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Abstract

Several proof�assistants rely on the very formal basis of Pure Type Systems� However� some
practical issues raised by the development of large proofs lead to add other features to actual
implementations for handling namespace management� for developing reusable proof libraries
and for separate veri�cation of distincts parts of large proofs� Unfortunately� few theoretical
basis are given for these features� In this paper we propose an extension of Pure Type Systems
with a module calculus adapted from SML�like module systems for programming languages� Our
module calculus gives a theoretical framework addressing the need for these features� We show
that our module extension is conservative� and that type inference in the module extension of a
given PTS is decidable under some hypotheses over the considered PTS�

Keywords� Module systems� PTS� higher�order type systems� subject�reduction� normalization� type in�
ference

R�esum�e

Plusieurs assistants de preuves sont fond�es sur les Syst�emes de Types Purs �PTS�� Cependant� des
consid�erations pratiques provenant du d�eveloppement de grandes preuves conduisent �a ajouter
aux impl�ementations des m�ecanismes permettant une gestion rationnelle des noms� le d�eveloppe�
ment de biblioth�eques de preuves r�eutilisables� et la v�eri�cation s�epar�ee des di��erentes parties
d	un gros d�eveloppement� Alors que la correction des PTS utilis�es est th�eoriquement bien fond�e�
ces m�ecanismes sont en revanche peu �etudi�es� alors qu	ils peuvent mettre en p�eril la correction
de l	ensemble de l	outil de d�emonstration� Pour r�epondre �a ce probl�eme� nous proposons dans
ce rapport une extension des PTS par un syst�eme de modules similaire �a celui de SML pour le
langage de programmation ML� Notre syst�eme de modules donne un cadre th�eorique rigoureux
pour l	�etude des m�ecanismes que nous avons cit�es� Nous montrons que l	extension propos�ee est
conservative� et que l	inf�erence de type est d�ecidable moyennant quelques hypoth�eses raisonnables
sur le PTS consid�er�e�

Mots�cl�es� Syst�emes de modules� PTS� syst�emes de types d	ordre sup�erieur� autor�eduction� normalisation�
inf�erence de type
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� Introduction

The notion of Pure Type Systems has been �rst introduced by Terlouw and Berardi 
Bar��
� These systems
are well�suited for expressing speci�cations and proofs and are the basis of several proof assistants 
CCF����
Pol��� MN��� HHP��
� However� there is actually a gap between PTS and the extensions needed for proof
assistants� Indeed� PTS are well�suited to type�theoretic study� but lack some features that a proof�assistant
needs�
A �rst practical expectation when specifying and proving in a proof assistant is for de�nitions� Making a

non�trivial proof or even a non�trivial speci�cation in a proof assistant is often a long run task that would be
impossible if one could not bind some terms to a name� The meta�theoretical study of de�nitions and their
unfolding� although not very di�cult is far from being obvious� it has been achieved for instance in 
SP��
�
Another highly expectable feature when developing large proofs is for a practical namespace management�

Indeed� it is often di�cult to �nd a new signi�cant name for each theorem� In proof�assistants where proofs
can be split across several �les� a partial solution is to represent names as pre�xed by the name of the �le
they are de�ned in� Then� the user may either refer to a theorem by its long name� or give only the su�x
part which refers to the last loaded theorem with this su�x�
Another one is the ability to parameterize a whole theory with some axioms� For instance� when de�ning

and proving sorting algorithms� it is very convenient to have the whole theory parameterized with a set A� a
function ord � A� A� bool� and three axioms stating that ord is re�exive� antisymmetric� transitive� total
and decidable� This feature is implemented in the Coq proof�assistant through the sectioning mechanism

CCF���
� In a given section� one may declare axioms or variables and use them� When the section is closed�
these axioms and variables are discharged� That is� every theorem is parameterized by these hypothesis and
variables� Thus� one does not have to explicitly parameterize every theorem by these hypothesis and variables�
However� this sectioning mechanism is not a de�nite answer� Indeed� it does not allow to instantiate a

parameterized theory� For instance� once the theory of sorting algorithms has been proved� if one wants to
use this theory for a given set and an ordering� one has to give the �ve parameters describing the ordering
each time he needs to use any of the results� In order to have a more convenient way to refer to these results�
we have to imagine a mechanism allowing the instantiation of several results at once�
Finally� proof assistants also raise the problem of separate veri�cation� Thus� in proof�assistants such as

Coq� the veri�cation of standard proof�libraries can take several hours� For the user� this is annoying if the
proof�assistant needs to check them each time the user references them� Therefore� a feature allows to save
and restore the global state of the proof�assistant on disk � thus� standard libraries are checked once� then
the corresponding state is saved� and users start their sessions with this state� But it is not possible to save
all available libraries in a given state� because they would require too much memory� Rather� one would like
to have a way to load only required libraries� but at a reasonable speed� Recently� the Lego and the Coq
proof�assistants allowed to put theories they check into a compiled form� Such compiled forms can be loaded
very fast � several seconds instead of several minutes or hours�

�This research was partially supported by the ESPRIT Basic Research Action Types and by the GDR Programmation
co�nanced by MRE�PRC and CNRS�
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But the possibility of saving proofs in compiled forms is not a true separate veri�cation facility� In fact�
we lack a notion of speci�cation of a proof� Such a notion is desirable for three reasons� The �rst one is this
would provide a convenient way to describe what is proved in a given proof development� The second one
is the user may like to give only a speci�cation of a theory he needs to make a proof� in order to make his
main proof �rst� then prove the speci�cation he needed� The third one is that would help in making proofs
robust with respect to changes� indeed� it is sometimes di�cult to predict whether a change in a proof will
break proofs depending on it� since there is no clear notion of the speci�cation exported by a given �le�
Some theorem provers already address some of these issue� Thus IMPS 
FGT��
 implements Bourbaki	s

notion of structures and theories 
Bou��
� allowing to instantiate a general theory on a given structure at
once� getting every instantiations of theorems� Unfortunately� this notion is well�suited in a set�theoretic
framework but less in a type�theoretic one�
The Standard ML programming language has a very powerful module system 
Mac��
 that allows the

de�nition of parametric modules and their composition� although it does not support true separate com�
pilation� This module system was adapted to the Elf implementation of LF 
HP��
� However� only the
part of the SML module system that was well�understood from the semantic and pragmatic point of view
was adapted� hence leaving out signi�cant power of SML� For instance� the sharing construct of SML had
to be ruled out� This is annoying since this construct allows to express that two structures share a given
component� For instance� it may be useful to make a theory over groups and mono��ds that share the same
base set��

Recent works on module systems however bring hope� Leroy 
Ler��� Ler��
� Harper and Lillibridge 
HL��

presented �cleaner� variants of the SML module system� allowing true separate compilation since only the
knowledge of the type of a module is needed in order to typecheck modules using it� Unfortunately� no proof
of correctness was given for any of these system� thus preventing us to be sure their adaptation to a proof
system would not lead to inconsistency� We gave one in a variant of these systems in 
Cou��
�
However adaptation of these module systems to Pure Type Systems raises the problem of dealing with

��equivalence that appears in the conversion rule of PTS� In this paper� we give an adaptation of the
system of 
Cou��
 to Pure Type Systems� This system applies to the LF logical framework� the Calculus
of Construction 
CH��
� the Calculus of Constructions extended with universes 
Luo��
� We do not deal
with the problem of adding inductive types to these systems� but the addition of inductive types as �rst�
class objects should not raise any problem as our proposal is quite orthogonal to the base language� as few
properties of ��reduction were needed to prove our results� they should also be true in a framework with
inductive types and the associated ��reduction�
The remaining of this paper is organized as follows� we give in section � an informal presentation of the

desired features for a module system� Then� in section �� we expose formally our system� In section � we
give its meta�theory� We compare our system with other approaches in section �� Finally� we give possible
directions for future work and conclude in section ��

� Informal presentation

In order to solve the problem of namespace management� we add to PTS the notion of structure� that is�
package of de�nitions� An environment may now contain structures declarations� These structures can
even contain sub�structures� which may help in structuring the environment� In fact� many mathematical
structures own sub�structures� Thus� the polynomial ring A
X
 over a ring A may be de�ned as a structure
having A as a component� a mono��d homomorphism may be de�ned as a structure having the domain and
the range mono��ds as components� et cetera�
In order to address the issue of robustness of proofs with respect to changes� we introduce a notion of

speci�cation� We require every module de�nition be given together with a speci�cation� A speci�cation for
a structure is a declaration of the objects the module should export� together with their types� and possibly
their de�nitions� The speci�cation of a structure is called a signature of this structure� Then� the only
thing the type�checker knows about a module in a given environment is its speci�cation� The correction of
a development is ensured as soon as for every speci�cation� a module matching this speci�cation is given�

�The mathematical structure of rings is de�ned as the data of a group and a mono��d that share the same base set� and verify
some other conditions �distributivity��
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Let us consider an example� Assume we want to work in the Calculus of Constructions� extended with
an equality de�ned on any set A� �A� Assuming � is any given term of type Set� we can de�ne a mono��d
structure on � � � in the following way�

module M � sig

E � Set � � � �
e � E
op � E � E � E
assoc � �x� y� z � E��op �op x y� y� �E �op x �op y z��
left neutral � �x � E��op e x� �E x
right neutral � �x � E��op x e� �E x
end

� struct

base � �
E � base� base
e � �x � base�x
op � �f� g � base� base��x � base��f �g x��
assoc � � � �
left neutral � � � �
right neutral � � � �
end

This de�nition adds to the environment a module M of the given signature� Signatures are introduced by
the keyword sig� structures by struct� Both are ended by the keyword end�

From inside the de�nition� components are referred to as E� e� op � from outside� they must be referred
to asM�E� M�e� M�op� � � � Notice that base is not visible outside the de�nition ofM since it is not declared
in the signature� Only the de�nition ofM�E is known outside the module de�nition� so that for instance no
one can take advantage of a particular implementation of op� The declaration E � Set � � � � is said to be
manifest since it gives the de�nition of E�

The naming convention M�S�c might become heavy when working on a given module� Therefore� in the
SML module system� there is an open construct such that after an open M � any component c of M can
be referred to as c instead of M�c� However� this is only syntactic sugar� so we will not consider it in our
theoretical study�

Since we wish to handle parameterized theories� we extend the module language in order to allow pa�
rameterized modules� Then� one can develop for instance a general theory T of mono��ds parameterized by
a generic mono��d structure� then de�ne the module TM of the theory of the mono��d M � Parameterized
modules are built through the functor keyword� that is the equivalent of a ��abstraction at the module
level� and of a ��quanti�cation at the module type level�

module T
� functor�M � ��monoid signature���

sig

unique left neutral � �x �M�E���y �M�E��M�op x y� �M�E y�
� �x �M�E M�e�

���
end

� functor�M � ��monoid signature���
struct

unique left neutral � � � �
���
end
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Then one can instantiate the general theory on a given module as follows�

module TM
� sig

unique left neutral � �x �M�E���y �M�E��M�op x y� �M�E y�� �x �M�E M�e�
���
end

� �T M �

Functors are also interesting for the construction of mathematical structures� For instance� the product
mono��d of two generic mono��ds can be de�ned easily through a functor� then instantiated on actual mono��ds�
Finally� before we give a formal de�nition of our system� it should be noticed that a name con�ict can

appear when instantiating a functor� as in ��calculus� ��y�x z�fx� yg is not ��y�y z�� if

f � functor�x � � � ��sig y � � � � z � x�n end

then �f y� is not of type
sig y � � � � z � y�n end

The usual solution in ��calculus is capture�avoiding substitutions that rename binders if necessary� Here� a
�eld of a structure can not be renamed since we want to be able to access components of a structure by their
names� In fact� the problem is a confusion between the notion of component name and binder� Therefore�
we modify the syntax of declarations and speci�cations� declarations and speci�cations shall be of the form
x � y � � � � �or x � y � � � � or x � y � � � � � � � ��� the �rst identi�er being the name of the component and the
second one its binder� This syntax has been proposed by Harper and Lillibridge in 
HL��
� They suggested
pronouncing ��� as �as�� From inside a structure or signature� the component is referred by its binder� and
from outside� it is referred by its name� Then� we avoid name clashes by capture�avoiding substitutions� For
instance� the mono��d previously de�ned could be written�

module M � sig

E � E� � Set � � � �
e � e� � E�

op � op� � E� � E� � E�

assoc � assoc� � �x� y� z � E���op� �op� x y� y� �E� �op� x �op� y z��
left neutral � left neutral� � �x � E���op� e� x� �E� x
right neutral � right neutral� � �x � E���op� x e�� �E� x
end

� � � �

Of course� we shall allow x � t as a syntactic sugar for x � x � t �similarly for x � t��

� A module calculus

We now formalize our previous remarks in a module calculus derived from the propositions of 
Ler��� Ler���
HL��� Cou��
�

��� Syntax

Terms �
e ��� v identi�er

j m�v access to a value �eld of a structure
j �e� e�� application
j �v�e��e� ��abstraction
j �v�e��e� universal quanti�cation

�



Module expressions �
m ��� x identi�er

j m�x module �eld of a structure
j struct s end structure construction
j functor�x�M �m functor
j �m� m�� application of a module

Structure body �
s ��� � j d � s

Structure component �
d ��� term v� � v� � e term de�nition

j module x� � x� � M � m module de�nition

Module type �
M ��� sig S end signature type

j functor�x � M��M� functor type

Signature body �
S ��� � j D � S

Signature component �
D ��� term v� � v� � e term declaration

j term v� � v� � e� � e� manifest term declaration
j module x� � x� � M module declaration

Environments �
E ��� � empty environment

j v � e term declaration
j v � e � e� term de�nition
j module x � M module declaration

Notice that this syntax is an extension of the syntax of pre�terms in PTS� and that this extension is quite
orthogonal to the syntax of these pre�terms� Since we intend to study the reductions of the module calculus�
we shall distinguish ��reductions at the level of the base�language calculus and at the level of the module
calculus� Therefore we call ��reduction the ��reduction at the level of module system� That is� ��reduction
is the least context�stable relation on the syntax such that ��functor�x � M�m�� m�� �� m�fxi � m�g�
We de�ne ��equivalence as the least equivalence relation including the ��reduction�

As for ��reduction� we shall consider it as the least relation on terms such that

��v � e��e� e���� e�fv� e�g

e� �� e�� � �e� e���� �e
�
� e�� e� �� e

�
� � �e� e���� �e� e

�
��

e� �� e
�
� � �v � e��e� �� �v � e

�
��e� e� �� e�� � �v � e��e� �� �v � e��e

�
�

e� �� e
�
� � �v � e��e� �� �v � e

�
��e� e� �� e�� � �v � e��e� �� �v � e��e

�
�

That is� ��reduction of a term can not be performed inside any module expression�
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Context rules �E � ok��
� � ok

E � e � � � � S v 	� E

E� v � e � ok

Typing rules �E � e � e���
E� v � e�E� � ok

E� v � e�E� � v � e

E � ok �c� �� � A

E � c � �

E � e � �� E� v � e � e� � �� ���� ��� ��� � R

E � �v � e�e� � ��

E � e� � �v � e�e
� E � e� � e

E � �e� e�� � e�fv � e�g

E� v � e � e� � e�� E � �v � e�e�� � � � � S

E � �v � e�e� � �v � e�e��

E � e � e� E � e�� � � � � S E � e� � e��

E � e � e��

Term equivalence �E � e � e���

e �� e� E � ok

E � e � e�
e �� e� E � ok

E � e � e�

�congruence rules omitted�

Figure �� PTS rules
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��� Typing rules

Let S a set of constants called the sorts� A� a set of pair �c� �� where c is a constant and � � S� and R a
set of triples of elements of S� The Pure Type System �PTS� determined by the speci�cation �S�A�R� is
de�ned in �gure �� Three kinds of judgments are de�ned� a given environment is well�formed� a given term
is of a given type� and two given terms are convertible� In order to build a module system over this PTS�
we add rules given �gures � and �� that de�ne the following new judgments�

E � M modtype module type M is well�formed
E � m �M module expression m has type M
E � M� 
�M� module type M� is a subtype of M�

E � m � m� �M considered as modules of type M � m and m� are de�ning equal terms

In these rules we make use of the following de�nitions� The �rst one helps in introducing a �eld of a
module in the environment� the second one gives the set of �elds de�ned in a structure body and the third
one gives the set of couples �names�identi�er� appearing in a given structure�

term v � w � e � w � e

term v � w � e � e� � w � e � e�

module x � y �M � module y �M

N �term v � w � e� s� � fvg �N �s�

N �module x � y �M � m� s� � fxg �N �s�

N ��� � 	

BV ��� � 	

BV �term v � w � e
� e�
� s� � f�v� w�g �BV �s�

BV �module x � y �M � s� � f�x� y�g �BV �s�

BV �E� v � e
� e�
� � fvg �BV �E�

BV �E� module x �M � � fxg �BV �E�

Following 
Ler��� Ler��
� one typing rule for modules makes use of the strengthening M	m of a module
type M by a module expression m� this rule is a way to express the �self� rule saying that even if the
component v of a module m is declared as abstract� one knows that this component is equal to m�v� and
may add this information to the type of m� The strengthening operation is de�ned as follows�

�sig S end�	m � sig S	m end

�functor�x �M��M��	m � functor�x �M���M�	m�x��

�	m � �

�D�S�	m � D	m� �S	m�

�term v � w�e�	m � term v � w�e�m�v

�term v � w � e��e��	m � term v � w � e��e�

�module x � y �M �	m � module x � y � �M	m�x�

� Meta�theory

We now give our main theoretical results about our module extension� this extension is sound since it is
conservative� and if type inference is possible in a PTS� it is possible in its module extension�

�



Context formation �E � ok��

E �M modtype x 	� BV �E�

E� module x �M � ok

E � e � e� w 	� BV �E�

E�w � e� � e � ok

Module type and signature body formation �E �M modtype��

E � ok

E � � modtype

E� module x �M � S modtype y 	� N �S�

E � module y � x �M �S modtype

E� v � e � S modtype w 	� N �S�

E � term w � v � e�S modtype

E� v � e � e� � S modtype w 	� N �S�

E � term w � v � e � e��S modtype

E � S modtype

E � sig S end modtype

E �M modtype x 	� BV �E� E� module x �M �M � modtype

E � functor�x �M�M � modtype

Module expressions �E � m �M � and structures �E � s � S��

E� module x �M �E� � ok

E� module x �M �E� � x �M

E � m � sig S�� module x � y �M �S� end

E � m�x �Mfn� m�n� j �n�� n� � BV �S��g

E� module x �M � m �M � E � functor�x �M�M � modtype

E � functor�x �M�m � functor�x �M�M �

E � m� � functor�x �M�M � E � m� �M

E � �m� m�� �M �fx� m�g

E � m �M � E �M � 
�M

E � m �M

E � m �M

E � m �M	m

E � s � S

E � �struct s end� � �sig S end�

E � ok

E � � � �

E � e � e� v 	� BV �E� E� v � e� � e � s � S w 	� N �s�

E � �term w � v � e� s� � �term w � v � e � e��S�

E � m �M x 	� BV �E� E� module x �M � s � S y 	� N �s�

E � �module y � x �M � m� s� � �module y � x �M �S�

Figure �� Typing rules
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Module types subtyping �E �M� 
�M���

E �M modtype E �M � modtype M �� M �

E �M 
�M �

E � sig D��� � � � �D
�
m end modtype E � sig D�� � � � �Dn end modtype

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � �mg E�D�� � � � �Dn � D��i� 
� D
�
i

E � sig D�� � � � �Dn end 
� sig D��� � � � �D
�
m end

E �M� 
�M� E� module x �M� � M �
� 
�M

�
�

E � functor�x �M��M
�
� 
� functor�x �M��M

�
�

E �M 
�M �

E � module x � y �M 
� module x � y �M �

E � e � e�

E � term v � w � e
� e��
 
� term v � w � e�
E � e� � e�� E � w � e��

E � term v � w � e�
� e�
 
� term v � w � e�� � e��

Term equivalence �E � e � e���

E��w � e � e��E� � ok

E��w � e � e��E� � w � e�
E � m � sig S�� term v � w � e�S� end

E � m�v � efn� m�n� j �n�� n� � BV �S��g

E � m�t � T E � m��t � T
m and m� have the same head variable c
for all mi� m�i argument of c in m� m� with type Mi� E � mi � m�i �Mi

E � m�t � m��t

Module equivalence �E � m � m� �M ��

E � m � sig D�� � � � �Dn end

E � m� � sig D�� � � � �Dn end

�i � f�� � � � � ng Di � term v � w � e � e� � E � m�v � m��v
Di � module x � y �M � E � m�x � m��x �Mfn� m�n� j �n�� n� � BV �sig D�� � � � �Dn end�g

E � m � m� � sig D�� � � � �Dn end

E � m � functor�x �M��M� E � m� � functor�x �M��M� E� module xi �M� � �m xi� � �m� xi� �M�

E � m � m� � functor�x �M��M�

Figure �� Typing rules
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��� Module reductions

We now focus on reductions in the module language� We give our results �rst� then explain brie�y at the
end of this subsection how we proved them�

Theorem � �subject reduction for ��reduction� If E � m �M � and m�� m
�� then E � m� �M �

Theorem � �Con�uence of ��reduction� The ��reduction is con�uent�

Theorem � �Strong normalization for ��reduction� The ��reduction is strongly normalizing�

However� ��reduction in itself is not very interesting� Indeed� modules expressions are very often in
��normal form� Instead� we can study what happens when we unfold modules and terms de�nitions� that is�
what happens when we add to ��reduction the ��reduction de�ned as the least context�stable relation such
that

struct s�� term v � w � e � e�� s� end�v
�� efn� struct s�� type v � w � e � e�� s� end�n� j �n�� n� � BV �s��g

struct s�� module x � y �M � m� s� end�x
�� mfn� struct s�� module x � y �M � m� s� end�n� j �n�� n� � BV �s��g

In an empty environment� a ���normalizing expression struct s end�result normalizes to a term where
no module construct appears� ���normalization is a way to transform any expression of a Pure Type System
extended with modules into a term of the corresponding Pure Type System�
We have the following results�

Theorem 	 �Subject reduction for �� reduction� If E � m �M � and m��� m
�� then E � m� �M �

Theorem 
 �Con�uence of ���reduction� The ���reduction is con�uent�

Theorem � �Strong normalization for ���reduction� The ���reduction is strongly normalizing�

As a consequence of theorem �� we have�

Theorem � �Conservativity of the module extension� In the empty environment� a type T of a PTS
is inhabited if and only if it is inhabited in its module extension�

For both reduction notions� con�uence properties are proved with the standard Tait and Martin�L�of	s
method 
Tak��
�
Subject reduction for � and � is proved as usual �substitution property and study of possible types of a

functor��
In this proof� we have in particular to prove the following proposition�

Proposition � If E � M modtype and E � ��functor�x � M ��m� xi� � M then E � ��functor�x �
M ��m� xi� � m �M

This proposition implies that two ��equivalent modules of a given type are equal for this type�
As for theorems � and �� strong normalization is proved �rst for a typing system �w that is weaker than

�� obtained by requiring that signatures in a subtype relation have the same number of components �m � n
in the subtyping rule for signatures�� Thus� sig term v � w � f � e term t � u � f � � e� end is a subtype
of sig term v � w � f term t � u � f � � e� end but not of sig term v � w � f end�
We can do for �w a proof similar to 
Coq��
 for the Calculus of Constructions �in fact� we only need the

part of the proof concerning dependent types�� we de�ne a notion of full premodel for our calculus �that is�
an in�nite set of constants such that for every module type built upon this set there is a constant of that
type in this set�� and interpret the terms of our calculus in such a way that every interpretation of a module
type is strongly normalizing� and the interpretation of a module type is the set of module expressions of this
type�
The case of � is then handled by the study of explicit coercions� These proofs are not detailed because

of their lengths�
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Context rules �E �A ok��
� �A ok

E �A e � � � � S v 	� E

E� v � e �A ok

Typing rules �E �A e � e���
E� v � e�E� �A ok

E� v � e�E� �A v � e

E �A ok �c� �� � A

E �A c � �

E �A e � �� E� v � e �A e� � �� ���� ��� ��� � R

E �A �v � e�e� � ��

E �A e� � �v � e�e� E �A e� � e�� E �A e � e��

E �A �e� e�� � e�fv � e�g

E� v � e �A e� � e�� E �A �v � e�e
�� � � � � S

E �A �v � e�e� � �v � e�e��

Term equivalence �E �A e � e���

e �� e� E � ok

E �A e � e�
e �� e� E � ok

E �A e � e�

�congruence rules omitted�

Figure �� Type inference in a PTS

��� Type inference

In this subsection� we intend to give a type inference algorithm for our module extension� A su�cient
condition for the type of a given term to be unique up to ��equivalence in a given PTS is that the PTS is
singly sorted�� A su�cient condition in such PTS for type inference to be decidable is strong normalization
of ��reduction� since term equivalence can then be decided by comparison of normal forms of terms� A
type inference system for such PTS is given �gure �� Therefore� we shall in this subsection consider only
singly�sorted PTS such that ��reduction is strongly normalizing�
It is to be noticed that the module extension preserves strong normalization of ��reduction�
In order to obtain a type inference algorithm� we provide in �gures � and � an inference system which

runs in a deterministic way for a given module expression except for term comparison � �where two main
rules plus re�exivity� symmetry� transitivity and context stability may �lter the same terms�� We show in
subsection ����� that this system gives the most general type of a given module expression if this expression
is well�typed� Then we give in subsection ����� a procedure to decide if two types of the base�language are in
the � comparison relation� Finally� we state in subsection ����� that this algorithm stops even if the given
module is ill�typed�
The inference system is obtained from the one given �gures � and � in the usual way by moving sub�

sumption and strengthening rules in the application rule� and a notion of ��reduction of a type is added in
order to orient the equality between a �eld of structure and the corresponding declaration in its signature�

	
�
� Soundness and completeness

Theorem � �Soundness� If E �A m �M then E � m �M �and thus E � m � M	m� � if E �A M 
� M �

then E �M 
�M � � if E �A e � e� then E � e � e��

�The PTS determined by the speci�cation �S�A�R� is said singly�sorted or functional if and only if the relations c �� � for
�c� �� � A and ��� � ��� �� �� for ���� ��� ��� � R are functional�
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Context formation �E �A ok��

E �A M modtype x 	� BV �E�

E� module x �M �A ok

E �A e � e� w 	� BV �E�

E�w � e� � e �A ok

Module type and signature body formation �E �A M modtype��

E �A ok

E �A � modtype

E� module x �M �A S modtype y 	� N �S�

E �A module y � x �M �S modtype

E� v � e �A S modtype w 	� N �S�

E �A term w � v � e�S modtype

E� v � e � e� �A S modtype w 	� N �S�

E �A term w � v � e � e��S modtype

E �A S modtype

E �A sig S end modtype

E �A M modtype x 	� BV �E� E� module x �M �A M � modtype

E �A functor�x �M�M � modtype

Module expressions �E �A m �M � and structures �E �A s � S��

E� module x �M �E� �A ok

E� module x �M �E� �A x �M

E �A m � sig S�� module x � y �M �S� end

E �A m�x �Mfn� m�n� j �n�� n� � BV �S��g

E� module x �M �A m �M � E � functor�x �M�M � modtype

E �A functor�x �M�m � functor�x �M�M �

E �A s � S

E �A �struct s end� � �sig S end�

E �A ok

E �A � � �

E �A m� � functor�x �M�M � E �A m� �M �� E �A M ��	m� 
�M

E �A �m� m�� �M �fx� m�g

E �A e � e� v 	� BV �E� E� v � e� � e �A s � S w 	� N �s�

E �A �term w � v � e� s� � �term w � v � e � e��S�

E �A m �M x 	� BV �E� E� module x �M �A s � S y 	� N �s�

E �A �module y � x �M � m� s� � �module y � x �M �S�

Figure �� Type inference system
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Module types subtyping �E �A M� 
�M���

E �A M modtype E �A M � modtype M �� M �

E �A M 
�M �

E �A sig D��� � � � �D
�
m end modtype E �A sig D�� � � � �Dn end modtype

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � �mg E�D�� � � � �Dn �A D��i� 
� D
�
i

E �A sig D�� � � � �Dn end 
� sig D��� � � � �D
�
m end

E �A M� 
�M� E� module x �M� �A M �
� 
�M

�
�

E �A functor�x �M��M �
� 
� functor�x �M��M �

�

E �A M 
�M �

E �A module x � y �M 
� module x � y �M �

E �A e � e�

E �A term v � w � e
� e��
 
� term v � w � e�

E �A e� � e�� E �A w � e��
E �A term v � w � e�
� e�
 
� term v � w � e�� � e��

Term equivalence �E �A e � e���

E �A e�� e
�

E �A e � e�

E �A m�t � T E �A m��t � T
m and m� have the same head variable c
for all mi� m�i argument of c in m� m� with type Mi� E �A mi � m�i �Mi

E �A m�t � m��t

Reduction�

E��w � e � e��E� �A ok

E��w � e � e��E� �A w�� e�
E �A m � sig S�� term v � w � e�S� end

E �A m�v �� efn� m�n� j �n�� n� � BV �S��g

Module equivalence �E �A m � m� �M ��

E �A m � N E �A N	m 
� sig D�� � � � �Dn end

E �A m� � N � E �A N �	m� 
� sig D�� � � � �Dn end

�i � f�� � � � � ng Di � term v � w � e � e� � E �A m�v � m��v
Di � module x � y �M � E �A m�x � m��x �Mfn� m�n� j �n�� n� � BV �sig D�� � � � �Dn end�g

E �A m � m� � sig D�� � � � �Dn end

E �A m � N E �A N	m 
� functor�x �M��M� E� module xi �M� �A �m xi� � �m� xi� �M�

E �A m � m� � functor�x �M��M�

Figure �� Type inference system
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Proof� Induction on the derivation�

Theorem � �Completeness� If E � m � M � then there exists a unique M � such that E �A m � M � and
E �A M �	m 
� M � Thus M �	m is the principal type of m� If E � M 
� M � then E �A M 
� M � � if
E � e � e� then E �A e � e��

Proof� Induction on the derivation�

	
�
� Term normalization

To compare two types� we shall give a notion of type normalization in our system in order to have for each
type a canonical form� The �rst notion coming to mind is ���normalization� However� this does not work�
thus in environment

E�x � functor�x � sig term v � v� � e end�sig term u � u� � e� end

where f � e� the expressions

�x ��functor�x � sig end�struct term v � v� � f end� struct end���u

and
�x struct term v � v� � f end��u

are in ��normal form� and syntactically distinct though they are easily proved equivalent�

E �A ��functor�x � sig end�struct term v � v� � f end� struct end�
� struct term v � v� � f end

� sig term v � v� end

However� we shall see that we can always proceed in this way to compare types� that is� ���normalizing them
�rst� then comparing recursively modules expressions that are arguments of the head variable�
Then� we may wonder whether this process always terminates or not� In order to answer this question�

we �rst give the following de�nition�

De�nition � ���reducible terms and ��reducible modules for a given module type� In an envi�
ronment E� we say a module m is ��reducible for module type M if E � m � M � and one of the following
cases is veri�ed�


 M � sig D�� � � � �Dn end� for all i such that Di � term v � v�
� e
� m�v is ��reducible and for
all i such that Di � module x � x� � N � m�x is ��reducible for type Nfn � m�n� j �n�� n� �
BV �D�� � � � � Di���g �


 M � functor�x �M��M�� and m�x� is ��reducible for type M� in E� module x �M� �

A term e is said to be ��reducible if and only if it is strongly ���normalizing and its ���normal is ��reducible�
A ���normal term e is said to be ��reducible if and only if one of the following cases is veri�ed�


 e � �e� e�� and e� and e� are ��reducible �


 e � �v � e��e� and e� and e� are ��reducible �


 e has form �� � � ��xm� � � �mi��x�n� � � �nj� � � ���v where the arguments m�� � � � �mi� � � � � n�� � � � � nj� � � � of
the head variable x are ��reducible for types expected by x� �x m��� � � ��

Notice the expression �its �� normal form� is justi�ed by the easily proved con�uence of ���reduction�
We then have the following results�

Theorem �� �Term ��reducibility� If E �A m �M then m is ��reducible for M � if E �A e � e� then e
is ��reducibility�
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Sketch of proof� First� we can prove that we can deal only with ��normalization instead of ���normalization
in the de�nition of ��reducible terms� This can be done because of strong normalization of ��reduction
together with the fact that if e ��reduces to e�� the ��normal form of e ��reduces to the ��normal form
of e�� Then� the proof can be done by de�ning a reducibility notion as in 
GLT��
 for the simply�typed
lambda�calculus�
Then we have to check that normalization is a way to compare base�language types�

Lemma � For all terms e and e� such that E �A e � e�� ���normal forms of e and e� have the same head
variables� moreover �eld selections and arguments applied to these variables are equal �for the expected types
for the head variables��

Proof� By induction on the derivation of the equality�

	
�
� Termination

We have seen that we have a way to compare well�formed type� We now only have to see that we have a
typing algorithm� i�e� an algorithm which stops even if the given module is ill�typed�

Theorem �� The �A gives a type inference algorithm� terminating on every module expression� Therefore�
type inference for the module system is decidable�

Proof� Typing rules terminates� since the size of module expressions we want to infer the type of are
decreasing and the subtyping test needed for the application rule is only performed between well�formed
module types�

� Comparison with other works

Compared to the module system of Elf 
HP��
� our system is much more powerful� because of manifest
declarations� Moreover� we can give a proof of its consistency through the study of reductions� Finally� we
are not aware of separate compilation mechanism for the module system of Elf�
Extended ML 
San��� KSTar
 is a very interesting framework for developing SML modular �functional�

programs together with their speci�cation and the proof of their speci�cation� However� it is not as general
as provers based on PTS can be for developing mathematical theories� Moreover� we are not aware of any
proof of consistency of the EML approach�
Another way to structure a development and make parameterized theories is to add dependent record

types to PTS� In systems with dependent sum types such as the Extended Calculus of Construction 
Luo��
�
or inductive types such as the Calculus of Construction with Inductive Types 
PM��
� this is quite easy� and
is more or less a syntactic sugar 
Sai��
� This approach have some advantages over ours�
Firstly� functors are represented by functions from a record type to another� Therefore� there is no need

for speci�c rules for abstraction and application of modules� since they are only particular cases of the type
system rules�
Secondly� having �modules� as �rst�class citizens allows powerful operations since it gives the �module�

language the whole power of the base language� For instance� one can de�ne a function taking as input a
natural n and a mono��d structure M and giving back as output the mono��dMn� Such a function has to be
recursive whereas a functor cannot be recursive in our approach�
However the module�as�record approach su�ers severe disadvantages�
Firstly� the addition of records may be di�cult from a theoretical point of view� Indeed� too powerful

elimination schemes can make a system logically inconsistent� For instance� Russel	s paradox can be formu�
lated in the Calculus of Construction where one can have records of type Set having a set as only component
if strong elimination is allowed� Hence� records are mainly useful in systems with a universes hierarchy� such
as the Calculus of Construction with Inductive Types and Universes� or the Extended Calculus of Construc�
tion� Thus� the conceptual simplicity of the record approach is lost with the complexity of universes� On the
other hand� our system is orthogonal to the considered PTS� and therefore much more robust to changes in
the base language from a logical point of view�
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Secondly� the abstraction mechanism is very limited� Indeed� either every component of a record is known
�in the case of an explicit term or of a constant� or every component is hidden �in the case of a variable or an
opaque constant��� For instance� the product of two vectorial spaces is de�ned only if their �eld component
is the same� This restriction is easily expressed in our system where we can de�ne a module as

functor�V� � ��vectorial space���
functor�V� � ��vectorial space with K�E � V��K�E� K� � V��K� � � � ���� � � �

But� it is very di�cult to de�ne such a functor in a record�based formalism since there is no way to express
that two given �eld are convertible� One could of course think of de�ning a notion of K�vectorial space� but
this would require the addition of one parameter for each function on vectorial space�
Moreover� separate compilation of non�closed code fragments is not possible� Indeed� one sometimes

needs the de�nition of a term in order to type�check an expression e� but the only way to know a component
of a record is to know the whole record� hence it has to be compiled before e is checked� On the contrary�
our notion of speci�cation allows us to give in an interface �le a speci�cation containing only the level of
details needed from the outside of a module�

� Conclusion

We propose a module system for Pure Type Systems� This module system can be seen as a typed lambda�
calculus of its own� since it enjoys the subject reduction property� This system has several desirable proper�
ties�


 it is independent of the considered PTS� hence should be robust to changes in the base type system
�addition of inductive types for instance��


 it is powerful enough to handle usual mathematical operations on usual structures�


 it is strongly normalizing�


 it is conservative with respect to the considered Pure Type System� especially it does not introduce
any logical inconsistency�


 type inference is decidable provided the ��reduction in the considered PTS is strongly normalizing thus
allowing an e�ective implementation of it�


 it allows true separate compilation of non�closed code fragments�

Our approach also brings several new issues�
Firstly� it would also be interesting to see which mechanisms are needed for helping the user search

through module libraries� The work done in 
Rou��� Rou��� DC��
 may be of great interest in this respect�
Another issue is how to integrate proof�assistant tools in our module system� Thus� it would be interesting

to add tactics components to modules helping the user by constructing proof�terms in a semi�automatic way�
Similar work has been done for the IMPS prover 
FGT��
� each theory comes together with a set of macetes
that are speci�c tactics for a proof in this theory� A similar idea can be found in the prover CiME 
CM��
�
where the user may declare he is in a given theory in order to get associated simpli�cation rules�
It would also be interesting to see how far the idea of independence with respect to the base language

can be formalized� In order to adapt the system of 
Cou��
 to PTS� we had to deal with ��equivalence
and the interaction of ��reduction with ��reduction� is it possible to give an abstract notion of equivalence
on a base language� and general conditions allowing to extend this base language with modules �one may
especially think of the Calculus of Constructions with Inductive Types and the associated ��reduction� or of
the Calculus of Constructions with �
�equivalence rule for conversion�����

�It should be noticed that Jones �Jon	
� proposed a way to solve this problem in a programming language with records and
the ability to de�ne abstract types� but this approach applies only in system where polymorphism is implicit and where types
do not depend on terms�
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Finally� possible extensions of our system have to be studied� Allowing signature abbreviations as struc�
ture components may seem to be a slight extension� But� as pointed out in 
HL��
� such an extension can lead
to subtype�checking undecidability if one allows abstract signature abbreviation components in signatures�
However� while one allows only manifest abbreviations� no problem arises� More generally� a challenging
extension is to add type signatures variables� type signatures operators�� � � without losing type inference
decidability� Another direction would be the addition of overloaded functors as in 
Cas��� AC��
�
We also hope to implement soon ideas given in this paper in the Coq proof assistant�
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