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Abstract

We apply tiling groups and height functions to tilings of regions in
the plane by Wang tiles(squares with colored boundaries) where the
colors of shared edges must match. We define a set of tiles as unam-
biguous if it contains all tiles equivalent to the identity in its tiling
group. For all but one set of unambiguous tiles with two colors,
we give efficient algorithms that tell whether a given region with
colored boundary is tileable, show how to sample random tilings,
and how to calculate the number of local moves or “flips” required
to transform one tiling into another. We also analyze the lattice
structure of the set of tilings, and study several examples with three
and four colors as well.

Keywords: Tiling, Height function, Wang tiles

Résumé

Nous utilisons les groupes de pavages et fonctions de hauteur pour
les pavages de régions du plan par des tuiles de Wang, qui sont des
carrés aux cotés colorés (nous voulons que les cotés partagés par
deux carrés aient la méme couleur). Nous définissons un ensemble
de tuiles commme étant non-ambigii s’il contient toutes les tuiles
équivalentes 1'identité dans son groupe de pavage. Pour tous ces en-
sembles de tuiles bicolores, sauf un, nous donnons des algorithmes
efficaces pour dire si une région donnée peut étre pavée, montrer-
comment choisr aléatoirement un pavage, et comment calculer le
nombres de transformations locales (”flips”) nécessaires pour pas-
ser d'un pavage un autre. Nous analysons aussi la structure de
treillis de 'espace de pavages, et étudions plusieurs exemples avec
trois ou quatre couleurs.

Mots-clés: pavage, fonction de hauteur, tuile de Wang
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Abstract

We apply tiling groups and height functions to tilings of regions in the plane by
Wang tiles, which are squares with colored boundaries where the colors of shared edges
must match. We define a set of tiles as unambiguous if it contains all tiles equivalent to
the identity in its tiling group. For all but one set of unambiguous tiles with two colors,
we give efficient algorithms that tell whether a given region with colored boundary is
tileable, show how to sample random tilings, and how to calculate the number of local
moves or “flips” required to transform one tiling into another. We also analyze the
lattice structure of the set of tilings, and study several examples with three and four
colors as well.

1 Introduction

Tilings of the plane with Wang tiles [1, 8] have been studied in computer science since
the famous result of Berger [4] that the problem of whether we can tile the infinite plane
using a given set of Wang tiles is undecidable. This paper focuses on tilings of a given
finite region with colored boundary. This is a well-known NP-complete problem [15, 10] and
we intend to tackle the subproblem in which the number of colors is fixed. Our approach
is algebraic: we use the tiling groups of Conway and Lagarias [7], and height functions,
introduced by Thurston [26] and independently in the statistical physics literature (see [6]
for a review). These ideas were used and generalized by Kenyon and Kenyon [13], Rémila [23,
25], Propp [21], and others, for the problem of tiling planar regions with different types of

*This work was partially supported by programs FONDECYT 1990616 (I.R.), FONDAP on Applied
Mathematics and ECOS, and the Sandia University Research Program (C.M.)



polyominoes or simple polygons. Our work is, to our knowledge, the first time Wang tiles
have been addressed with these techniques.

We define a set of tiles as unambiguous if a certain algebraic condition is both necessary
and sufficient for single tiles. For all but one unambiguous set of two-color tiles, we give a
polynomial-time algorithm to tell whether a given region with given colors on its boundary
is tileable. We also study the structure of the set of tilings under local “flips” that change
the color of a few interior edges, and show that this is either a distributive lattice or a
hypercube. In particular, this graph is connected, i.e. any tiling can be turned into any
other with a series of flips, and we give a formula for the minimum number of flips necessary
to do so. In several cases, these tilings turn out to be equivalent to familiar systems with
height functions, such as domino tilings and Eulerian orientations. We can then apply the
techniques of Luby, Randall and Sinclair [16] and Propp and Wilson [22] to sample random
tilings in polynomial time.

We finish by carefully studying a set of tiles with three colors, and by noting that some
sets of three- and four-color tiles possess two- and three-dimensional height functions. We
also note that several sets of tiles are isomorphic in the sense that there is a natural bijection
between pairs of tilings and boundary conditions, even though their tilings groups are not
isomorphic.

2 The tiling group

Let A be the square lattice of the Euclidean plane R*. A (finite) region P of A is a (finite)
union of closed square cells of A. A region P is said to be a polygon if its interior and its
complement R? \ P are both connected.

A Wang tile is a square of side one with colored edges. An assignment of Wang tiles to
the cells of a polygon P corresponds to a tiling if tiles on neighboring cells have the same
color along their common edge. Throughout the paper, the “boundary conditions” of a tiling
will include not just the shape of the region, but the colors on its boundary.

Let S be a set of Wang tiles constructed with two colors, Blue and Red. Let P be a
polygon with colors B and R on the edges of its boundary. We study the problem of finding
a tiling of P using the tiles of S in such a way that the colors of the boundary condition are
satisfied.

Let W = {wy, we, w3, wy, ws, ws} be the set of all Wang tiles with two colors. i.e.

W Vo W
~= = ~=
B R B
B B R R R R
B R B
R B R
R B R B B R
B B R
—r —r —r
W W W



Note that we allow these tiles to be rotated. A subset {w,,,---,w,, } € W will be denoted
by Wy, ..x, -

To solve the tiling problem for particular subsets of W, we start by introducing an
orientation of the edges of A. First, we will assume that the squares of A are colored black
and white like a checkerboard. We orient the edges of A so that they go clockwise and
counterclockwise around black and white squares respectively, so that an ant going along an
edge will have a white square on its left and a black square on its right.

Whenever we have a tiling T of a polygon P with tiles in W, the colors of the edges of
P will be either B or R. Let us write a symbol b whenever we move along a blue edge with
the orientation, and b~! when we move against it. Similarly, we write r and r~! for moving
along a red edge. To every tiled polygon P with colored edges we can associate a contour
word w € {b,7,b~!,r~'}* starting from any external vertex and following a path around the
boundary of P. Let S C W and let v be the set of contour words of the tiles in S. Then
the tiling group Gg = (b, r|v) is the free group modulo the relations w = e for each contour
word w € v. This can also be written as a factor Gg = (b, ) /Ng where Ng is the normal
subgroup generated by the contour words in v and their conjugates.

Note that uv = e if and only if vu = e, and that for square two-color tiles, every mirror
image is also a rotation. Thus it doesn’t matter where we start on a tile, or in which direction
we go around it, to define its contour word; we obtain the same tiling group Gg. On the
other hand, for three or more colors, we would have to explicitly allow reflections as well as
rotations.

Now that we have defined the tiling group for tiles with colored edges, we make several
observations. First, any tiling 7" of a polygon P with a set of tiles S corresponds to a tiling
function fr :'V — Gg, where V is the set of vertices in P or on its boundary. We do this
by first fixing f on a particular vertex, say fr(xo) = e, where xq is the leftmost vertex of
the bottom of P. We then define f inductively as follows: If we have already assigned an
element € G5 to a vertex v and if the oriented edge (v, u) € P is colored with B (resp. R),
then set fr(u) = xb (resp. fr(u) = xr). Similarly, if (u,v) € P is colored B (resp. R) then
set fr(u) = b~ (resp. zr~'). Thus moving along the arrows, or against them, changes the
value of fr(v) by b, r, b1, or r— 1.

If r # b in G5 then the map from tilings to tiling functions is invertible, since we can get
the color of any edge in 1" by comparing fr at its ends.

[t is easy to prove by induction on the number of cells that fr(v) is well-defined; it is
single-valued since going around any single tile gives a contour word which is equivalent to
the identity of G's. The same observation gives

Proposition 1 (Conway’s criterion) If a polygon P with a colored boundary admits a
tiling with a set of tiles S, then its contour word is equivalent to the identity in Gg.

The converse of this proposition is obviously false for some sets of tiles, even for regions
consisting of a single cell! This leads us to the notion of an unambiguous set of tiles. A set S
is unambiguous if the converse of Conway’s criterion is true for single cells, i.e. a tile belongs
to S if and only if its contour word is e € G.

For instance, if S is unambiguous then it cannot contain two tiles which differ only in
the color of a single edge unless S = W, since dividing the contour word of one of these tiles



by the other gives r = b.
These and similar considerations easily show that the unambiguous subsets of W are the
singletons, Wi, Wis, Was, Wi, Was, Wiy, Wie, Wigs, Wioa, Wiggs, and W. These are the

sets of tiles we will focus on next.

Proposition 2 Conway’s criterion is sufficient for a set of tiles S if and only if (1) S is
unambiguous and (ii) For any three colors x,y, z, there is at least one color w such that the
tile with edges x,y, z, w (going, say, counterclockwise) is in S.

Proof. To prove the first direction, making Conway’s criterion sufficient for single squares
is the definition of unambiguity. Since the contour word of the domino shown in the figure
below is zz 'y 'z lzy = e, sufficiency implies that it must be tileable, meaning that there
must exist a color w for the interior edge. To prove the converse, note that if the second
condition holds, we can take any polygon, start at the boundary, and repeatedly choose
cells which can be removed while keeping the region simply-connected as in Muchnik and
Pak [19]. Since each such cell has at most three of its edges set by the boundary conditions,
condition (ii) allows us to place a tile there and remove it from the region, until only one
cell remains. This cell is tileable if and only if it is in S, which if S is unambiguous means
if and only if Conway’s criterion holds. O

X X

It is easy to see that this rules out all sets except Wsg, Wigss, and W, for which the
reader can easily check both conditions. We discuss these further below.

3 Unambiguous two-color tiles

3.1 Trivial cases

For Wy, Wy, W3, Wy, Wia, Wiz, W3 and Wia3, a polygon has at most one tiling, and if it
exists we can find it in time proportional to the area. This is because for all these sets the
tile is determined by the colors of two adjacent edges, so we can start at a corner of P and
scan, say, left to right and top to bottom.

Trivially any polygon can be tiled if S = W, and Conway’s criterion is trivially sufficient
with Gy = Z4. We note as well that the number of such tilings is 2™ where m is the number
of edges in the interior of P. If we define a local flip as changing the color of an edge (and the
two tiles on either side of it), then the set of tilings has the structure of an m-dimensional
hypercube. We will see below that similar structures can be found for other unambiguous
sets of tiles.



3.2 A tiling group with eight elements: W55 and W93y

Proposition 2 shows that Conway’s criterion is sufficient as well as necessary for Wsg and
Wiass. This gives us a linear-time algorithm for tileability: simply calculate P’s contour
word and compare it to the identity.

The tiling group of Wise is (b, r|b?r,r3b). Since b*r = e, we have r = b3, and since
b=r"3 =17, the group is isomorphic to Zg with (say) b =1 and r = —3. For W34, on the
other hand, since brbr = bbrr = e we have br = rb, and since b* = r* = b*r? = ¢, the tiling
group is isomorphic to Z4 ® Zy with (say) r = (1,0) and b = (1, 1).

Although their tiling groups are not isomorphic, there is a simple bijection between tilings
with the two sets. By flipping the colors of the horizontal edges on the even-numbered rows
(say), we change one edge of each tile, transforming tiles in Wjq to tiles in Wiy34 and vice
versa. This may also change some of the colors on the boundary, so this is actually a bijection
between pairs (P,T) where P is a region with colored boundary and T is a tiling of it.

There is also a simple bijection between these and assignments of two colors, say yellow
and green, to the vertices of P. If we color an edge red if its two vertices are the same color
and blue if they are different, we obtain tilings with the set Wi934. This also shows that, once
the colors on P’s boundary are chosen, the number of tilings is 2¥ where & is the number of
vertices in the interior of P. The local flip changes the color of a vertex and thus the four
edges and the four tiles around it, and the graph of tilings forms a k-dimensional hypercube.
This gives a trivial algorithm for sampling random tilings, by flipping & independent coins.

3.3 Infinite groups and height functions

The use of height functions for tilings was introduced by Thurston [26], and since then have
been applied to several sets of polyominoes and polygons. They had been found indepen-
dently in statistical physics, and have been applied to ice models, antiferromagnets, and
Potts models (see e.g. [3, 6]). We will see that they can be applied to some sets of Wang
tiles as well.

The idea is to transform the tiling function fr to an integer height at each vertex, by
composing it with an appropriate function z : Gg¢ — Z and writing hry = z o fr. Then we
can define a partial order on the set of tilings of a particular polygon with colored boundary,

TT <= YveP:hr(v)<hp(v)

The height function typically possesses the following properties, which will help us solve
tiling problems:

e Given the boundary conditions, there is a one-to-one relation between tilings and height
functions.

e Local flips can be applied at local extrema of hr in the interior of P, and can connect
any tiling to any other with the same boundary conditions.

e With respect to =<, the the set of tilings is a distributive lattice. In particular, there
are minimal and maximal tilings | and T.



e | is convex, i.e. h; has no local maxima in the interior of P.

The distributive lattice structure will help us in several ways. Since there exists a tiling
iff there exists a minimal tiling and the heights of the vertices of the boundary are given by
the boundary conditions, this will give us a straightforward algorithm for tileability. We will
also have an algorithm to compute the shortest way to pass from a tiling to another one by
flips. Finally, the technique of coupling from the past will allow us to sample random tilings
in polynomial time [16, 22].

3.3.1 W5 and dominoes

It is easy to see that if S is the singleton W5 we have domino tilings, where blue edges are
the boundaries of dominoes and red edges cross their interiors. The tiling group (b, 7|b*r)
is isomorphic to Z with b = 1 and r = —3. Thus we can take the height function hy = fr
where z is simply the identity. If the perimeter of P is blue, Conway’s criterion simply checks
that there are an equal number of black and white squares in P. We already know from
Proposition 2 that this criterion is not sufficient. To discuss the lattice structure of the set
of tilings we will follow [24] and omit the proofs.

A local flip can be applied at a vertex v when its two incoming edges have the same color,
and its two outgoing edges have the same color. Equivalently, a flip consists of exchanging
two horizontal dominoes for two vertical ones or vice versa. It is easy to see that a flip is
possible at v if and only if v is a local extremum of the height function. Since this flip changes
the color of all four edges around a vertex, it can only be applied at a vertex in the interior
of P. We call a flip upwards if it transforms a local minimum to a local maximum and
downwards if it does the reverse. The reader can check that these flips increase or decrease
hT(’U) by 4.

Recall that a lattice [5, 9] is a set equipped with a partial order, where any two elements
a and b have a unique infimum a A b and a unique supremum a V b. A lattice is distributive
ifav(bAe)=(aVbd A(aVe)and aA(bVe) = (aAb)V (aAc). Viewing the set as a
directed acyclic graph, it follows that any pair of directed paths between two points (which,
if a path exists, are comparable) have the same length.

Standard arguments then allow us to prove the following properties of the partial order
=< defined above:

Proposition 3 (Flips and order) For any pair of tilings T and T' of the same polygon
P with the same colored boundary, T < T" if and only if T" can be obtained from T by a
sequence of upwards flips.

Proposition 4 (Lattice structure) If a polygon P is tileable then, with respect to the
order <, the graph of tilings is a distributive lattice. In particular, there is a unique minimal
tiling L.

Proposition 5 (Convexity) Let P be a tileable polygon and let L be its minimal tiling.
Then h, has no local maximam in the interior of P.



Proposition 6 (Flip formula) For any pair of tilings T and T" with the same boundary
conditions, the minimal number of flips to pass from T to T" is (1/4) >, |hr (v) — hp(v)].

Combining Propositions 4 and 5 gives the following algorithm, which either constructs
the minimal tiling or confirms that the region is not colorable:

e (Calculate the heights of vertices on the boundary. If Conway’s criterion is not satisfied
then the region is not tileable. Otherwise repeat the following steps until the region is
completely tiled.

e Whenever all four corners of a cell have an assigned height, place the appropriate tile
there and remove that cell from the region. If no tile is consistent with these heights,
halt and conclude that the region is not tileable.

e Find a vertex v with maximum height A, on the current boundary; it has a neighbor
w whose height has not yet been assigned. Since hA; may not have local maxima in the
interior, set b (w) smaller than Ay, either to hpax — 1 01 Agay — 3 depending on the
orientation of the edge from v to w.

If we remove cells at P’s boundary whenever one of their edges is red, tilings with Wi
correspond exactly to domino tilings of the remaining region. We can then use the results
of Propp and Wilson [22] and Luby, Randall and Sinclair [16] to sample perfectly random
tilings in time polynomial in the area of P.

3.3.2 Wy, Wis, and Eulerian orientations

The tiling group of Wsy is (b, 7|brbr, b*r?), which is isomorphic to Z with b = +1 and r = —1.
Once again we can take hy = fr as our height function. We have all the same tools as in the
previous example, except that now for any pair of neighbors u, v we have |hy(u) —hy(v)| = 1.
This is recognizable as the height function for Eulerian orientations of the dual lattice, called
the siz-vertex ice model by physicists [3]. This is also equivalent to the height function for
three-colorings of the square lattice, and to alternating-sign matrices [20]. The algorithm for
tileability is completely analogous to that for the domino tiling W5, except that we always
set the height of the neighboring vertex to Ama., — 1. The progress of the algorithm is shown
in Figure 1; it either constructs the minimum tiling, or arrives at a contradiction where two
neighboring vertices have heights differing by more than 1, violating the definition of the
height function and proving that the region is not tileable.

For Wia4, the tiling group (b, 7|b*, r*, b*r?) is more complex. However, by imposing the
additional relations b*> = 2 = e we can obtain a simple quotient for it, the free group on two
generators of order 2, which has the following Cayley graph:

b r b r

b r b br
b r b r
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Figure 1: The progress of the tiling algorithm for W34, or equivalently Eulerian orientations
of the grid, which constructs the minimal tiling or shows that none exists.



While this is not isomorphic to Z it clearly has the same “shape” as Z. We can define a height
function hy = z o fr with the following z, taking advantage of the fact that if r?> = b? = e
every element can be written as a word w of alternating r’s and b’s:

z(w) = |w]|if w begins with b

z(w) = —|w]|if w begins with r

Then the same results follow as for Wsy.

Just as for Wsg and Wias4, there is a simple bijection between tilings with W3, and those
with W94 even though their tiling groups are not isomorphic. If we flip the colors of all the
horizontal edges (say), each tile in W34 becomes one in Wi, and vice versa. Composing this
with the bijections shown above gives a simple bijection between Wiy, tilings and Eulerian
orientations.

As in the previous case, the techniques of [16, 22| can be used to sample random tilings
in polynomial time.

3.4 The curious case of Wi

The set Wig (and its symmetry partner Wos) is the only unambiguous two-color set which
remains unsolved. Its tiling group (b, r|b*, r3b) is isomorphic to Z;, with b = 3 and r = —1.
Thus its tiling group is finite; however, Conway’s criterion is not sufficient.

By lifting from Zi5 to Z we see that the number of w; tiles on white squares minus the
number of w; tiles on black squares is an invariant, since for a polygon P this is n/12 where
n is the integer corresponding to P’s contour word. Notice that, for each vertex, the tiling
function has three possible values, since fr(v) is equivalent mod 4 to the length of a path
from the origin vertex to v.

We leave as an open problem whether there is a polynomial-time algorithm to tell whether
a given polygon can be tiled with Wy4. The reader may enjoy showing that a region with red
boundary is tileable if and only if it can be tiled by dominoes and X-pentominoes. It seems
likely that such tilings are NP-complete for non-simply-connected regions using constructions
similar to Moore and Robson [18].

4 Examples with more colors

4.1 Height functions on Cayley trees

In this section we show that the notion of height function can also be used for some Wang tiles
with three (or more) colors. While the height function is more complex, it still gives us an
efficient algorithm to determine whether a region is tileable. Our example is a generalization
of Wia4, where each tile has at most two colors, and where every colored edge shares a vertex
with another edge with the same color. The set V is the following:



B B R R G G
B R G
R G G

B R R G B G
B R B

Taking our colors to be Red, Green and Blue, with the associated generators r, g and b, then
the tiling group is (r, g, b|r?g?, g?b%,b*r?) (note that these relations imply r* = g* = b* = ¢)
and this appears to be quite complex. Luckily, there is a simple quotient which does not
create any ambiguity, namely G = (r, g,b|r? g%, b*). Tts Cayley graph T'(G) has a tree
structure (if opposite arrows are identified) as shown in Figure 2, and a height function can
be constructed from the following axioms:

e For every n > 0, z((br)") = —2n and z((br)"b) = —2n — 1.

e For each element = of GG, there exists a unique neighbor pg(z) of z, called the G-
predecessor of x, such that z(pg(x)) = z(xz) — 1. For the other two neighbors y of z,
we have z(y) = z(z) + 1.

These imply, for instance, that if w is a word in {r, g,b} where no two adjacent letters
are the same, then

z(w) = |w|if w begins with r or g
z(w) = |w|—4n if w begins with (br)"g
z(w) = |w|—4n — 2 if w begins with (br)"bg

To define a partial order on G, we say that x <s y if there exists a finite sequence
of elements of GG, starting with x and finishing with y, such that the predecessor in the
sequence is the G-predecessor as defined above. If we define the index of any element z € G
as h(x) mod 2, then the partial order < induces an order <; on each of the two index
classes. Each element v has a unique predecessor in its index class, p;(z) = pg(pg(x)).

For each pair z,y of elements with the same index i, we define inf;(x,y) as the infimum
of x and y with respect to <;. Notice that inf;(z,y) is not always equal to the infimum
infg(x,y) with respect to <g, since the latter might be in the other index class, in which
case inf;(z,y) = pe(infe(x,y)). Note also that hr(v) is equivalent mod 2 to the length of
any path from the origin vertex to v, so fr(v) and f7+(v) are in the same index class for any
two tilings T, T" of the same region.

A local flip changes the colors around a fixed interior vertex v. This can only happen
if all the edges linking v to its neighbors have the same color, which means that the height
function has a local extremum at v.

As before, we define a partial order on tilings by 7" < T" if fr(v) <g fr/(v) for all v
(which implies fr <; fr» and hy < hyr). We also define a distance between elements of G:
for z,y € G, let d(z,y) be the length of the shortest path between them, using the generators
r, g and b. Then define the distance between two tilings as d(T,7") = Y, d(fr(v), fr:(v)).
Note that if 7" and 7" are comparable, we have d(T,T") = > |hp(v) — hyv|.
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Figure 2: The Cayley tree I'(G) for the three-color tiling, and the height function z.

Proposition 7 (Flips and order) For any pair of tilings T and T with the same boundary
conditions, T < T" if and only if T can be obtained from T' by a sequence of downwards flips.

Proof. By induction on d(T,T"). Take a vertex v such that hy(v) > hr(v), where v is
a local maximum of hg (note v is an interior vertex). Then hg(u) = hp(v) —1 and
fr(u) = pa(fr(v)) for all neighbors u of v. Thus 7' can be flipped downwards at wv,
inducing a tiling 7" such that fr«(v) = p;(fr(v)) where i is the index of fr(v). We have
T < T" < T, and d(T,T") = d(T,T") — 2. This gives the result by induction, until
d(T,T") =0 and T = T". O

Recall that an inferior semi-lattice is similar to a lattice, but with only the infimum of
two elements a A b guaranteed to be unique. Then:

Proposition 8 (Inferior semi-lattice structure) If a polygon P is tileable then the graph
of tilings with respect to =< is a inferior semi-lattice, where the tiling function of T" = T AT’
is given by frn = inf;(fr, fr) at each vertex.

Proof. We have to prove that fr» = inf;(fr, fr/) is a valid tiling function. Note that if u,v
are neighbors (by which we mean that the edge connecting them is in P) then their values of
the tiling function are neighbors in I'(G), i.e. either fr(u) = p(fr(v)) or fr(v) = pa(fr(u)),
and similarly for 7’. Therefore, we need to show that fr»(u) and fr(v) are neighbors in
I'(G).

We have two cases up to symmetry. If fr(u) = pe(fr(v)) and fr(u) = pe(fr(v)),
then if fr(v) and fr/(v) are comparable, then frv(u) = pa(fr«(v). If fr(v) and fr(v) are
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incomparable, then infq(fr(u), fr(v)) = infe(fr(v), fr(v)), in which case either fr(u) =
pa(fre(v)) or fru(v) = pa(fre(u)) using the relationship between infs and inf; stated above.
The other case, in which fr(u) = pe(fr(v)) and fr(v) = pe(fr(u)), can be analyzed
similarly.

Thus the pointwise infimum of fr and f7» with respect to <; is a tiling function, and the
corresponding tiling 7" is clearly the unique infimum of 7" and 7" with respect to <. O

This also implies that there is a unique minimal tiling 1, which has the same properties
as in the simpler cases above:

Proposition 9 (Convexity) Let P be a region tileable with tiles in V' and let L be its
manimal tiling. Then h, has no local maxima in the interior of P.

Proof. Suppose that for 1 we have an internal vertex v such that A, (v) is a local maximum.
Then flipping v downwards would give a new tiling 7" < L, a contradiction. O

This gives us an efficient algorithm for constructing the minimal tiling and confirming
tileability similar to that of Section 3.3.1, except that we set f, (w) = pg(fmax). We also
have:

Proposition 10 (Flip formula) For any pair of tilings T and T" satisfying the same bound-
ary condition, the minimal number of flips to go from T to T' is (1/2)d(T,T").

Proof. We use the method of [25]. Clearly, (1/2)d(T,T") is a lower bound for the number
of necessary flips since flipping at v changes d(T,T") by zero or +2. Now take an interior
vertex v such that fr(v) # fr(v) and sup(hr(v), hy(v)) is locally maximal. We assume
w.l.o.g. that sup(hz(v), hy(v)) = hp(v), in which case fr(u) = pg(fr(v)) for each neighbor
u of v. Then T can be flipped at v, moving fr(v) towards fr(v) in I'(G) and giving a tiling
T" such that d(T",T") = d(T,T") — 2 (notice that this flip either reduces the height of v or
keeps it the same, changing fr(v) but not hy(v)). This gives the result by induction. O

Note that we have actually defined one height function in an uncountably infinite family
of them, where the height decreases along one path (in this case (br)*) and increases along
all others. Each of these induces a different partial order, and for each computable one we
have an algorithm similar to that above to find the minimal tiling with respect to it.

4.2 Higher-dimensional height functions

As another example, consider the set V' of four-color Wang tiles where a tile is in V' if and
only if each color appears once on its boundary. The tiling group Z*/{1,1,1,1} is Abelian
and infinite, and is isomorphic to the body-centered cubic lattice with the four generators
(+1,+1,+1), (+1,-1,-1), (=1,+1,—1), and (—1,—1,+1). This corresponds to a three-
dimensional height function. Similarly, three-color triangular tiles have a two-dimensional
height function Z3/{1,1,1} isomorphic to the triangular lattice, and six-color hexagonal tiles
have a five-dimensional height function.
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All these tilings are equivalent to edge k-colorings of the dual lattice (the square, hexag-
onal, and triangular lattices respectively) where k is equal to the dual lattice’s degree. Edge
3-colorings of the hexagonal lattice are also equivalent to vertex 4-colorings of the triangular
lattice, and were studied by Baxter [2], Huse and Rutenberg [12], and Moore and New-
man [17]. Edge 4-colorings of the square lattice were studied by Kondev and Henley [14].
None of these tilings are connected under local moves, but they are connected under “loop
moves” where we choose two colors, find a loop consisting of edges with those two colors,
and switch the colors along the loop. Little is known about the mixing time of the resulting
Markov chain; the techniques of [16, 22] appear not to apply, since these non-local moves
make it hard to define a monotonic coupling. We suggest this as an area for future research.
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