Christine Paulin-Mohring

Lip

Circuits as streams in Coq Veri cation of a sequential multiplier

Keywords: Speci cation, Hardware Veri cation, Co-inductive de nitions R esum e Speci cation, V eri cation de Mat eriel, D e nition Co-inductives

This paper presents the proof of correctness of a multiplier circuit formalized in the Calculus of Inductive Constructions. It uses a representation of the circuit as a function from the stream of inputs to the stream of outputs. We analyze the computational aspect of the impredicative encoding of coinductive t ypes and show how it can be used to represent synchronous circuits. We identify general proof principles that can be used to justify the correctness of such a circuit. The example and the principles have been formalized in the Coq proof assistant.

Introduction 1.Motivations

General theorem provers such that NqThm 1, 2] or HOL 7] have b e e n i n vestigated in the domain of hardware veri cation. They are useful for doing abstract reasoning. A few investigations have been done in this area using the Coq theorem prover.

When reasoning about a circuit, we n e e d r s t t o c hoose a certain view of it, corresponding to the level of abstraction we are interested in. For a certain level of abstraction we need to choose a mathematical representation and also an implementation of it in a particular theorem prover. NqThm manipulates mainly functions, while HOL is a logical system in which one easily represents relations. Coq implements both a programming language on which computation can be done and a logical language in which one de nes and reasons about relations. We try to take advantage of these features to get more natural proofs.

S. Coupet and L. Jakubiec have r s t i n vestigated proving simple circuits in Coq (factorial, and the multiplier studied here). After discussion with them about the representation of circuits in various theorem provers, it came out that interpreting a circuit as a transformer of streams could give new interesting proof schemes. This paper investigates this area.

The system Coq now p r o vides primitive co-inductive de nitions 5, 6] but at that time, it was only possible to encode these in nite structures using an impredicative encoding. The encoding of co-inductive t ypes in Girard-Reynolds second-order lambda-calculus was described in 10] and also used in a previous experiment proving Eratosthenes Sieve 9]. In this paper we c hoose a representation of co-inductive t ypes as greatest xpoints using types de ned by constructors and higher-order quanti cation. We insist on the computational aspect of this representation which seems particularly well suited for the representation of circuits.

Outline

The remaining part of this section is devoted to the introduction of Coq notations used in this paper. The section 2 gives a brief presentation of the impredicative representation of in nite objects in type theory. W e emphasize the concrete aspect of this representation as a process. In section 3 we show h o w to represent a generic sequential circuit speci ed by the type of inputs, outputs and registers, and both the output and updating functions. We d e r i v e proof principles using invariants for this circuit. In section 4, a circuit is formalized, speci ed and nally proven using the methodology previously described. This circuit implements a multiplier and was taken as an example by M. Gordon 7] for the HOL theorem prover also studied in Coq 4] using a representation of the circuit by a primitive recursive function.

These developments have been formalized using the Coq proof assistant a n d a r e a vailable with the Coq distribution as a contribution.

Notations

The Calculus of Inductive Constructions which is the theoretical basis of the Coq system 3, 8] is an higher-order typed lambda-calculus that is used both for the representation of functions, propositions and proofs. It is not our purpose here to give a general presentation of the calculus but we shall give an informal understanding of the constructions that will be used in this paper.

Terms and Types

The calculus manipulates terms and types.

Sorts : Set and Prop. The types are special objects of the calculus. They can be interpreted both as ordinary data-types or as logical propositions using the well-known Curry-Howard isomorphism. In that case a term inhabiting the type witnesses a proof of the proposition.

The judgment A : Set will represent the fact that the type A is well-formed, while the judgment A : Prop represents the fact that A i s a w ell-formed logical formula.

A t ype can be abstracted or applied to terms in order to represent predicates or type families.

Types. Atomic type families are either variables or concrete types speci ed by a set of constructors (also called inductive types).

Composed types are built using quanti cation (x : A)B. In case x does not occur in B, this quanti cation may be written A!B.

The quanti cation can be read from di erent w ays. If both A and B are data-types, A!B represents the type of functions from A to B. I f b o t h A and B are propositions then A ! B represents the proposition \A implies B". If A is a data-type and B is a proposition then (x : A)B represents the proposition \for all x of type A, B". The variable x may also be a t ype or predicate variable in which case, A represents its arity and we get an higher-order quanti cation like i n (A : Set)A!A.

Terms. Terms are built from variables, using application and abstraction. The application of the term t to the term u is written (t u) w i t h (t u 1 : : : u k) representing (: : : (t u 1) : : : u k). The abstraction of the term t with respect to the variable x of type A is written x : A]t with x 1 : : : x k : A]t representing x 1 : A] : : : x k : A]t and x 1 : : : x k]t representing x 1 : A 1] : : : x k :

A k]t when the types of the variables are clear from the context.

The constructors of a concrete type are terms corresponding to the introduction rules of the corresponding proposition. There is a generic construction representing the elimination rule written <P>Case x of f 1 : : : f n end. It corresponds to a de nition by case analysis. The term x should be in a concrete type speci ed by n constructors. The whole expression has type P (or more generally an instance of P given by x). Each t e r m f i represents how t o build a justi cation of P in the case x starts with the i-th constructor c i . The expression <P>Case (c i a 1 : : :a k) of f 1 : : : f n end is intensionally equal to (f i a 1 : : : a k).

The language contains the possibility to de ne a function by structural recursion, but this is not strictly needed in our development, so we shall not give more details on this aspect.

Examples

Representation of data-types We r s t d e n e t h e t ype unit with only one element tt. Then we de ne the type of booleans and the type of unary natural numbers.

Inductive unit : Set := tt : unit: Inductive bool : Set := true : bool j false : bool: Inductive nat : Set := O : nat j S : nat!nat: Sum and product It is possible to de ne the disjoint sum and the product of two d a t a -t ypes using concrete type de nition. These types are parameterized by t wo t ypes variables A and B.

Inductive sum A B : Set] : Set := inl : A!(sum A B) jinr : B !(sum A B): Inductive prod A B : Set] : Set := pair : A!B !(pair A B):

We shall use the following notations:

A + B (sum A B) A B (prod A B) (a b) (pair A B a b) (f u 1 : : : u k gv 1 : : : v k) ((f u 1 : : : u k) (g v 1 : : : v k)) A B C A (B C) (a b c) (a (b c))
Terms de ned by case analysis Using the Case operator, it is easy to de ne for instance, the predecessor function, the If functional doing case analysis of booleans or the two projections for products. 2 Representation of in nite objects

Encoding of in nite objects

One way to represent in nite objects in a strongly typed language uses the proof of existence of greatest xed points for monotonic operators on types.

Formally we do the following construction. Let F be a type transformer, such as for any type X, (F X) i s a t ype. We assume F is a monotonic operator, it means that for each term f of type A !B one can build a term (Fmon f) o f t ype (F A) !(F B). This construction can be automatically computed if X occurs only positively in (F X).

Greatest xed points in Coq

Building the greatest xed point o f F corresponds to nding a type nu for which w e h a ve a n object Out of type nu!(F nu) and an object Intro of type (F nu)!nu. These two operators witnesses the fact that nu is a xed point. We require also the existence of an object CoIter of type (X ! (F X)) ! X ! nu representing the fact that nu is a greatest xed point (actually post-xed point o f F). A possible representation of nu in Coq is the following :

Inductive nu : Set := CoIter : (X : Set)(X !(F X))!X !nu:

A closed normal object of this type can be written (CoIter A f x) with A : Set f : A!(F A), and x : A. This type can be seen as an encoding of the second-order existential quanti er 9X : Set:(X !(F X)) ^X. W e shall give a more precise computational interpretation of this type in the section 2.3.

From this de nition, we get directly the operator CoIter with the expected type. We get also the following elimination principles as particular cases of the general elimination pattern for inductive t ypes. The rst one says that any o b j e c t m is essentially built from a type X, a function f with type X !(F X) and an object x with type X, s u c h that in order to prove (P m) it is enough to prove (P (CoIter X f x)). The second one is similar but seen from the computational point o f v i e w : f r o m m one can build an object in a data P by using the above X, f and x.

m : nu P : nu!Prop H : (X : Set)(f : X !(F X))(x : X)(P (CoIter X f x))
<P>Case m of H end : (P m) m : nu P : Set H : (X : Set)(X !(F X))!X !P <P>Case m of H end : P

The operator Case enjoys the following computational behavior :

<P>Case (CoIter X f x) of H end (H X f x)
The operators Intro and Out can be deduced using the following terms :

De nition Out : nu!(F nu) : = m] <(F nu)> Case m of X : Set] f : X !(F X)] x : X](Fmon (CoIter X f) (f x)) end:
De nition Intro : (F nu)!nu := (CoIter (F nu) (Fmon Out)):

Streams

A t ypical example of a type built this way is the type Str A of streams (in nite lists of objects in a given type A). It is obtained with the operator F X : Set](A X).

In that case, the function Fmon can be de ned as :

De nition Fmon :

(X Y : Set)(X !Y)!(A X)!(A Y) : = X Y f p](fst p f (snd p)):
From the function Out of type Str A !A Str A and the projections, we get easily the two functions Hd : Str A !A and Tl : Str A !Str A giving respectively the head and tail of a stream. We c a n also derive a more convenient operator for constructing streams :

De nition StrIt : (X : Set)(X !A)!(X!X)!X!Str A := X h t x](CoIter X y : X](h y t y) x):

The following computational rules hold :

(Hd (StrIt X h t x)) (h x) (Tl (StrIt X h t x)) (StrIt X h t (t x))

Concrete representation of coinductive constructions

We explain now the computational aspect of this representation of in nite objects.

As we said before, a closed normal term of type nu is equal to (CoIter X f x). It means that it is a structure with three elements: a type X, an object x of type X and a function f of type X !(F X).

We can represent this object with a picture :

x : X f : X !(F X)

We call this object a process, X is the type of the state variable whose value is x and f is the transformation function that can give raise to new processes built on the same type and to various \observational" values. This type behaves like an abstract data type, which means that if we h a ve a n o b j e c t s of type Str A we know it has the form (CoIter X f x) for some arbitrary type X but we cannot access this type. In particular when we build from s an object in a type T, this type T cannot mention X.

Pictorial speci cation of streams

In case of the type of streams, the Hd and Tl functions can be represented the following way :

x

: X f : X !A X Tl ;! (snd (f x)) : X f : X !A X Hd # (fst (f x)) : A

Other coinductive t ypes

In nite integers Assume F is X : Set](unit + X) then Nw = (nu F) represents the type of possibly in nite integers.

Given a nite integer n of type nat one can represent the corresponding in nite integer by the process : n : nat x]<unit + nat>Case x of (inl tt) inr end : nat!unit + nat

The in nite integer can be represented by the simple process : tt : unit inl : unit!unit + unit The Out function gives from an object in Nw an object in unit + Nw representing the predecessor.

When this object is a left injection, it means that the process represents 0 and taking the predecessor has the e ect to end the process, when it is a right injection we got the process representing the predecessor.

Pictorially we h a ve one of the two situations :

x : X p : X !unit + X ;! () when (p x) = (inl tt)

x : X p : X !unit + X ;! y : X p : X !unit + X when (p x) = (inr y)

In nite binary trees Assume F is X : Set](A X X) the type Trw = (nu F) represents the type of in nite binary trees. The Out function gives from an object in Trw an object in A Trw Trw built from the label in the node and the left and right sons of the tree. More computationally, applying an Out step to an object in Trw raises the label of type A plus two new processes of the same sort.

x : X p : X !A X X ;! ; a : A # # when (p x) = (a l r) l : X p : X !A X X r : X p : X !A X X

Co-iteration vs Co-recursion

We can remark that the Out step applied to an object of type M (nu F) seen as a process produces a composite object in which m a y appear one or several objects of type M which a r e processes sharing the same implementation than the original object. It means that the type X of the implementation and the transformation function are the same. Only the state, that is the particular value of type X changes.

If we see a stream as a process then any tail of the stream will represent the same process but at various stages of its life.

Sometimes this only way to build streams is too rigid. For instance, how c a n w e build the function for the concatenation of an element a of type A in front of a stream s ? We w ant the rst Out step to give us the pair (a s) and then the next Out steps to behave like the Out steps of s.

Using the CoIter operator, one can implement the concatenation function by adding a boolean information for the identi cation of the rst step. The following stream implements the concatenation of a to s:

(true s) : bool Str A

x](If (fst x) (a false s) (Hd (snd x) false Tl (snd x))) : bool Str A ! A bool Str A but it does not look like a v ery e cient implementation because each step tests whether it is the rst one: : :

One may prefer to use a more powerful scheme CoRec known as co-recursion which has type

(X : Set)(X !A (Str A + X))!X !Str A .
If a stream s is built from (CoRec X f x) t h e n (f x) h a s t ype A (Str A + X) If (f x) i s (a inl s 0) with s 0 : Str A , w e expect (Tl s) t o b e s 0 . I f (f x) i s (a inr y) with y : X, w e expect (Tl s) t o b e (CoRec X f y).

Computationally, it means that the transformation step may not only modify the current value of the state like in the iterative case, but instead it may p r o vide a new process built on a new implementation.

Pictorially, if a stream de ned as (CoRec X f x) is represented by x : X f : X !A (Str A + X)

we h a ve one of the two following situations :

x : X f : X !A (Str A + X) Tl ;! s : Str A when (snd (f x)) = (inl s)

x : X f : X !A (Str A + X) Tl ;! y : X f : X !A (Str A + X) when (snd (f x)) = (inr y)

The cons operation becomes trivial when using co-recursion scheme. Given a : A and s : Str A it can be implemented e ciently as: tt : unit x : unit](a inl s) : unit!A (Str A + unit) General co-recursion More generally, for an arbitrary functor F the type of the recursion scheme is : CoRec : (X : Set)(X !(F (nu + X)))!X !nu As was noticed by H . G e u v ers, one can easily build a coinductive t ype enjoying a co-recursion scheme instead of a co-iteration scheme :

Inductive nur : Set := CoRec : (X : Set)(X !(F (nur + X)))!X !nur:

This approach has the drawback that our inductive de nition mechanism should accept the occurrence of nur to be positive i n (F (nur + X)).

With this de nition we can easily build the Outr function.

De nition Outr : nur!(F nur) : = m] <(F nur)> Case m of X : Set] f : X !(F nur + X)] x : X] (Fmon z : nur + X]<nur>Case z of m : nur]m y : X](CoRec X f y) end (f x))

end:

Consequently the following reduction trivially holds :

(Outr (CoRec X f x)) (Fmon z : nur+(F nur)]<nur>Case z of m]m y](CoRec X f y) end (f x))
One can notice that we o n l y m a k e use of the existence of the Case operator for the type nur, it means that we do not use the fact that it is a least xed point in order to build the Outr function. This representation provides also an easy way to program the Intror function. We shall not use this type in our encoding of circuits for which the iterative representation is computationally more relevant. Anyway i t i s w ell-known that a kind of co-recursion operator can be mimicked with the iterative v ersion of coinductive t ypes. Given X : Set, f : X !(F (nu + X)) and x : X, a n o b j e c t of type nu representing an object de ned by co-recursion (CoRec X f x) can be implemented as :

De nition

(inr x) : nu + X z]<F (nu + X)>Case z of m](Fmon inl (Out m)) f end : (nu + X)!(F (nu + X)) But this operator does not enjoy exactly the expected reduction rules. The corresponding equalities are only provable in an extensional way (w e can only prove that the two streams generates equal values).

Streams versus functions

Obviously there is correspondence between streams of elements of a type A and functions from nat to A. It is easy to build a function nth which t a k es an integer n and associates to an arbitrary stream the n-th element of this stream.

We rst de ne iteratively the function which t a k es the n-th tail of a stream.

(nthtl s O) = s (nthtl s (S n)) = (Tl (nthtl s n))

Then we de ne the function which picks the n-th element of the stream by

(nth s n) = (Hd (nthtl s n))
Reciprocally, give n a f u n c t i o n f there is a uniform way to build a stream s such that (nth s n) reduces to (f n) for instance : (StrIt nat f S O).

But obviously, the two representations does not have the same computational behavior. The computation of the n-th value of s using an eager evaluation always computes the sequence (f 0) : : : (f n ; 1) which m a y n o t b e v ery e cient. On the other side, assume f is de ned in a primitive recursive w ay, ((f 0) = x 0 (f n + 1) = (g n (f n))) such that the computation of (f n) t a k es n steps. In order to compute the sequence (f 0) : : : (f n ; 1) with a functional representation it will take n 2 steps. But if we c hoose a clever stream representation as

(CoIter A nat na : A nat](fst na g (snd na) (fst na) S (snd na)) (x 0 O))
then the cost of the computation of the sequence will be linear.

Clearly the co-iterative representation of streams is closer to the physical representation of circuits. Our purpose will be to use this representation internally in order to reason about circuits in Coq.

Circuits

We shall now describe the representation of a circuit as a stream transformer. In that case, streams de ned using the co-iteration principle suits perfectly.

Speci cation of a sequential circuit

When we are describing a circuit, we h a ve t o c hoose the level of representation. The circuit realizes a function from the set of inputs to the set of outputs. When we h a ve a c o m binational circuit, the function which is realized depends only on the structure of the circuit.

When the circuit contains registers (sequential circuit), the output is computed from the inputs and the current v alue of registers, the new value of registers is also obtained from the old values of registers and the current v alue of inputs. So the function which is realized depends in general on the value of the registers. The value of the registers is itself a function which depends on the structure of the circuit, the initial value of the register and the nite list of previous values of inputs. One way to represent the function realized by a synchronous sequential circuit is to add as an extra parameter an integer n representing the current stage of the circuit.

From the structure of the circuit we can deduce two functions one (called output) computing the output from the input and registers, the other one (called update) updating the registers from the inputs and current v alues of registers. Let us call TI the type of inputs, TO the type of outputs and TR the type of registers, we h a ve output : TI ! TR ! TO and update : TI ! TR!TR. Circuits as functions It is possible to the inputs as a function input : nat ! TI. Assume the initial value of registers is r 0 , w e can de ne a function register : nat ! TR representing the value of registers at each time and nally the function circuit : nat ! TO representing the value of outputs. These functions can be de ned in a primitive recursive w ay by :

(register 0) = r 0 (register (S n)) = (update (input n) (register n)) (circuit n) = (output (input n) (register n))
This approach i s t a k en for the veri cation of the multiplier circuit in Coq done by S. Coupet and L. Jakubiek 4].

Representing a circuit as a stream transformer

In this paper we c hoose another approach namely to represent the circuit as a function from the stream of inputs to the stream of outputs whose implementation makes reference to the type of registers.

More precisely the previous circuit will be represented as a process built on the type Str TI TR.

Assume the current state is a pair (s r), the process will rst consume the stream of inputs s to produce the current input i and the stream of remaining inputs t, the output will be (output i r) and the next value of the state will be (t (update i r)).

This can be represented pictorially the following way :

Reasoning on circuits

Clearly this particular representation suggests also particular proof methods for reasoning on circuits.

One property which has to be checked for circuits is \given two circuits, prove that they realize the same relation between inputs and outputs". Usually one circuit represents the implementation to be checked and the other one the speci cation which is another implementation using a less e cient but more comprehensible circuit. The drawback of this kind of veri cation is that the speci cation has to be given as a circuit which can itself contains errors. Another kind of veri cation can be to check that a circuit satis es a certain logical property.

Usually, assume we h a ve a circuit speci ed by the functions output and update as before.

Let us call circ the same function of type TR!Str TI !Str TO as de ned above in de nition 1.

Given an input stream I and an initial value for register R, w e d e n o t e b y CIRC the object of type Str TO build as (circ R I). We w ant t o p r o ve that a certain relation holds on outputs that will depend on the stream input I and also on a time parameter. From now o n w e write s n] instead of (nth s n). We assume given a property Q : nat ! TO ! Prop. And we expect to prove:

8n : nat:(Q n CIRC n]) (n : nat)(r : TR)(inv n r)! n (output I n] r)) _((inv (S n) (update I n] r)) ^(Rel (S n update I n] r) (n r))) (inv O R) (Acc Rel (O R))
then the following property holds (Ex n : nat](Q n CIRC n]))

Proof: We apply the lemma 2 to: the function implementing the circuit, the invariant : n : nat] p : Str TI TR]((fst p)=(nthtl I n)) ^(inv n (snd p)), the property n : nat] p : Str TI TR](Q n (output (Hd (fst p)) (snd p))), and to the relation p q : nat Str TI TR](Rel (fst p trd p) (fst q trd q)) [START_REF] Cornes | The Coq Proof Assistant Reference Manual version 5.10[END_REF] The multiplier circuit

We study a very simple example introduced in 7]. This circuit implements a multiplier.

Description

We give a graphical representation of the circuit in gure 4.1.

n r](stable n) !(IfProp (n6 =O)!(reg2 r)=(mult X Y) (pred (reg1 r))6 =O ^X6 =O ^(plus (mult (pred (reg1 r)) Y) (reg2 r))=(mult X Y) (reg3 r)):
Formally we h a ve t o c heck the two properties stated in proposition 4.2. The second condition which c hecks that the invariant is satis ed by the initial state of the circuit is trivially true by absurdity because at the initial stage r3 is equal to true and n=O.

The second property requires a bit more working.

Proof of termination

It is not enough to prove that we get the expected result when done is equal to true, one need also to show that at some point done will be equal to true.

For this, it is enough to apply the lemma 5 with the property n : nat] o : TO]n6 =O^(done o)= true. W e h a ve to nd both a decreasing relation and an invariant. It is easy to remark that for the register r if (reg3 r)=false then (reg1 r)6 =O and consequently (reg1 r) decreases strictly. This is true except for the rst step, consequently we c a n t a k e the order:

De nition Rel : nat TR!nat TR!Prop := p q](lt (fst q) (fst p)) ^((lt O (fst q))!(lt (reg3 (snd p)) (reg3 (snd q))))

This order can be proven to be well-founded (the rst component increases a nite number of times then the second component decreases).

The invariant will be n : nat] r : TR](reg3 r)=false!(reg1 r)6 =O which satis es the expected properties.

Conclusion

In this paper we rst showed the concrete representation of coinductive de nitions (encoded impredicatively) as a sort of simple process. Then we applied this representation to the type of streams. We showed principles using invariants for proving that a property holds for any element of the stream or for one of them. Finally we s h o wed how t o r e p r e s e n t a sequential circuit as a function from a stream of inputs to a stream of outputs starting from functions describing how to update the registers and produce the outputs. Using this representations and the proof principles over streams, we completely derived the proof of a simple multiplier circuit.

The type of streams of objects of type A is isomorphic to the type of functions from nat to A. Consequently the development w e made and principles we proved could equivalently have been done with functions like i n 4].

The di erence between the two t ypes is intentional, a stream is a process which can iteratively produce values while a function is an arbitrary method to produce outputs from inputs. The notion of streams seems closer to the actual structure of a circuit, and we consequently believe that it should model it more accurately and suggests interesting proof methods. Besides the kind of proofs done in this paper, we can prove the equivalence of two circuits using a bisimulation or try to develop the circuit starting form its speci cation using parameterized streams like w as experimented in 9].

Many experiments in hardware veri cation have been done with the NqThm or HOL provers. In NqThm, circuits are represented as functions and proofs are done using induction and computation over functions, while in HOL they are represented as relations and proofs are done at the logical level. In Coq, w e can freely choose one or the other representations as well as mixing them together or use other representation like the streams suggested in this paper. Few experiments have been performed on this topic, and further investigations remains to be done in order to see the advantages of Coq in this area.

 De nition pred : nat!nat := n]<nat>Case n of O p : nat]p end: De nition If : (C : Set)bool !C!C !C := C b x y]<C>Case b of x y end: De nition fst : (A B : Set)A B !A := A B p]<A>Case p of x y]x end: De nition snd : (A B : Set)A B !B := A B p]Case p of x y]y end: De nition trd : (A B C : Set)A B C!C := A B C p](snd (snd p)):

 Intror : (F nur)!nur := m](CoRec (F nur) n : (F nur)](Fmon inl n) m): Furthermore we get, assuming (Fmon (f g)) = (Fmon f) (Fmon g) and (Fmon x : X]x) = x : (F X)]x the fact that (Outr (Intror m)) is convertible with m. (Outr (Intror m)) = (Fmon z : nur + X]<nur>Case z of m : nur]m Intror end (Fmon inl m)) = (Fmon z : nur]<nur>Case (inl z) of m : nur]m Intror end m) = (Fmon z : nur]z m) = m

(

 si ri) : Str TI TR sr]<A Str TI TR>Case sr of s r](output (Hd s) r Tl s update (Hd s) r) end De nition 1 The Coq cod e f o r a c i r cuit of entry type TI, output type TO, u p dating function update and output function output is the following : De nition circ : TR!Str TI !Str TO := ri si](CoIter Str TI TR sr]<TO Str TI TR> Case sr of s r](output (Hd s) r Tl s update (Hd s) r) end (si ri)):

 Coq function working on natural numbers and booleans. For the de nition and the speci cation of the circuit, we use the For the invariant, we use the construction IfProp type Prop ! Prop ! bool ! Prop such that (IfProp A B b) is equivalent t o (b=true!A) ^(b=false!B). The invariant is de ned as: De nition InvM : nat!TR!Prop :=

		inp1	t inp2	
		t		
		pred	zerob	zerob
	If	If		t If
	reg1	zerob	zerob	If
	pred	orb		reg2
	t			t
	pred			plus
	reg3			
	t	t		
	done			res
		Figure 1: A multiplier circuit	
	4.2 Representation			

Each combinational part of the circuit can be interpreted as a

This research w as partly supported by ESPRIT Basic Research Action \Types" and by the GDR \Programmation" co-nanced by MRE-PRC and CNRS.

Acknowledgments

We thank the team on hardware veri cation at Universit e de Provence in Marseille, especially S. Coupet and L. Pierre for fruitful discussions on the way circuits were represented for formal veri cation. These discussions suggested the study of this example.

This property can be proven, as an of a more general scheme applicable to any iteratively de ned function.

Properties of iteratively de ned functions

Assume we h a ve a t ype X, a function f of type X ! X, and x of type X, one can de ne a function iter of type nat!X such that (iter n) iterates n times f from x.

Let Q be a property o f t ype nat ! X ! Prop, w e are interested by p r o ving two kinds of properties of Q with respect to iter. The rst one is 8n : nat:(Q n (iter n)) (written in Coq as (n : nat)(Q n (iter n))) and the second one is 9n : nat:(Q n (iter n)) (written in Coq as

Both can be proven using the existence of an invariant Inv with type nat!X !Prop.

We n o w give the precise lemmas.

Lemma 1 If one can nd Inv : nat!X !Prop, such that the following is provable :

(n : nat)(y : X)(Inv n y)!(Q n y) ^(Inv (S n) (f y))

(Inv O x) then there i s a p r oof of (n : nat)(Q n (iter n)).

Proof: One rst prove (n : nat)(Inv n (iter n)) by induction on n and the result follows immediately.

Lemma 2 If one can nd Inv : nat !X !Prop, Rel : nat X !nat X !Prop such that the following is provable :

(Acc Rel (O x)) (ie there i s n o i n n i t e d e creasing sequence f o r Rel starting from (O x))

then there i s a p r oof of (Ex n : nat](Q n (iter n))).

One rst prove (p : nat)(Acc Rel (p x))! (Inv p x) !(Ex n : nat](Q (plus p n) (iter n))) by well-founded induction on (p x) from which the result follows.

Remark The fact that nat is involved in the well-founded relation may seem unnecessarily complicated. It is actually very useful, for instance in order to express that the object of type X will decrease only after a nite number of steps. Invariant on implementation If we k n o w the implementation of the stream, we c a n derive a more precise principle using an invariant on the implementation itself. Lemma 4 Let Q be a r elation of arity nat! A !Prop. L et X be a type, f be a function with type X !A X and x 0 an element of type X. I f t h e r e exists Inv which has type nat!X !Prop such that the following property holds:

Application to streams and circuits

Proof: It is still the application of lemma 1 with the iterated function x : X](snd (f x)) and the predicate n : nat] x : A](Q n (fst (f x))).

Invariant on a circuit In the case of a circuit we furthermore can use the properties :

(Hd (circ s r)) = (output (Hd s) r) (Tl (circ s r)) = (circ (Tl s) (update (Hd s) r)) Corollary 4.1 If there exists an invariant inv which has type nat ! Str TI ! TR ! Prop such that the following properties hold:

(n : nat)(s : Str TI)(r : TR)

Proof: We apply lemma 4 with X = Str TI TR, x 0 = (I R) and the invariant n : nat] x : Str TI TR](inv n (fst x) (snd x)).

We can also use the fact that the stream of inputs is the input stream I at time n.

Existential properties

We can apply the lemma 2 to various instances in order to get proofs that the property Q will be reached. We only give here the counterpart of the lemma 4. The types for registers, entries and outputs are de ned using the macro command Record which is equivalent to the de nition of an inductive de nition with only one constructor representing a product and which furthermore automatically build the projections whose names are speci ed.

Record TR : Set := reg freg1 : nat reg2 : nat reg3 : natg: Record TI : Set := inp finp1 : nat inp2 : natg: Record TO : Set := out fres : nat done : boolg:

The initial values for reg1 a n d reg2 can be arbitrary, w e call them ri1,ri2. The initial value of reg3 needs to be true. T h e update and output function can easily be de ned, as well as the initial value.

De nition update : TI!TR!TR := i r](reg (upd1 (inp1 i) (reg1 r) (reg3 r)) (upd2 (inp1 i) (inp2 i) (reg2 r) (reg3 r)) (upd3 (inp1 i) (inp2i) (reg1 r) (reg3 r))):

De nition output : TI!TR!TO := i r](out (reg2 r) (reg3 r)): De nition init : TR := (reg ri1 ri2 true):

De nition circ mult : Str TI !Str TO := (circ output update init):

Speci cation

The informal speci cation of the circuit is the following: assume the values of inp1 and inp2 a r e constants equal to X and Y then the next time done will be true, the value of out will be equal to X Y .

In order to express the speci cation, we i n troduce the property stable with type nat!Prop which means that for all k < n , I k]=(inp X Y). We shall use the following properties of this predicate.