream s is built from �CoRec X f x
 then �f x
 has type A��StrA �X

If �f x
 is �a� inl s�
 with s� � StrA� we expect �Tl s
 to be s�� If �f x
 is �a� inr y
 with y � X � we
expect �Tl s
 to be �CoRec X f y
�

Computationally� it means that the transformation step may not only modify the current
value of the state like in the iterative case� but instead it may provide a new process built on a
new implementation�

Pictorially� if a stream de�ned as �CoRec X f x
 is represented by

x � X

f � X�A��StrA �X


we have one of the two following situations �

x � X

f � X�A��StrA �X

Tl
�� s � StrA when �snd �f x

 � �inl s


x � X

f � X�A��StrA �X

Tl
��

y � X

f � X�A��StrA �X

when �snd �f x

 � �inr y


�



The cons operation becomes trivial when using the co�recursion scheme� Given a � A and
s � StrA it can be implemented e�ciently as�

tt � unit

�x � unit
�a� inl s
 � unit�A��StrA � unit


General co�recursion More generally� for an arbitrary functor F the type of the recursion
scheme is �

CoRec � �X � Set
�X��F �nu�X


�X�nu

As was noticed by H� Geuvers� one can easily build a coinductive type enjoying a co�recursion
scheme instead of a co�iteration scheme �

Inductive nur � Set �� CoRec � �X � Set
�X��F �nur�X


�X�nur�

This approach has the drawback that our inductive de�nition mechanism should accept the
occurrence of nur to be positive in �F �nur�X

�

With this de�nition we can easily build the Outr function�

De�nition Outr � nur��F nur
 ��
�m
 ��F nur
� Case m of

�X � Set
�f � X��F nur�X

�x � X 

�Fmon �z � nur�X 
�nur�Case z of �m � nur
m �y � X 
�CoRec X f y
 end

�f x


end�

Consequently the following reduction trivially holds �

�Outr �CoRecX f x

� �Fmon �z � nur��F nur

�nur�Case z of �m
m �y
�CoRecX f y
 end �f x



One can notice that we only make use of the existence of the Case operator for the type nur�
it means that we do not use the fact that it is a least �xed point in order to build the Outr

function� This representation provides also an easy way to program the Intror function�

De�nition Intror � �F nur
�nur �� �m
�CoRec �F nur
 �n � �F nur

�Fmon inl n
 m
�

Furthermore we get� assuming �Fmon �f � g

 � �Fmon f
 � �Fmon g
 and �Fmon �x � X 
x
 �
�x � �F X

x the fact that �Outr �Intror m

 is convertible with m�

�Outr �Intror m

 � �Fmon �z � nur�X 
�nur�Case z of �m � nur
m Intror end �Fmon inl m



� �Fmon �z � nur
�nur�Case �inl z
 of �m � nur
m Intror end m


� �Fmon �z � nur
z m


� m

We shall not use this type in our encoding of circuits for which the iterative representation is
computationally more relevant�

Anyway it is well�known that a kind of co�recursion operator can be mimicked with the
iterative version of coinductive types� Given X � Set� f � X��F �nu�X

 and x � X � an object
of type nu representing an object de�ned by co�recursion �CoRec X f x
 can be implemented
as �

�inr x
 � nu�X

�z
�F �nu�X
�Case z of �m
�Fmon inl �Out m

 f end � �nu�X
��F �nu�X



But this operator does not enjoy exactly the expected reduction rules� The corresponding
equalities are only provable in an extensional way �we can only prove that the two streams
generates equal values
�

�



����� Streams versus functions

Obviously there is a correspondence between streams of elements of a type A and functions
from nat to A� It is easy to build a function nth which takes an integer n and associates to an
arbitrary stream the n�th element of this stream�

We �rst de�ne iteratively the function which takes the n�th tail of a stream�

�nthtl s O
 � s �nthtl s �S n

 � �Tl �nthtl s n



Then we de�ne the function which picks the n�th element of the stream by

�nth s n
 � �Hd �nthtl s n



Reciprocally� given a function f there is a uniform way to build a stream s such that �nth s n

reduces to �f n
 for instance � �StrIt nat f S O
�

But obviously� the two representations does not have the same computational behavior� The
computation of the n�th value of s using an eager evaluation always computes the sequence
�f �
 � � ��f n � �
 which may not be very e�cient� On the other side� assume f is de�ned in
a primitive recursive way� ��f �
 � x� �f n � �
 � �g n �f n


 such that the computation
of �f n
 takes n steps� In order to compute the sequence �f �
 � � ��f n � �
 with a functional
representation it will take n� steps� But if we choose a clever stream representation as

�CoIter A�nat �na � A�nat
�fst na� g �snd na
 �fst na
� S �snd na

 �x��O



then the cost of the computation of the sequence will be linear�
Clearly the co�iterative representation of streams is closer to the physical representation of

circuits� Our purpose will be to use this representation internally in order to reason about
circuits in Coq�

� Circuits

We shall now describe the representation of a circuit as a stream transformer� In that case�
streams de�ned using the co�iteration principle suits perfectly�

��� Speci�cation of a sequential circuit

When we are describing a circuit� we have to choose the level of representation� The circuit
realizes a function from the set of inputs to the set of outputs� When we have a combinational
circuit� the function which is realized depends only on the structure of the circuit�

When the circuit contains registers �sequential circuit
� the output is computed from the
inputs and the current value of registers� the new value of registers is also obtained from the old
values of registers and the current value of inputs� So the function which is realized depends in
general on the value of the registers� The value of the registers is itself a function which depends
on the structure of the circuit� the initial value of the register and the �nite list of previous
values of inputs� One way to represent the function realized by a synchronous sequential circuit
is to add as an extra parameter an integer n representing the current stage of the circuit�

From the structure of the circuit we can deduce two functions one �called output
 computing
the output from the input and registers� the other one �called update
 updating the registers
from the inputs and current values of registers� Let us call TI the type of inputs� TO the type
of outputs and TR the type of registers� we have output � TI�TR� TO and update � TI�
TR�TR�

�



Circuits as functions It is possible to represent the inputs as a function input � nat �
TI� Assume the initial value of registers is r�� we can de�ne a function register � nat� TR

representing the value of registers at each time and �nally the function circuit � nat � TO

representing the value of outputs� These functions can be de�ned in a primitive recursive way
by �

�register �
 � r� �register �S n

 � �update �input n
 �register n


�circuit n
 � �output �input n
 �register n



This approach is taken for the veri�cation of the multiplier circuit in Coq done by S� Coupet
and L� Jakubiek ��
�

��� Representing a circuit as a stream transformer

In this paper we choose another approach namely to represent the circuit as a function from the
stream of inputs to the stream of outputs whose implementation makes reference to the type of
registers�

More precisely the previous circuit will be represented as a process built on the type StrTI�TR�
Assume the current state is a pair �s� r
� the process will �rst consume the stream of inputs s to
produce the current input i and the stream of remaining inputs t� the output will be �output i r

and the next value of the state will be �t� �update i r

�

This can be represented pictorially the following way �

�si� ri
 � StrTI�TR

�sr
�A�StrTI�TR�Case sr of �s� r
�output �Hd s
 r�Tl s� update �Hd s
 r
 end

De�nition � The Coq code for a circuit of entry type TI� output type TO� updating function
update and output function output is the following �

De�nition circ � TR�StrTI�StrTO ��
�ri� si
�CoIter StrTI�TR

�sr
�TO�StrTI�TR� Case sr of

�s� r
�output �Hd s
 r�Tl s� update �Hd s
 r

end

�si� ri

�

��� Reasoning on circuits

Clearly this particular representation suggests also particular proof methods for reasoning on
circuits�

One property which has to be checked for circuits is �given two circuits� prove that they
realize the same relation between inputs and outputs�� Usually one circuit represents the im�
plementation to be checked and the other one the speci�cation which is another implementation
using a less e�cient but more comprehensible circuit� The drawback of this kind of veri�cation
is that the speci�cation has to be given as a circuit which can itself contains errors� Another
kind of veri�cation can be to check that a circuit satis�es a certain logical property�

Usually� assume we have a circuit speci�ed by the functions output and update as before�
Let us call circ the same function of type TR�StrTI�StrTO as de�ned above in de�nition ��
Given an input stream I and an initial value for register R� we denote by CIRC the object of
type StrTO build as �circ R I
� We want to prove that a certain relation holds on outputs that
will depend on the stream input I and also on a time parameter� From now on we write s�n

instead of �nth s n
� We assume given a property Q � nat� TO� Prop� And we expect to
prove�

�n � nat��Q n CIRC�n



�



This property can be proven� as an instance of a more general scheme applicable to any
iteratively de�ned function�

��� Properties of iteratively de�ned functions

Assume we have a type X � a function f of type X �X � and x of type X � one can de�ne a
function iter of type nat�X such that �iter n
 iterates n times f from x�

Let Q be a property of type nat� X � Prop� we are interested by proving two kinds of
properties of Q with respect to iter� The �rst one is �n � nat��Q n �iter n

 �written in Coq

as �n � nat
�Q n �iter n


 and the second one is �n � nat��Q n �iter n

 �written in Coq as
�Ex �n � nat
�Q n �iter n





Both can be proven using the existence of an invariant Inv with type nat�X�Prop�
We now give the precise lemmas�

Lemma � If one can �nd Inv � nat�X�Prop� such that the following is provable �

�n � nat
�y � X
�Inv n y
��Q n y
� �Inv �S n
 �f y


�Inv O x


then there is a proof of �n � nat
�Q n �iter n

�

Proof� One �rst prove �n � nat
�Inv n �iter n

 by induction on n and the result follows
immediately�
�

Lemma � If one can �nd Inv � nat�X�Prop� Rel � nat�X� nat�X� Prop such that the
following is provable �

�Acc Rel �O� x

 �ie there is no in�nite decreasing sequence for Rel starting from
�O� x
�
�n � nat
�y � X
�Inv n y
��Q n y
	 ��Inv �S n
 �f y

 � �Rel �S n� f y
 �n� y



�Inv O x�

then there is a proof of �Ex �n � nat
�Q n �iter n


�

One �rst prove �p � nat
�Acc Rel �p� x

� �Inv p x
� �Ex �n � nat
�Q �plus p n
 �iter n


 by
well�founded induction on �p� x
 from which the result follows�
�

Remark The fact that nat is involved in the well�founded relation may seem unnecessarily
complicated� It is actually very useful� for instance in order to express that the object of type
X will decrease only after a �nite number of steps�

��� Application to streams and circuits

��	�� Universal properties

Lemma � Let Q be a relation of arity nat�A� Prop� and s a stream of type StrA� If there
exists Inv which has type nat�StrA�Prop such that the following property holds�

�n � nat
�s � StrA
�Inv n s
��Q n �Hd s

 � �Inv �S n
 �Tl s


�Inv O s


then we have � �n � nat
�Q n s�n

�

Proof� It is just the lemma � with the function Tl for the iterated function and the predicate
�n � nat
�s � StrA
�Q n �Hd s

�
�

��



Invariant on implementation If we know the implementation of the stream� then we can
derive a more precise principle using an invariant on the implementation itself�

Lemma � Let Q be a relation of arity nat�A�Prop� Let X be a type� f be a function with
type X�A�X and x� an element of type X� If there exists Inv which has type nat�X�Prop

such that the following property holds�

�n � nat
�x � X
�Inv n x
��Q n �fst �f x


� �Inv �S n
 �snd �f x



�Inv O x�


then we have � �n � nat
�Q n �CoIter X f x�
�n



Proof� It is still the application of lemma � with the iterated function �x � X 
�snd �f x

 and
the predicate �n � nat
�x � A
�Q n �fst �f x


�
�

Invariant on a circuit In the case of a circuit we furthermore can use the properties �

�Hd �circ s r

 � �output �Hd s
 r
 �Tl �circ s r

 � �circ �Tl s
 �update �Hd s
 r



Corollary ��� If there exists an invariant inv which has type nat� StrTI� TR� Prop such
that the following properties hold�

�n � nat
�s � StrTI
�r � TR

�inv n r
��Q n �output �Hd s
 r

� �inv �S n
 �Tl s
 �update �Hd s
 r



�inv O I R


then he have� �n � nat
�Q n CIRC�n



Proof� We apply lemma � with X � StrTI �TR� x� � �I� R
 and the invariant �n � nat
�x �
StrTI�TR
�inv n �fst x
 �snd x

�
�

We can also use the fact that the stream of inputs is the input stream I at time n�

Corollary ��� If there exists an invariant inv which has type nat�TR� Prop such that the
following properties hold�

�n � nat
�r � TR
�inv n r
��Q n �output I�n
 r

� �inv �S n
 �update I�n
 r


�inv O R


then we can prove� �n � nat
�Q n CIRC�n



Proof� We apply the previous corollary with the invariant� �n � nat
�s � StrTI
�r � TR
�s�
�nthtl I n

 � �inv n r

�

��	�� Existential properties

We can apply the lemma 	 to various instances in order to get proofs that the property Q will
be reached� We only give here the counterpart of the lemma ��	�

Lemma 	 If there exists an invariant inv which has type nat�TR�Prop and a relation Rel

with type nat�TR�nat�TR�Prop such that the following properties hold�

��



�n � nat
�r � TR
�inv n r
� �Q n �output I�n
 r


	��inv �S n
 �update I�n
 r

 � �Rel �S n� update I�n
 r
 �n� r




�inv O R

�Acc Rel �O�R



then the following property holds �Ex�n � nat
�Q n CIRC�n




Proof� We apply the lemma 	 to�

the function implementing the circuit�
the invariant � �n � nat
�p � StrTI�TR
��fst p
��nthtl I n

 � �inv n �snd p

�
the property �n � nat
�p � StrTI�TR
�Q n �output �Hd �fst p

 �snd p


�
and to the relation �p� q � nat�StrTI�TR
�Rel �fst p� trd p
 �fst q� trd q



� The multiplier circuit

We study a very simple example introduced in ��
� This circuit implements a multiplier�

��� Description

We give a graphical representation of the circuit in �gure ����

t

tt

tt

t

t

pred

pred

If

pred zerob zerob

plus

orb

zerobzerob

If If If

reg�

reg�

reg�

inp� inp�

done res

Figure �� A multiplier circuit

��� Representation

Each combinational part of the circuit can be interpreted as a Coq function working on nat�
ural numbers and booleans� For the de�nition and the speci�cation of the circuit� we use the

�	



Coq modules Arith and Bool which de�nes the basic operations �plus� mult� pred
 on natural
numbers� �orb� zerob
 on booleans and provide proofs of the basic properties of this operations�

Now we can introduce the functions for computing the outputs and updating the registers�
Each function depends a priori on the values of the inputs inp� and inp	 of type nat and of

the values of the registers reg�� reg	 of type nat and reg� of type bool�

Section de�nitions�

Variables i�� i	 � nat�
Variables r�� r	 � nat�
Variables r� � bool�
De�nition upd� � nat �� �If r� i� �pred r�

�
De�nition upd� � nat �� �If r� �If �zerob i�
 O i	
 �plus �If �zerob i�
 O i	
 r	

�
De�nition upd� � bool �� �orb �zerob �If r� �pred i�
 �pred �pred r�



 �zerob i	

�
De�nition res � nat �� r	�
De�nition done � bool �� r��
End de�nitions�

The types for registers� entries and outputs are de�ned using the macro command Record which
is equivalent to the de�nition of an inductive de�nition with only one constructor representing a
product and which furthermore automatically build the projections whose names are speci�ed�

Record TR � Set �� reg freg� � nat� reg	 � nat� reg� � natg�
Record TI � Set �� inp finp� � nat� inp	 � natg�
Record TO � Set �� out fres � nat� done � boolg�

The initial values for reg� and reg	 can be arbitrary� we call them ri��ri�� The initial value of
reg� needs to be true� The update and output function can easily be de�ned� as well as the
initial value�

De�nition update � TI�TR�TR ��
�i� r
�reg �upd� �inp� i
 �reg� r
 �reg� r



�upd	 �inp� i
 �inp	 i
 �reg	 r
 �reg� r


�upd� �inp� i
 �inp	i
 �reg� r
 �reg� r


�

De�nition output � TI�TR�TO �� �i� r
�out �reg	 r
 �reg� r

�
De�nition init � TR �� �reg ri� ri� true
�
De�nition circ mult � StrTI�StrTO �� �circ output update init
�

��� Speci�cation

The informal speci�cation of the circuit is the following� assume the values of inp� and inp	 are
constants equal to X and Y then the next time done will be true� the value of out will be equal
to X 
 Y �

In order to express the speci�cation� we introduce the property stable with type nat�Prop

which means that for all k � n� I�k
��inp X Y 
� We shall use the following properties of this
predicate�

�stable O

�n � nat
�stable �S n

��stable n

�n � nat
�stable �S n

� I�n
��inp X Y 
�

The property to be proved for this circuit is �

De�nition Q � nat�TO�Prop ��
�n� o
�stable n
�n��O��done o
�true��res o
��mult X Y 
�

��



For the invariant� we use the construction IfProp with type Prop� Prop� bool� Prop such
that �IfProp A B b
 is equivalent to �b�true�A
 � �b�false�B
� The invariant is de�ned as�

De�nition InvM � nat�TR�Prop ��
�n� r
�stable n

��IfProp �n��O
��reg	 r
��mult X Y 


�pred �reg� r

��O �X ��O � �plus �mult �pred �reg� r

 Y 
 �reg	 r

��mult X Y 

�reg� r

�

Formally we have to check the two properties stated in proposition ��	� The second condition
which checks that the invariant is satis�ed by the initial state of the circuit is trivially true by
absurdity because at the initial stage r� is equal to true and n�O�

The second property requires a bit more working�

��� Proof of termination

It is not enough to prove that we get the expected result when done is equal to true� one need
also to show that at some point done will be equal to true�

For this� it is enough to apply the lemma � with the property �n � nat
�o � TO
n��O��done o
�
true� We have to �nd both a decreasing relation and an invariant� It is easy to remark that
for the register r if �reg� r
�false then �reg� r
��O and consequently �reg� r
 decreases strictly�
This is true except for the �rst step� consequently we can take the order�

De�nition Rel � nat�TR�nat�TR�Prop ��
�p� q
�lt �fst q
 �fst p

� ��lt O �fst q

��lt �reg� �snd p

 �reg� �snd q





This order can be proven to be well�founded �the �rst component increases a �nite number of
times then the second component decreases
�

The invariant will be �n � nat
�r � TR
�reg� r
�false��reg� r
��O which satis�es the expected
properties�

��� Conclusion

In this paper we �rst showed the concrete representation of coinductive de�nitions �encoded
impredicatively
 as a sort of simple process�

Then we applied this representation to the type of streams� We showed principles using
invariants for proving that a property holds for any element of the stream or for one of them�
Finally we showed how to represent a sequential circuit as a function from a stream of inputs to
a stream of outputs starting from functions describing how to update the registers and produce
the outputs� Using this representations and the proof principles over streams� we completely
derived the proof of a simple multiplier circuit�

The type of streams of objects of type A is isomorphic to the type of functions from nat to
A� Consequently the development we made and principles we proved could equivalently have
been done with functions like in ��
�

The di�erence between the two types is intentional� a stream is a process which can iteratively
produce values while a function is an arbitrary method to produce outputs from inputs� The
notion of streams seems closer to the actual structure of a circuit� and we consequently believe
that it should model it more accurately and suggests interesting proof methods� Besides the kind
of proofs done in this paper� we can prove the equivalence of two circuits using a bisimulation
or try to develop the circuit starting form its speci�cation using parameterized streams like was
experimented in ��
�

��



Many experiments in hardware veri�cation have been done with the NqThm or HOL theorem
provers� In NqThm� circuits are represented as functions and proofs are done using induction
and computation over functions� while in HOL they are represented as relations and proofs are
done at the logical level� In Coq� we can freely choose one or the other representations as well
as mixing them together or use other representation like the streams suggested in this paper�
Few experiments have been performed on this topic� and further investigations remains to be
done in order to see the advantages of Coq in this area�
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