N

N
N

HAL

open science

Heterogeneous task scheduling: a survey
Vincent Boudet

» To cite this version:

Vincent Boudet. Heterogeneous task scheduling: a survey.

Laboratoire de I'informatique du parallélisme. 2001, 2+28p. hal-02101844

HAL Id: hal-02101844
https://hal-lara.archives-ouvertes.fr /hal-02101844
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research Report] LIP RR-2001-*07,

https://hal-lara.archives-ouvertes.fr/hal-02101844
https://hal.archives-ouvertes.fr

%

Laboratoiredel’ I nformatique du Parall&isme

4 P CENTRE NATIONAL
Ecole Normale Supérieure de Lyon DE LA RECHERCHE

Unité Mixte de Recherche CNRS-INRIA-ENS LYON 1 5668 SCIENTIFIQUE

Heterogenous task scheduling : a survey

Vincent Boudet February 2001

Research Report N° 2001-07

Ecole Normale Supérieure de Lyon
46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ip@ens-lyon.fr

- SPI
EEEEN
EEEEN

%I INRIA

Heterogenous task scheduling : a survey

Vincent Boudet

February 2001

Abstract

Scheduling computation tasks on processors is a key issue for high-
performance computing. Although a large number of scheduling heuris-
tics have been presented in the literature, most of them target only
homogeneous resources. We survey here five low-complexity heuristics
for heterogeneous platforms, the Best Imaginary Level (BIL), the Gener-
alized Dynamic Level (GDL), the Critical-Path-on-a-Processor (CPOP),
the Heterogeneous Earliest Finish Time (HEFT) and the Partial Com-
pletion Time (PCT) algorithms. These five heuristics aim at scheduling
directed acyclic weighted task graphs on a bounded number of heteroge-
neous processors. We compare the performances of the heuristics using
four classical testbeds.

Keywords: scheduling, task graphs, high-performance, heterogeneous platforms, different-speed
processors, mapping.

Résumé

Ordonnancer des taches de calculs sur des processeurs est une nécessité
pour du calcul haute performance. Bien qu'un grand nombre d’heuris-
tiques d’ordonnancement existe dans la littérature, la plupart d’entre
elles ne visent que des ressources homogenes. Nous présentons ici cing
heuristiques pour des architectures hérogenes : le “Best Imaginary Level”
(BIL), le “Generalized Dynamic Level” (GDL), le “Critical-Path-on-a-
Processor” (CPOP), le “Heterogeneous Earliest Finish Time” (HEFT)
et le “Partial Completion Time” (PCT). Ces cinq algorithmes ont pour
but d’ordonnancer des graphes de taches acycliques et pondérés sur
un nombre limité de processeurs hérogenes. Nous comparons les per-
formances de ces heuristiques sur quatre problemes classiques.

Mots-clés: ordonnancement, graphes de taches, calcul haute performance, plateforme
hétérogene, processeurs de vitesses différentes, distribution.

1 Introduction

An efficient scheduling for application tasks is critical to achieving high performance in parallel
and distributed systems. The objective of scheduling if to find a mapping of the tasks onto the
processors and to order the execution of the tasks so that task precedence requirements are satisfied
and a minimum schedule length is provided. Since the scheduling problem is NP-hard in the strong
sense, many research efforts have proposed various heuristics for this problem.

Although a wide variety of different approaches are used to solve the task scheduling prob-
lem, most of them target only homogeneous processors. Scheduling methods that are suitable for
homogeneous environments may well not be efficient for heterogeneous domains.

In this paper, we will focus on heuristics. We will survey five of them for the task scheduling
problem : the minimum Partial Completion Time static priority algorithm (PCT), the Best Imag-
inary Level (BIL) algorithm, the heterogeneous earliest finish time (HEFT), the critical path on a
processor (CPOP) and the generalized dynamic level (GDL) algorithm. In section 4, we present the
four classical testbeds that we use to compare the different heuristics. We outline and comment
the results in section 5. Finally we give concluding remarks in section 6.

2 Preliminaries

For each task scheduling algorithm, the input is a directed acyclic graph G = (N, A), that models
a parallel program, where N' = {N; : i = 1,---, N} is a set of N nodes and A = {4;,} is a set of
edges. A node in the DAG represents a task. Each task has a computation cost which is defined as
the amount of computation cycle needed to achieve it. The time needed to compute this task on a
processor is then the product of this computation cost by the cycle time of the processor. An edge
corresponds to task dependencies (communication messages or precedence constaints) and has a
communication cost. Each edge A;; carries a label D; ; which specifies the amount of data that
N; passes to N;. This can be used to compute the time needed to achieve the communication. We
suppose that if two tasks are assigned to the same processor, there is no communication penalty.
Moreover, we suppose that we can realize many communications at the same time. A task without
any input edge is called an entry task while a task with no output task is called an ezist task. A task
is said ready when all its predecessors have finished their execution. We denote by Pred(N;) the
set of the immediate predecessors of the task N; and Succ(N;) the set of the immediate successors
of the task ;.

The target achitecture contains a set of heterogeneous processors P = {P, : k = 1,---,p}
so that computation can be overlapped with communication and there is no limitation on the
communication links: as soon as a task N; is completed, data D; ; is sent to all its succesors. The
execution time of node N; on processor P}, given by E(N;, P;) (denoted further by e; ;) is available
at compile time for each node-processor pair.

Our scheduling objective is to minimize the scheduling length where all interprocessor commu-
nication overheads are included. This scheduling problem is NP-complete in the strong sense even
if there are an infinite number of processors available (see [1]). Hence we will rely on heuristics.

3 The algorithms

3.1 Minimum partial completion time static priority algorithm (PCT)

M. Maheswaran and H. J. Siegel present in [2] a dynamic algorithm. Their heuristic refines a
given mapping computed statically but it can be used from scratch to compute a static mapping at
compile time by using a basic schedule (for example, every task is allocated to the fastest processor)
as input. So we assume that we already have a scheduling of our graph.

The first phase or the algorithm assigns ranks to each task. The second phase orders the tasks
and uses a minimization criteria to solve the mapping problem.

Consider the first phase of the algorithm. We assign to each task a priority equals to an
estimation of the time needed to finish the program. As we already have a scheduling, we may take
the communications into consideration. Let P; the processor to which the task IV; is assigned in
the given scheduling, we define the priority as follows :

priority(N;) = e;; + Nkeglz?c)c((Ni)(Ci’k + priority(Ny))
where ¢; , = D; . X 7 is the time needed to send the data from the node N; to the node Nj with
the bandwith 7. If the two nodes are on the same processor we have c; ;, = 0.

In the second phase, we allocate the ready tasks to processors in the order given by their priority.
We first compute the node with the highest priority, then the following node and so on. Let P; be
a candidate processor for task N;. We note pct(N;, P;) the partial completion time of the task IV;
on the processor P; and dr(N;) the instant where all the data needed to compute N; is available
on P, i.e. the time at which the last data item required by N; to begin its execution arrives at
P;. N; may be computed after the instant dr(N;) and after the moment where the processor P; is
available. So we can deduce the following equations for dr(N;) and pct(N;, P;). We note proc(Ny,)
the processor which is assigned the task NVi.

For an entry task, we have :

pct(N;, Pj) = e; 5

and for any other task, we have :
pct(Nj, Pj) = e; ; + max(Available[j] + dr(N;))

dr(N;) = Nkeflglgé(m)(ck,i + pct(Ng, proc(Ny,)))

where Available[j] is the instant where the processor P; is free to start the execution of a new task.
The task N; is mapped onto the processor which minimizes the function pct(Nj,.).

THE PCT ALGORITHM

: Compute the priority for each task

: ReadyTask < {Entry tasks}

: While ReadyTask is not empty

Choose n in ReadyTask with the highest priority
Compute pct(n, p) for all p in P

Assign n to the processor which minimize pct(n, p)
Update A[p| and ReadyTask

: End while

3.2 Best imaginary level (BIL)

Hyunok Oh and Soonhoi Ha present in [3] a list scheduler. The global idea is to assign a priority, or
a static level, to each node. Then the list scheduler schedules the runnable nodes in the decreasing
order of priority. Then they try to determine the optimal processor for the selected node.

They define the level of a node N as the Best Imaginary Level, BIL. The BIL is the length of
the critical path beginning with N if this node is remapped onto P including the communications
assuming that all the children are perfectly scheduled. Since it is not always possible to schedule
the nodes at the best times, we use the term of imaginary.

BIL(N;, Pj) = e;j+ max [min(BIL(Ny, Pj), min(BIL(Ng, P,) + ¢ p))]
Ny €Suce(N;) DPF#J
The BIL of a node is then used to compute a priority order on the nodes.

Once the BIL is computed for each node, we start the second phase which consists on selecting
a node, i.e. computing a priority order. To select a node, we adjust the level of a node N;
on processor P; to measure the best imaginary makespan, BIM. BIM is defined as follows:
BIM (N, Pj) = Available[j] + BIL(N;, P;). For each node, there exist P different BIM values, one
for each processor.

Assuming there exists k runnable nodes at a step, we define the priority of a node N; as the
k" smallest BIM value, or the largest finite BIM value if the £ is undefined. The selected node
is the one with the highest priority.

Once we have a node selected, we have to find a processor where to map it. If the number of
ready nodes k is high, i.e. greatest than the number of processors, the execution time becomes
the more important factor than the communication overhead since the communication overhead is
likely to be hidden.

Therefore, we define the revised BIM as follows :

BIM*(NZ, Pj) = BIM(NZ, R7) + €55 X max(% —1, 0)

We select the processor that has the highest revised BIM value. If more than one processor
have the same revised BIM value, we select the processor that makes the sum of the revised BIM
values of other nodes on the processor maximum.

As soon as the task is assigned to a processor, we update the runnable nodes and continue while
there exists a ready task.

1: THE BIM ALGORITHM

2: Compute BIL(n,p) for all n and p

3: ReadyTask < {Entry tasks}

4: While ReadyTask is not empty

5 Compute BIM for every task in ReadyT ask

6 Choose the node n with the highest priority

7 Compute BIM*(n,p) for all p

8 Assign n to the processor p that maximizes BIM*(n,p)
9 Update ReadyTask

10:End while

3.3 Heterogeneous earliest finish time and critical path on a processor

H. Topcuoglu, S. Hariri and M.-Y. Wu present in [5] two heuristics. The global idea of the two
heuristics is the same. In a first phase, we compute a priority on the runnable nodes and we select
the node with the highest priority. Then, in the second phase, using two different criteria, we select
a processor to map the selected node.

Before studying the two different algorithms, we need some definitions. We define the earliest
start time, EST', and the earliest finish time, EFT, of node N; on processor P; as follows :

BST(N:,) = maz(A[], | max - (BFT(N,proc(Ve)) + cx,)

EFT(NZ,Ry) =e€; + EST(NZ,P])

where proc(Ny) is the processor where Ny, is assigned. EST returns the ready time, i.e. the time
when all data needed by N; has arrived at the host P; and when the host P; is available.

In the algorithm, tasks are ranked upward and downward to set the scheduling priorities. The
upward rank of a task N; is recursively defined by

ranky,(N;) = & + Nke%lq?c)c((m)(ci’k + ranky (Nk))

where é; = > e;;';j is the average execution time of the task IN; over the processors. rank, is the
length of the critical path from N; to the exit node, including the computation cost of the node
itself. Similarly, the downward rank of a task N; is recursively defined by

rankg(N;) = max (cg; + €x + rankyg(Ng))
NpEPred(N;)
The rankg is the longest distance from the start node to the node N; excluding the computation
cost of the node itself.

3.3.1 HEFT

To set priority to a task N;, the heterogeneous earliest finish time algorithm uses the upward rank
value of the task. We sort the ready tasks with respect to the decreasing order of the rank, values.
If two nodes to be scheduled have the same priority, one of them is selected randomly.

The HEFT algorithm uses the EFT value to select the processor for the selected task. It is
natural to consider the EFT value to select a processor. Indeed, after all nodes in the graph are
scheduled, the schedule length will be the earliest finish time of the exit node. We assign the node
N; to the processor p which minimize the value of EFT(N;,p).

THE HEFT ALGORITHM

: Compute rank, for all nodes

: ReadyTask < {Entry tasks}

: While ReadyT ask is not empty

Select the task n with highest priority

Assign the task n to the processor p that minimizes
the EFT value of n

Update EST values and ReadyTask

7: End while

>

3.3.2 CPOP

The critical-path-on-a-processor algorithm uses rank,(n) + ranky(n) to assign the node priority.
As previously, we select the node with the highest priority. That is to say that we first consider
the tasks that belong to the critical path.

A task is on the critical path if its value of rank, + rank, is equal to the value of rank,(N;)
where Ny is the start node. The critical-path-processor, C' PP, is the one that minimizes the length
of the critical path. If the current task is on the critical path, it is assigned to the C PP, otherwise
is is assigned to the processor that minimizes the EFT. The time needed to compute the tasks
along the critical path is a lower bound of the execution time. So it appears to be a good criteria
to try to minimize the length of the critical path. The C'PP is often the fastest processor.

THE CPOP ALGORITHM
1: Compute rank, and ranky for all nodes
2: ReadyTask < {Entry tasks}
3: While ReadyT ask is not empty
Select the task n with highest priority
If n is on the critical processor
Assign n to the CPP
Else
Assign the task n to the processor p that
minimizes the EFT value of n
9: Update EST values and ReadyTask
10:End while

3.4 Generalized dynamic level

Gilbert C. Sih and Edward A. Lee propose in [4] a compile time scheduling heuristic for hetero-
geneous network called GDL. As in the previous algorithm, the GDL scheduler computes the
critical path in a heterogeneous system. Contrary to the CPOP algorithm, GDL defines the as-
sumed execution time of node N; denoted e*(NV;) as the median execution time of the node over all
processors.

We define then the static level of a node N;, SL(N;) as the largest sum of execution times along
any directed path from N; to an exit node of the graph. SL(N;) can be easily computed recursively.
To take account of the difference of processors speed, we introduce the quantity :

A(N;, Pj) = e*(N;) — e

We introduce then a dynamic level DL(N;, Pj) which reflects how well node N; and processor P;
are matched. This quantity will be reevaluated at each step of the algorithm to take into account
of the next decisions.

DL(N;, Pj) = SL(N;) — EST(N;, P;j) + A(N;, P;)

The term EST(Nj;, P;) is the earliest start time defined in the same way as for the HEFT and the
CPOP algorithms.

The algorithm is very simple. While there exist a ready task, we select the node and the
processor which maximize the expression DL.

3.4.1 Descendant consideration

Although DL(N;, P;j) indicates how well node IN; is matched with processor P, it fails to consider
how well the descendants of N; are matched with P;. For each node N; we note D(N;) the
descendant to which N; passes the most data and d(N;, D(V;)) the amount of data passed between
them. We then define F(N;, D(N;), Pj) to indicate how quickly D(N;) can be completed on any
other processor if N; is executed on P;.

F(Ni, D(N), P) = 7 % d(Ni, D(N9) + min B(D(N), Py

This is a lower bound on the time necessary to finish the execution of D(N;) on any processor other
than Pj.
We then define a descendant consideration term as

DC(N;, Pj) = e*(D(IN;)) — min{ E(D(N;), F;), F(N;, D(N;), Pj)}

3.4.2 Resource scarcity

We generally fail to consider how important it is for two nodes to obtain the same processor. To
characterize this resource scarcity cost, we first define the preferred processor of a node, i.e the
processor that maximizes its dynamic level. We then define the cost in not scheduling V; on its

preferred processor
C(NZ) = DL(Ni, P]*) - ir;éa_x DL(Ni, Pk)
J*

where j* is the index of the preferred processor of N;. If the cost is zero, N; will still have at least
one processor with which it can obtain the same dynamic level.
3.4.3 Generalized dynamic level

By taking into account the descendant consideration and the resource scarcity we can now define
a generalized dynamic level :

GDL(N;, P;) = DL(N;, P}) + DO(N:, P}) + C(Ny)

The algorithm is inchanged. We selected among the runnable tasks the task and the processor
which maximize the GDL.

THE GDL ALGORITHM

Compute e*(n) and D(n) for all nodes n

Compute SL(n) for all nodes n

ReadyTask « {Entry tasks}

While ReadyT ask is not empty
Compute GDL(n,p) for every node n in ReadyTask
and every processor p
Select the pair (n,p) that maximizes GDL

7 Update the readyT ask

8: End while

>

4 Experiments

To compare the different algorithms, we consider four classical kernels representing various types of
parallel algorithms. The selected task grpahs are LU decomposition (“LU”), Laplace equation solver
(“LAPLACE”), a stencil algorithm (“STENCIL”) and a fork-join graph (“Fork-Join”). Miniature
versions of each task graph are shown in Figure 1.

A communication between two different processors has a cost of 1. In the problem of LU
decomposition, a node of level k£ has a cost egal to N — k where N is the size of the graph. In the
other problems the cost of a task is 1.

For each of these problems, we varied the size of the graph, the communication-computation
ratio by modifying the speed of the processors, the relative speed of the processor and the number
of processors.

The speed of the k' processor is given by the formulae 5 + k x o where o is the difference
of speed between two consecutive processors. To study the influence of the ratio communication-
computation we varied the value of s. To measure the impact of the difference of speed between
processors, we modify the value of o.

The Laplace task graph
The LU task graph

e

The stencil task graph The fork-join task graph
Figure 1: The different task graphs

5 Results
5.1 LAPLACFE problem

Consider the results shown in Figures 2 to 6. In the first three graphics, we compare the different
algorithms by varying the communication-computation ratio. The speed in the different graphs

are [1,2,3] for the first case, [10,11,12] and [100, 101, 102] in the second and last case. The com-
munication cost remains equal to 1. The BIL algorithm has very good results. It balances very
well the work of the different processors. The PCT and the GDL algorithm are very close. They
badly balance the load of the processors. Indeed, the most important part of the work is given to
the fastest processor and the other processors have a small amount of computations to execute.
Finallyy, CPOP and HEFT have very bad results. Because of the non-sense of a critical path
for heterogeneous resources, they give all the computations to the same processor. Indeed, all the
nodes of the LAPLACE problem are on a critical path. When the communication-computation
ratio becomes very important, only the BIL algorithm remains good. As the other algorithms
give most computations to a single processor, they tend to the makespan of a sequential schedule.
If we consider Figure 5, we see that for the BIL algorithm the results are worse. Indeed, as the
average speed is higher, the expected execution time is more important because the load is quite
well balanced. However, for the PC'T algorithm the results become very bad. As the load is badly
balanced, the slowest processors keep the fastest processor idle and so the expected execution time
increases. For the other three algorithms, as the most part of the computations is given to the
fastest processors, there is no difference between the two expected execution times. Finally, if we
study the impact of the number of processors (Figure 6), we see that the CPOP and HEFT algo-
rithm give most computations to the fastest processor and so the expected execution time doed not
decrease with the number of processors. The expected execution time given by the other heuristics
does decrease with the number of processors. We point out that in the case of the BIL algorithm,
we obtain a minima with 50 processors. After this value, the expected execution time does not
decrease.

5.2 LU problem

The results of the experiments on the LU problem are shown in Figures 7 to 11. A problem
of size 100 consists of a graph with around 5000 nodes. Contrary to the LAPLACFE problem,
there exists only one critical path. So we can assume that the HEFT and CPOP algorithms
will be better than in the case of the LAPLACE graph. As expected, these 2 heuristics present
efficient results. With a poor or a high communication-computation ratio, they obtain the best
results for this problem. The PCT algorithm has very similar results. For these three algorithms
the research of a good scheduling is “guided” by the longest path in the graph. As they try to
minimize the time needed to compute this path, the finally find a schedule with a good expected
execution time. The GDL algorithm has very poor results. With only 3 processors, the schedule
given by this heuristics leads to a bad expected execution time. And this remark remains true with
a poor or a high communication-computation ratio. The performances of this algorithm starts to
be interesting when the number of processor becomes very large. With around 95 processors, the
results are equivalent to the results obtained by the other algorithms. For a higher number of
processors, this heuristic is better than the others. The last heuristic, BI L, which was good for the
LAPLACE problem has surprising results. Its performances decrease with the size of the problem.
This effect is more important when the computation-communication ratio is high. For a poor ratio
(Figure 7 and 8), BIL obtains results very close to the best results. We could note a difference
for a problem of size 100 but the difference is not very important. For a high ratio (Figure 9 and
10), the difference appears for a problem of size 50. And for a size 100 problem, the results are not
efficient. Finally, as a last remark on the LU problem, we could note that the heuristics uses all
the available resources as shown in figure 11. We obtain 5 curves for the execution time which all
decrease with the number of processors.

30000 T T T T T T T T

bil —+—

25000

20000

15000

Expected execution time

10000

5000

0 10 20 30 40 50 60 70 80 90 100
Size of the problem

Figure 2: Comparison of the different heuristics for LAPLACE problem with speed equals to 1,2
and 3

5.3 STENCIL problem

The results of the experiments on the STENCIL problem are shown in Figures 12 to 16. As in
the LAPLACE problem, each node belongs to a critical path. So, HEFT and CPOP assign each
node to the fastest processor. We obtain the makespan of a sequential schedule. As we can see in
Figures 12 and 13 where the communication-computation ratio is low BIL, GDL and PCT have
poor results. Indeed, their expected execution time are worse than for sequential execution. In a
same way, when the difference between processors speed is large (Figure 15), these 3 heuristics have
not efficient results and HEFT and C POP obtain better results. These bad results are explained
by the very constrained nature of the STENCIL problem. However, when the communication-
computation ratio is high and when the speed of the processors are close, the 3 heuristics are better
than HEFT and CPOP but the gain is not very important. To see the impact of the number
of processors, we choose the case where the communication-computation ratio is high and where
the speed of the processors are close (Figure 16). As for the LAPLACE problem, the number of
proceesors does not affect the results for HEFT and CPOP. The BIL algorithm present quite
better results but it is not a very efficient heuristic for the STENCIL problem. The PCT and the
BIL obtain the better results. However, to obtain a speed-up of 2 they need around 30 processors.

120000

100000

80000

60000

Expected execution time

40000

20000

bil —+—

Size of the problem

gdl
cpop
heft —&
pct
— 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100

Figure 3: Comparison of the different heuristics for LAPLACE problem with speed equals to 10,11

and 12

10

1le+06

900000

800000

700000

600000

500000

400000

Expected execution time

300000

200000

100000

0 10 20 30 40 50 60 70 80 90 100
Size of the problem

Figure 4: Comparison of the different heuristics for LAPLACE problem with speed equals to
100,101 and 102

5.4 Fork — Join problem

Consider the results shown in Figures 17 to 21. The main fact is that the communication-
computation ratio and the standard deviation of the speed does not affect the results. Indeed,
the first four graphics present very similar results. The BIL and the PCT heuristics have the best
results. They balance very well the work of the different processors by using all the ressources of
the architecture. Once again, HEFT and CPOP give all the computations to a single processor.
They obtain the makespan of a sequential schedule. The G DL algorithm present better results than
HEFT and CPOP but the gain is very low. However, when the number of processor increases,
the results of GDL are better but remain worse than those of PC'T' and BIL. Indeed, the expected
execution time given by PCT or BIL is around 3 times better than for the GDL heuristic. Once
again, the number of processors does not affect the results of CPOP and HEFT.

6 Conclusion

In this paper we focused on different heuristics for the task scheduling problem on heterogeneous
platforms which are : the minimum Partial Completion Time static priority algorithm (PCT),
the Best Imaginary Level (BIL) algorithm, the Heterogeneous Earliest Finish Time (HEFT), the

11

1.6e+06 T T T T T T T T —
bil ——
gdl —=—
CpOp —k—
1.4e+06 heft = —
pct
1.2e+06 1
(O]
E 1e+06 |
c
S
5
o
g 800000 .
(&)
©
9
D
o 600000]
>
L
400000 1
200000 " .
0 . ! ! ! ! ! ! I
0 10 20 30 40 50 60 70 80 90 100

Size of the problem

Figure 5: Comparison of the different heuristics for LAPLACE problem with speed equals to
100,150 and 200.

12

250000

200000

150000

100000

Expected execution time

50000 —

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Number of processors

Figure 6: Impact of the number of processors for LAPLACE problem. The speed of the k"
processor is 100 + &

Critical Path On a Processor (CPOP) and the Generalized Dynamic Level (GDL) algorithm. None
of these heuristic presents good results in all testbeds. Some of them (HEFT and CPOP) are
bad for very regular problems (each node of the task graph is on a critical path LAPLACE,
STENCIL, Fork — Join) and pretty good in the other cases. BIL is very good for LAPLACE
and Fork — Join problems but relatively bad for STENCIL and LU problems. PCT is the best
for the Fork — Join problem and is quite good for the LU problem. Finally, GDL never present
good results, however, it is never the worst heuristic. It appears that the STENCIL problem
is one of the most difficult to solve (with LAPLACE) and none of the five heuristics is able to
efficiently solve this problem.

References

[1] Ph. Chretienne. Task scheduling over distributed memory machines. In M. Cosnard, P. Quinton,
M. Raynal, and Y. Robert, editors, Parallel and Distributed Algorithms, pages 165-176. North
Holland, 1989.

. Maheswaran an . J. Silegel. ynamic matching and scheduling algorithm for hetero-
2] M. Mah d H. J. Siegel. A d i hing and scheduling algorithm for h
geneous computing systems. In Seventh Heterogeneous Computing Workshop. IEEE Computer

13

120000 T T T T T T T T

bil —+—

100000

80000

60000

Expected execution time

40000

20000

0 10 20 30 40 50 60 70 80 90 100
Size of the problem

Figure 7: Comparison of the different heuristics for LU problem with speed equals to 1,2 and 3

Society Press, 1998.

[3] Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous processors. In
Proceedings of Europar’96, volume 1123 of LNCS, Lyon, France, August 1996. Springer Verlag.

[4] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems,
4(2):175-187, 1993.

[5] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous proces-
sors. In Eighth Heterogeneous Computing Workshop. IEEE Computer Society Press, 1999.

14

1.2e+06

le+06

800000

600000

Expected execution time

400000

200000

bil —+—

20

30

40 50 60
Size of the problem

70

80

90 100

Figure 8: Comparison of the different heuristics for LU problem with speed equals to 10,11 and 12

15

Expected execution time

1.2e+07

le+07

8e+06

6e+06

4e+06

2e+06

bil —+—

20

30

40 50 60
Size of the problem

70

80

90

100

Figure 9: Comparison of the different heuristics for LU problem with speed equals to 100,101 and

102

16

Expected execution time

1.2e+07

le+07

8e+06

6e+06

4e+06

2e+06

bil —+—

20

30

40 50 60
Size of the problem

70

80

90

100

Figure 10: Comparison of the different heuristics for LU problem with speed equals to 100,150 and

200.

17

1.6e+06 T T T T T T T T

bil —+—

1.4e+06

1.2e+06

1e+06

800000

600000

Expected execution time

400000

200000

0 10 20 30 40 50 60 70 80 90 100
Number of processors

Figure 11: Impact of the number of processors for LU problem. The speed of the k' processor is
100 + &

18

30000

25000

20000

15000

Expected estimation time

10000

5000

40 50 60
Size of the problem

80

90

100

Figure 12: Comparison of the different heuristics for STENCIL problem with speed equals to 1,2

and 3

19

120000

100000

80000

60000

Expected estimation time

40000

20000

10

40 50 60
Size of the problem

70

80

90

100

Figure 13: Comparison of the different heuristics for STENCIL problem with speed equals to 10,11

and 12

20

1le+06 T

900000 [

800000 [~

700000

600000

500000 -

400000

Expected estimation time

300000 -

200000 -

100000

0 - - 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of the problem

Figure 14: Comparison of the different heuristics for STENCIL problem with speed equals to
100,101 and 102

21

1.6e+06

1.4e+06

1.2e+06

1e+06

800000

600000

Expected estimation time

400000

200000

Figure 15: Comparison
100,150 and 200.

20 30 40 50 60 70 80 90 100
Size of the problem

of the different heuristics for STENCIL problem with speed equals to

22

260000

240000

220000

200000

180000

160000

140000

120000

Expected estimation time

100000

80000

60000

40000 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Number of processors

Figure 16: Impact of the number of processors for STENCIL problem. The speed of the k"
processor is 100 + &

23

110

100

90

80

70

60

50

40

Expected estimation time

30

20

10

bil ——
gdl ---x---
cpop ---*----

40 50 60
Size of the problem

70

80

90

100

Figure 17: Comparison of the different heuristics for Fork-Join problem with speed equals to 1,2

and 3

24

1100

1000 -

900

800 -

700 -

600 -

500

400 -

Expected estimation time

300 -

200 ~

100

Figure 18
and 12

10 20 30 40 50 60 70 80 90 100
Size of the problem

: Comparison of the different heuristics for Fork-Join problem with speed equals to 10,11

25

11000

10000

9000

8000

7000

6000

5000

4000

Expected estimation time

3000

2000

1000

40 50 60
Size of the problem

70

80

90

100

Figure 19: Comparison of the different heuristics for Fork-Join problem with speed equals to 100,101

and 102

26

11000

10000

9000

8000

7000

6000

5000

4000

Expected estimation time

3000

2000

1000

40 50 60
Size of the problem

70

80

90

100

Figure 20: Comparison of the different heuristics for Fork-Join problem with speed equals to 100,150

and 200.

27

Expected estimation time

5500

5000

4500

4000

w
a1
o
o

T
bil —— é
- ”g’dl'”:’;’:)’(:l’, T
Cpop ---%---
heft &
pct —-m—

40 50 60
Number of processors

70

80

90

100

Figure 21: Impact of the number of processors for Fork-Join problem. The speed of the k" processor
is 100 + k

28

