
HAL Id: hal-02101842
https://hal-lara.archives-ouvertes.fr/hal-02101842

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A module calculus for Pure Type Systems. (Preliminary
Version)

Judicael Courant

To cite this version:
Judicael Courant. A module calculus for Pure Type Systems. (Preliminary Version). [Research
Report] LIP RR-1996-31, Laboratoire de l’informatique du parallélisme. 1996, 2+18p. �hal-02101842�

https://hal-lara.archives-ouvertes.fr/hal-02101842
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A module calculus for Pure Type Systems
Preliminary version

Judica�el Courant October ��

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A module calculus for Pure Type Systems
Preliminary version

Judica�el Courant

October ��

Abstract

Several proof�assistants rely on the very formal basis of Pure Type Systems� However� some
practical issues raised by the development of large proofs lead to add other features to actual
implementations for handling namespace management� for developing reusable proof libraries
and for separate veri�cation of distincts parts of large proofs� Unfortunately� few theoretical
basis are given for these features� In this paper we propose an extension of Pure Type Systems
with a module calculus adapted from SML�like module systems for programming languages� Our
module calculus gives a theoretical framework addressing the need for these features� We show
that our module extension is conservative� and that type inference in the module extension of a
given PTS is decidable under some hypotheses over the considered PTS�

Keywords� Module systems� PTS� higher�order type systems� subject�reduction� normalization� type in�
ference

R�esum�e

Plusieurs assistants de preuves sont fond�es sur les Syst�emes de Types Purs �PTS�� Cependant� des
consid�erations pratiques provenant du d�eveloppement de grandes preuves conduisent �a ajouter
aux impl�ementations des m�ecanismes permettant une gestion rationnelle des noms� le d�eveloppe�
ment de biblioth�eques de preuves r�eutilisables� et la v�eri�cation s�epar�ee des di��erentes parties
d	un gros d�eveloppement� Alors que la correction des PTS utilis�es est th�eoriquement bien fond�e�
ces m�ecanismes sont en revanche peu �etudi�es� alors qu	ils peuvent mettre en p�eril la correction
de l	ensemble de l	outil de d�emonstration� Pour r�epondre �a ce probl�eme� nous proposons dans
ce rapport une extension des PTS par un syst�eme de modules similaire �a celui de SML pour le
langage de programmation ML� Notre syst�eme de modules donne un cadre th�eorique rigoureux
pour l	�etude des m�ecanismes que nous avons cit�es� Nous montrons que l	extension propos�ee est
conservative� et que l	inf�erence de type est d�ecidable moyennant quelques hypoth�eses raisonnables
sur le PTS consid�er�e�

Mots�cl�es� Syst�emes de modules� PTS� syst�emes de types d	ordre sup�erieur� autor�eduction� normalisation�
inf�erence de type

A module calculus for Pure Type Systems�
Preliminary version

Judica�el Courant

October ��

� Introduction

The notion of Pure Type Systems has been �rst introduced by Terlouw and Berardi
Bar��
� These systems
are well�suited for expressing speci�cations and proofs and are the basis of several proof assistants
CCF����
Pol��� MN��� HHP��
� However� there is actually a gap between PTS and the extensions needed for proof
assistants� Indeed� PTS are well�suited to type�theoretic study� but lack some features that a proof�assistant
needs�
A �rst practical expectation when specifying and proving in a proof assistant is for de�nitions� Making a

non�trivial proof or even a non�trivial speci�cation in a proof assistant is often a long run task that would be
impossible if one could not bind some terms to a name� The meta�theoretical study of de�nitions and their
unfolding� although not very di�cult is far from being obvious� it has been achieved for instance in
SP��
�
Another highly expectable feature when developing large proofs is for a practical namespace management�

Indeed� it is often di�cult to �nd a new signi�cant name for each theorem� In proof�assistants where proofs
can be split across several �les� a partial solution is to represent names as pre�xed by the name of the �le
they are de�ned in� Then� the user may either refer to a theorem by its long name� or give only the su�x
part which refers to the last loaded theorem with this su�x�
Another one is the ability to parameterize a whole theory with some axioms� For instance� when de�ning

and proving sorting algorithms� it is very convenient to have the whole theory parameterized with a set A� a
function ord � A� A� bool� and three axioms stating that ord is re�exive� antisymmetric� transitive� total
and decidable� This feature is implemented in the Coq proof�assistant through the sectioning mechanism

CCF���
� In a given section� one may declare axioms or variables and use them� When the section is closed�
these axioms and variables are discharged� That is� every theorem is parameterized by these hypothesis and
variables� Thus� one does not have to explicitly parameterize every theorem by these hypothesis and variables�
However� this sectioning mechanism is not a de�nite answer� Indeed� it does not allow to instantiate a

parameterized theory� For instance� once the theory of sorting algorithms has been proved� if one wants to
use this theory for a given set and an ordering� one has to give the �ve parameters describing the ordering
each time he needs to use any of the results� In order to have a more convenient way to refer to these results�
we have to imagine a mechanism allowing the instantiation of several results at once�
Finally� proof assistants also raise the problem of separate veri�cation� Thus� in proof�assistants such as

Coq� the veri�cation of standard proof�libraries can take several hours� For the user� this is annoying if the
proof�assistant needs to check them each time the user references them� Therefore� a feature allows to save
and restore the global state of the proof�assistant on disk � thus� standard libraries are checked once� then
the corresponding state is saved� and users start their sessions with this state� But it is not possible to save
all available libraries in a given state� because they would require too much memory� Rather� one would like
to have a way to load only required libraries� but at a reasonable speed� Recently� the Lego and the Coq
proof�assistants allowed to put theories they check into a compiled form� Such compiled forms can be loaded
very fast � several seconds instead of several minutes or hours�

�This research was partially supported by the ESPRIT Basic Research Action Types and by the GDR Programmation
co�nanced by MRE�PRC and CNRS�

�

But the possibility of saving proofs in compiled forms is not a true separate veri�cation facility� In fact�
we lack a notion of speci�cation of a proof� Such a notion is desirable for three reasons� The �rst one is this
would provide a convenient way to describe what is proved in a given proof development� The second one
is the user may like to give only a speci�cation of a theory he needs to make a proof� in order to make his
main proof �rst� then prove the speci�cation he needed� The third one is that would help in making proofs
robust with respect to changes� indeed� it is sometimes di�cult to predict whether a change in a proof will
break proofs depending on it� since there is no clear notion of the speci�cation exported by a given �le�
Some theorem provers already address some of these issue� Thus IMPS
FGT��
 implements Bourbaki	s

notion of structures and theories
Bou��
� allowing to instantiate a general theory on a given structure at
once� getting every instantiations of theorems� Unfortunately� this notion is well�suited in a set�theoretic
framework but less in a type�theoretic one�
The Standard ML programming language has a very powerful module system
Mac��
 that allows the

de�nition of parametric modules and their composition� although it does not support true separate com�
pilation� This module system was adapted to the Elf implementation of LF
HP��
� However� only the
part of the SML module system that was well�understood from the semantic and pragmatic point of view
was adapted� hence leaving out signi�cant power of SML� For instance� the sharing construct of SML had
to be ruled out� This is annoying since this construct allows to express that two structures share a given
component� For instance� it may be useful to make a theory over groups and mono��ds that share the same
base set��

Recent works on module systems however bring hope� Leroy
Ler��� Ler��
� Harper and Lillibridge
HL��

presented �cleaner� variants of the SML module system� allowing true separate compilation since only the
knowledge of the type of a module is needed in order to typecheck modules using it� Unfortunately� no proof
of correctness was given for any of these system� thus preventing us to be sure their adaptation to a proof
system would not lead to inconsistency� We gave one in a variant of these systems in
Cou��
�
However adaptation of these module systems to Pure Type Systems raises the problem of dealing with

��equivalence that appears in the conversion rule of PTS� In this paper� we give an adaptation of the
system of
Cou��
 to Pure Type Systems� This system applies to the LF logical framework� the Calculus
of Construction
CH��
� the Calculus of Constructions extended with universes
Luo��
� We do not deal
with the problem of adding inductive types to these systems� but the addition of inductive types as �rst�
class objects should not raise any problem as our proposal is quite orthogonal to the base language� as few
properties of ��reduction were needed to prove our results� they should also be true in a framework with
inductive types and the associated ��reduction�
The remaining of this paper is organized as follows� we give in section � an informal presentation of the

desired features for a module system� Then� in section �� we expose formally our system� In section � we
give its meta�theory� We compare our system with other approaches in section �� Finally� we give possible
directions for future work and conclude in section ��

� Informal presentation

In order to solve the problem of namespace management� we add to PTS the notion of structure� that is�
package of de�nitions� An environment may now contain structures declarations� These structures can
even contain sub�structures� which may help in structuring the environment� In fact� many mathematical
structures own sub�structures� Thus� the polynomial ring A
X
 over a ring A may be de�ned as a structure
having A as a component� a mono��d homomorphism may be de�ned as a structure having the domain and
the range mono��ds as components� et cetera�
In order to address the issue of robustness of proofs with respect to changes� we introduce a notion of

speci�cation� We require every module de�nition be given together with a speci�cation� A speci�cation for
a structure is a declaration of the objects the module should export� together with their types� and possibly
their de�nitions� The speci�cation of a structure is called a signature of this structure� Then� the only
thing the type�checker knows about a module in a given environment is its speci�cation� The correction of
a development is ensured as soon as for every speci�cation� a module matching this speci�cation is given�

�The mathematical structure of rings is de�ned as the data of a group and a mono��d that share the same base set� and verify
some other conditions �distributivity��

�

Let us consider an example� Assume we want to work in the Calculus of Constructions� extended with
an equality de�ned on any set A� �A� Assuming � is any given term of type Set� we can de�ne a mono��d
structure on � � � in the following way�

module M � sig

E � Set � � � �
e � E
op � E � E � E
assoc � �x� y� z � E��op �op x y� y� �E �op x �op y z��
left neutral � �x � E��op e x� �E x
right neutral � �x � E��op x e� �E x
end

� struct

base � �
E � base� base
e � �x � base�x
op � �f� g � base� base��x � base��f �g x��
assoc � � � �
left neutral � � � �
right neutral � � � �
end

This de�nition adds to the environment a module M of the given signature� Signatures are introduced by
the keyword sig� structures by struct� Both are ended by the keyword end�

From inside the de�nition� components are referred to as E� e� op � from outside� they must be referred
to asM�E� M�e� M�op� � � � Notice that base is not visible outside the de�nition ofM since it is not declared
in the signature� Only the de�nition ofM�E is known outside the module de�nition� so that for instance no
one can take advantage of a particular implementation of op� The declaration E � Set � � � � is said to be
manifest since it gives the de�nition of E�

The naming convention M�S�c might become heavy when working on a given module� Therefore� in the
SML module system� there is an open construct such that after an open M � any component c of M can
be referred to as c instead of M�c� However� this is only syntactic sugar� so we will not consider it in our
theoretical study�

Since we wish to handle parameterized theories� we extend the module language in order to allow pa�
rameterized modules� Then� one can develop for instance a general theory T of mono��ds parameterized by
a generic mono��d structure� then de�ne the module TM of the theory of the mono��d M � Parameterized
modules are built through the functor keyword� that is the equivalent of a ��abstraction at the module
level� and of a ��quanti�cation at the module type level�

module T
� functor�M � ��monoid signature���

sig

unique left neutral � �x �M�E���y �M�E��M�op x y� �M�E y�
� �x �M�E M�e�

���
end

� functor�M � ��monoid signature���
struct

unique left neutral � � � �
���
end

�

Then one can instantiate the general theory on a given module as follows�

module TM
� sig

unique left neutral � �x �M�E���y �M�E��M�op x y� �M�E y�� �x �M�E M�e�
���
end

� �T M �

Functors are also interesting for the construction of mathematical structures� For instance� the product
mono��d of two generic mono��ds can be de�ned easily through a functor� then instantiated on actual mono��ds�
Finally� before we give a formal de�nition of our system� it should be noticed that a name con�ict can

appear when instantiating a functor� as in ��calculus� ��y�x z�fx� yg is not ��y�y z�� if

f � functor�x � � � ��sig y � � � � z � x�n end

then �f y� is not of type
sig y � � � � z � y�n end

The usual solution in ��calculus is capture�avoiding substitutions that rename binders if necessary� Here� a
�eld of a structure can not be renamed since we want to be able to access components of a structure by their
names� In fact� the problem is a confusion between the notion of component name and binder� Therefore�
we modify the syntax of declarations and speci�cations� declarations and speci�cations shall be of the form
x � y � � � � �or x � y � � � � or x � y � � � � � � � ��� the �rst identi�er being the name of the component and the
second one its binder� This syntax has been proposed by Harper and Lillibridge in
HL��
� They suggested
pronouncing ��� as �as�� From inside a structure or signature� the component is referred by its binder� and
from outside� it is referred by its name� Then� we avoid name clashes by capture�avoiding substitutions� For
instance� the mono��d previously de�ned could be written�

module M � sig

E � E� � Set � � � �
e � e� � E�

op � op� � E� � E� � E�

assoc � assoc� � �x� y� z � E���op� �op� x y� y� �E� �op� x �op� y z��
left neutral � left neutral� � �x � E���op� e� x� �E� x
right neutral � right neutral� � �x � E���op� x e�� �E� x
end

� � � �

Of course� we shall allow x � t as a syntactic sugar for x � x � t �similarly for x � t��

� A module calculus

We now formalize our previous remarks in a module calculus derived from the propositions of
Ler��� Ler���
HL��� Cou��
�

��� Syntax

Terms �
e ��� v identi�er

j m�v access to a value �eld of a structure
j �e� e�� application
j �v�e��e� ��abstraction
j �v�e��e� universal quanti�cation

�

Module expressions �
m ��� x identi�er

j m�x module �eld of a structure
j struct s end structure construction
j functor�x�M �m functor
j �m� m�� application of a module

Structure body �
s ��� � j d � s

Structure component �
d ��� term v� � v� � e term de�nition

j module x� � x� � M � m module de�nition

Module type �
M ��� sig S end signature type

j functor�x � M��M� functor type

Signature body �
S ��� � j D � S

Signature component �
D ��� term v� � v� � e term declaration

j term v� � v� � e� � e� manifest term declaration
j module x� � x� � M module declaration

Environments �
E ��� � empty environment

j v � e term declaration
j v � e � e� term de�nition
j module x � M module declaration

Notice that this syntax is an extension of the syntax of pre�terms in PTS� and that this extension is quite
orthogonal to the syntax of these pre�terms� Since we intend to study the reductions of the module calculus�
we shall distinguish ��reductions at the level of the base�language calculus and at the level of the module
calculus� Therefore we call ��reduction the ��reduction at the level of module system� That is� ��reduction
is the least context�stable relation on the syntax such that ��functor�x � M�m�� m�� �� m�fxi � m�g�
We de�ne ��equivalence as the least equivalence relation including the ��reduction�

As for ��reduction� we shall consider it as the least relation on terms such that

��v � e��e� e���� e�fv� e�g

e� �� e�� � �e� e���� �e
�
� e�� e� �� e

�
� � �e� e���� �e� e

�
��

e� �� e
�
� � �v � e��e� �� �v � e

�
��e� e� �� e�� � �v � e��e� �� �v � e��e

�
�

e� �� e
�
� � �v � e��e� �� �v � e

�
��e� e� �� e�� � �v � e��e� �� �v � e��e

�
�

That is� ��reduction of a term can not be performed inside any module expression�

�

Context rules �E � ok��
� � ok

E � e � � � � S v 	� E

E� v � e � ok

Typing rules �E � e � e���
E� v � e�E� � ok

E� v � e�E� � v � e

E � ok �c� �� � A

E � c � �

E � e � �� E� v � e � e� � �� ���� ��� ��� � R

E � �v � e�e� � ��

E � e� � �v � e�e
� E � e� � e

E � �e� e�� � e�fv � e�g

E� v � e � e� � e�� E � �v � e�e�� � � � � S

E � �v � e�e� � �v � e�e��

E � e � e� E � e�� � � � � S E � e� � e��

E � e � e��

Term equivalence �E � e � e���

e �� e� E � ok

E � e � e�
e �� e� E � ok

E � e � e�

�congruence rules omitted�

Figure �� PTS rules

�

��� Typing rules

Let S a set of constants called the sorts� A� a set of pair �c� �� where c is a constant and � � S� and R a
set of triples of elements of S� The Pure Type System �PTS� determined by the speci�cation �S�A�R� is
de�ned in �gure �� Three kinds of judgments are de�ned� a given environment is well�formed� a given term
is of a given type� and two given terms are convertible� In order to build a module system over this PTS�
we add rules given �gures � and �� that de�ne the following new judgments�

E � M modtype module type M is well�formed
E � m �M module expression m has type M
E � M�
�M� module type M� is a subtype of M�

E � m � m� �M considered as modules of type M � m and m� are de�ning equal terms

In these rules we make use of the following de�nitions� The �rst one helps in introducing a �eld of a
module in the environment� the second one gives the set of �elds de�ned in a structure body and the third
one gives the set of couples �names�identi�er� appearing in a given structure�

term v � w � e � w � e

term v � w � e � e� � w � e � e�

module x � y �M � module y �M

N �term v � w � e� s� � fvg �N �s�

N �module x � y �M � m� s� � fxg �N �s�

N ��� � 	

BV ��� � 	

BV �term v � w � e
� e�
� s� � f�v� w�g �BV �s�

BV �module x � y �M � s� � f�x� y�g �BV �s�

BV �E� v � e
� e�
� � fvg �BV �E�

BV �E� module x �M � � fxg �BV �E�

Following
Ler��� Ler��
� one typing rule for modules makes use of the strengthening M	m of a module
type M by a module expression m� this rule is a way to express the �self� rule saying that even if the
component v of a module m is declared as abstract� one knows that this component is equal to m�v� and
may add this information to the type of m� The strengthening operation is de�ned as follows�

�sig S end�	m � sig S	m end

�functor�x �M��M��	m � functor�x �M���M�	m�x��

�	m � �

�D�S�	m � D	m� �S	m�

�term v � w�e�	m � term v � w�e�m�v

�term v � w � e��e��	m � term v � w � e��e�

�module x � y �M �	m � module x � y � �M	m�x�

� Meta�theory

We now give our main theoretical results about our module extension� this extension is sound since it is
conservative� and if type inference is possible in a PTS� it is possible in its module extension�

�

Context formation �E � ok��

E �M modtype x 	� BV �E�

E� module x �M � ok

E � e � e� w 	� BV �E�

E�w � e� � e � ok

Module type and signature body formation �E �M modtype��

E � ok

E � � modtype

E� module x �M � S modtype y 	� N �S�

E � module y � x �M �S modtype

E� v � e � S modtype w 	� N �S�

E � term w � v � e�S modtype

E� v � e � e� � S modtype w 	� N �S�

E � term w � v � e � e��S modtype

E � S modtype

E � sig S end modtype

E �M modtype x 	� BV �E� E� module x �M �M � modtype

E � functor�x �M�M � modtype

Module expressions �E � m �M � and structures �E � s � S��

E� module x �M �E� � ok

E� module x �M �E� � x �M

E � m � sig S�� module x � y �M �S� end

E � m�x �Mfn� m�n� j �n�� n� � BV �S��g

E� module x �M � m �M � E � functor�x �M�M � modtype

E � functor�x �M�m � functor�x �M�M �

E � m� � functor�x �M�M � E � m� �M

E � �m� m�� �M �fx� m�g

E � m �M � E �M �
�M

E � m �M

E � m �M

E � m �M	m

E � s � S

E � �struct s end� � �sig S end�

E � ok

E � � � �

E � e � e� v 	� BV �E� E� v � e� � e � s � S w 	� N �s�

E � �term w � v � e� s� � �term w � v � e � e��S�

E � m �M x 	� BV �E� E� module x �M � s � S y 	� N �s�

E � �module y � x �M � m� s� � �module y � x �M �S�

Figure �� Typing rules

�

Module types subtyping �E �M�
�M���

E �M modtype E �M � modtype M �� M �

E �M
�M �

E � sig D��� � � � �D
�
m end modtype E � sig D�� � � � �Dn end modtype

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � �mg E�D�� � � � �Dn � D��i�
� D
�
i

E � sig D�� � � � �Dn end
� sig D��� � � � �D
�
m end

E �M�
�M� E� module x �M� � M �
�
�M

�
�

E � functor�x �M��M
�
�
� functor�x �M��M

�
�

E �M
�M �

E � module x � y �M
� module x � y �M �

E � e � e�

E � term v � w � e
� e��

� term v � w � e�
E � e� � e�� E � w � e��

E � term v � w � e�
� e�

� term v � w � e�� � e��

Term equivalence �E � e � e���

E��w � e � e��E� � ok

E��w � e � e��E� � w � e�
E � m � sig S�� term v � w � e�S� end

E � m�v � efn� m�n� j �n�� n� � BV �S��g

E � m�t � T E � m��t � T
m and m� have the same head variable c
for all mi� m�i argument of c in m� m� with type Mi� E � mi � m�i �Mi

E � m�t � m��t

Module equivalence �E � m � m� �M ��

E � m � sig D�� � � � �Dn end

E � m� � sig D�� � � � �Dn end

�i � f�� � � � � ng Di � term v � w � e � e� � E � m�v � m��v
Di � module x � y �M � E � m�x � m��x �Mfn� m�n� j �n�� n� � BV �sig D�� � � � �Dn end�g

E � m � m� � sig D�� � � � �Dn end

E � m � functor�x �M��M� E � m� � functor�x �M��M� E� module xi �M� � �m xi� � �m� xi� �M�

E � m � m� � functor�x �M��M�

Figure �� Typing rules

�

��� Module reductions

We now focus on reductions in the module language� We give our results �rst� then explain brie�y at the
end of this subsection how we proved them�

Theorem � �subject reduction for ��reduction� If E � m �M � and m�� m
�� then E � m� �M �

Theorem � �Con�uence of ��reduction� The ��reduction is con�uent�

Theorem � �Strong normalization for ��reduction� The ��reduction is strongly normalizing�

However� ��reduction in itself is not very interesting� Indeed� modules expressions are very often in
��normal form� Instead� we can study what happens when we unfold modules and terms de�nitions� that is�
what happens when we add to ��reduction the ��reduction de�ned as the least context�stable relation such
that

struct s�� term v � w � e � e�� s� end�v
�� efn� struct s�� type v � w � e � e�� s� end�n� j �n�� n� � BV �s��g

struct s�� module x � y �M � m� s� end�x
�� mfn� struct s�� module x � y �M � m� s� end�n� j �n�� n� � BV �s��g

In an empty environment� a ���normalizing expression struct s end�result normalizes to a term where
no module construct appears� ���normalization is a way to transform any expression of a Pure Type System
extended with modules into a term of the corresponding Pure Type System�
We have the following results�

Theorem 	 �Subject reduction for �� reduction� If E � m �M � and m��� m
�� then E � m� �M �

Theorem
 �Con�uence of ���reduction� The ���reduction is con�uent�

Theorem � �Strong normalization for ���reduction� The ���reduction is strongly normalizing�

As a consequence of theorem �� we have�

Theorem � �Conservativity of the module extension� In the empty environment� a type T of a PTS
is inhabited if and only if it is inhabited in its module extension�

For both reduction notions� con�uence properties are proved with the standard Tait and Martin�L�of	s
method
Tak��
�
Subject reduction for � and � is proved as usual �substitution property and study of possible types of a

functor��
In this proof� we have in particular to prove the following proposition�

Proposition � If E � M modtype and E � ��functor�x � M ��m� xi� � M then E � ��functor�x �
M ��m� xi� � m �M

This proposition implies that two ��equivalent modules of a given type are equal for this type�
As for theorems � and �� strong normalization is proved �rst for a typing system �w that is weaker than

�� obtained by requiring that signatures in a subtype relation have the same number of components �m � n
in the subtyping rule for signatures�� Thus� sig term v � w � f � e term t � u � f � � e� end is a subtype
of sig term v � w � f term t � u � f � � e� end but not of sig term v � w � f end�
We can do for �w a proof similar to
Coq��
 for the Calculus of Constructions �in fact� we only need the

part of the proof concerning dependent types�� we de�ne a notion of full premodel for our calculus �that is�
an in�nite set of constants such that for every module type built upon this set there is a constant of that
type in this set�� and interpret the terms of our calculus in such a way that every interpretation of a module
type is strongly normalizing� and the interpretation of a module type is the set of module expressions of this
type�
The case of � is then handled by the study of explicit coercions� These proofs are not detailed because

of their lengths�

��

Context rules �E �A ok��
� �A ok

E �A e � � � � S v 	� E

E� v � e �A ok

Typing rules �E �A e � e���
E� v � e�E� �A ok

E� v � e�E� �A v � e

E �A ok �c� �� � A

E �A c � �

E �A e � �� E� v � e �A e� � �� ���� ��� ��� � R

E �A �v � e�e� � ��

E �A e� � �v � e�e� E �A e� � e�� E �A e � e��

E �A �e� e�� � e�fv � e�g

E� v � e �A e� � e�� E �A �v � e�e
�� � � � � S

E �A �v � e�e� � �v � e�e��

Term equivalence �E �A e � e���

e �� e� E � ok

E �A e � e�
e �� e� E � ok

E �A e � e�

�congruence rules omitted�

Figure �� Type inference in a PTS

��� Type inference

In this subsection� we intend to give a type inference algorithm for our module extension� A su�cient
condition for the type of a given term to be unique up to ��equivalence in a given PTS is that the PTS is
singly sorted�� A su�cient condition in such PTS for type inference to be decidable is strong normalization
of ��reduction� since term equivalence can then be decided by comparison of normal forms of terms� A
type inference system for such PTS is given �gure �� Therefore� we shall in this subsection consider only
singly�sorted PTS such that ��reduction is strongly normalizing�
It is to be noticed that the module extension preserves strong normalization of ��reduction�
In order to obtain a type inference algorithm� we provide in �gures � and � an inference system which

runs in a deterministic way for a given module expression except for term comparison � �where two main
rules plus re�exivity� symmetry� transitivity and context stability may �lter the same terms�� We show in
subsection ����� that this system gives the most general type of a given module expression if this expression
is well�typed� Then we give in subsection ����� a procedure to decide if two types of the base�language are in
the � comparison relation� Finally� we state in subsection ����� that this algorithm stops even if the given
module is ill�typed�
The inference system is obtained from the one given �gures � and � in the usual way by moving sub�

sumption and strengthening rules in the application rule� and a notion of ��reduction of a type is added in
order to orient the equality between a �eld of structure and the corresponding declaration in its signature�

	
�
� Soundness and completeness

Theorem � �Soundness� If E �A m �M then E � m �M �and thus E � m � M	m� � if E �A M
� M �

then E �M
�M � � if E �A e � e� then E � e � e��

�The PTS determined by the speci�cation �S�A�R� is said singly�sorted or functional if and only if the relations c �� � for
�c� �� � A and ��� � ��� �� �� for ���� ��� ��� � R are functional�

��

Context formation �E �A ok��

E �A M modtype x 	� BV �E�

E� module x �M �A ok

E �A e � e� w 	� BV �E�

E�w � e� � e �A ok

Module type and signature body formation �E �A M modtype��

E �A ok

E �A � modtype

E� module x �M �A S modtype y 	� N �S�

E �A module y � x �M �S modtype

E� v � e �A S modtype w 	� N �S�

E �A term w � v � e�S modtype

E� v � e � e� �A S modtype w 	� N �S�

E �A term w � v � e � e��S modtype

E �A S modtype

E �A sig S end modtype

E �A M modtype x 	� BV �E� E� module x �M �A M � modtype

E �A functor�x �M�M � modtype

Module expressions �E �A m �M � and structures �E �A s � S��

E� module x �M �E� �A ok

E� module x �M �E� �A x �M

E �A m � sig S�� module x � y �M �S� end

E �A m�x �Mfn� m�n� j �n�� n� � BV �S��g

E� module x �M �A m �M � E � functor�x �M�M � modtype

E �A functor�x �M�m � functor�x �M�M �

E �A s � S

E �A �struct s end� � �sig S end�

E �A ok

E �A � � �

E �A m� � functor�x �M�M � E �A m� �M �� E �A M ��	m�
�M

E �A �m� m�� �M �fx� m�g

E �A e � e� v 	� BV �E� E� v � e� � e �A s � S w 	� N �s�

E �A �term w � v � e� s� � �term w � v � e � e��S�

E �A m �M x 	� BV �E� E� module x �M �A s � S y 	� N �s�

E �A �module y � x �M � m� s� � �module y � x �M �S�

Figure �� Type inference system

��

Module types subtyping �E �A M�
�M���

E �A M modtype E �A M � modtype M �� M �

E �A M
�M �

E �A sig D��� � � � �D
�
m end modtype E �A sig D�� � � � �Dn end modtype

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � �mg E�D�� � � � �Dn �A D��i�
� D
�
i

E �A sig D�� � � � �Dn end
� sig D��� � � � �D
�
m end

E �A M�
�M� E� module x �M� �A M �
�
�M

�
�

E �A functor�x �M��M �
�
� functor�x �M��M �

�

E �A M
�M �

E �A module x � y �M
� module x � y �M �

E �A e � e�

E �A term v � w � e
� e��

� term v � w � e�

E �A e� � e�� E �A w � e��
E �A term v � w � e�
� e�

� term v � w � e�� � e��

Term equivalence �E �A e � e���

E �A e�� e
�

E �A e � e�

E �A m�t � T E �A m��t � T
m and m� have the same head variable c
for all mi� m�i argument of c in m� m� with type Mi� E �A mi � m�i �Mi

E �A m�t � m��t

Reduction�

E��w � e � e��E� �A ok

E��w � e � e��E� �A w�� e�
E �A m � sig S�� term v � w � e�S� end

E �A m�v �� efn� m�n� j �n�� n� � BV �S��g

Module equivalence �E �A m � m� �M ��

E �A m � N E �A N	m
� sig D�� � � � �Dn end

E �A m� � N � E �A N �	m�
� sig D�� � � � �Dn end

�i � f�� � � � � ng Di � term v � w � e � e� � E �A m�v � m��v
Di � module x � y �M � E �A m�x � m��x �Mfn� m�n� j �n�� n� � BV �sig D�� � � � �Dn end�g

E �A m � m� � sig D�� � � � �Dn end

E �A m � N E �A N	m
� functor�x �M��M� E� module xi �M� �A �m xi� � �m� xi� �M�

E �A m � m� � functor�x �M��M�

Figure �� Type inference system

��

Proof� Induction on the derivation�

Theorem � �Completeness� If E � m � M � then there exists a unique M � such that E �A m � M � and
E �A M �	m
� M � Thus M �	m is the principal type of m� If E � M
� M � then E �A M
� M � � if
E � e � e� then E �A e � e��

Proof� Induction on the derivation�

	
�
� Term normalization

To compare two types� we shall give a notion of type normalization in our system in order to have for each
type a canonical form� The �rst notion coming to mind is ���normalization� However� this does not work�
thus in environment

E�x � functor�x � sig term v � v� � e end�sig term u � u� � e� end

where f � e� the expressions

�x ��functor�x � sig end�struct term v � v� � f end� struct end���u

and
�x struct term v � v� � f end��u

are in ��normal form� and syntactically distinct though they are easily proved equivalent�

E �A ��functor�x � sig end�struct term v � v� � f end� struct end�
� struct term v � v� � f end

� sig term v � v� end

However� we shall see that we can always proceed in this way to compare types� that is� ���normalizing them
�rst� then comparing recursively modules expressions that are arguments of the head variable�
Then� we may wonder whether this process always terminates or not� In order to answer this question�

we �rst give the following de�nition�

De�nition � ���reducible terms and ��reducible modules for a given module type� In an envi�
ronment E� we say a module m is ��reducible for module type M if E � m � M � and one of the following
cases is veri�ed�

 M � sig D�� � � � �Dn end� for all i such that Di � term v � v�
� e
� m�v is ��reducible and for
all i such that Di � module x � x� � N � m�x is ��reducible for type Nfn � m�n� j �n�� n� �
BV �D�� � � � � Di���g �

 M � functor�x �M��M�� and m�x� is ��reducible for type M� in E� module x �M� �

A term e is said to be ��reducible if and only if it is strongly ���normalizing and its ���normal is ��reducible�
A ���normal term e is said to be ��reducible if and only if one of the following cases is veri�ed�

 e � �e� e�� and e� and e� are ��reducible �

 e � �v � e��e� and e� and e� are ��reducible �

 e has form �� � � ��xm� � � �mi��x�n� � � �nj� � � ���v where the arguments m�� � � � �mi� � � � � n�� � � � � nj� � � � of
the head variable x are ��reducible for types expected by x� �x m��� � � ��

Notice the expression �its �� normal form� is justi�ed by the easily proved con�uence of ���reduction�
We then have the following results�

Theorem �� �Term ��reducibility� If E �A m �M then m is ��reducible for M � if E �A e � e� then e
is ��reducibility�

��

Sketch of proof� First� we can prove that we can deal only with ��normalization instead of ���normalization
in the de�nition of ��reducible terms� This can be done because of strong normalization of ��reduction
together with the fact that if e ��reduces to e�� the ��normal form of e ��reduces to the ��normal form
of e�� Then� the proof can be done by de�ning a reducibility notion as in
GLT��
 for the simply�typed
lambda�calculus�
Then we have to check that normalization is a way to compare base�language types�

Lemma � For all terms e and e� such that E �A e � e�� ���normal forms of e and e� have the same head
variables� moreover �eld selections and arguments applied to these variables are equal �for the expected types
for the head variables��

Proof� By induction on the derivation of the equality�

	
�
� Termination

We have seen that we have a way to compare well�formed type� We now only have to see that we have a
typing algorithm� i�e� an algorithm which stops even if the given module is ill�typed�

Theorem �� The �A gives a type inference algorithm� terminating on every module expression� Therefore�
type inference for the module system is decidable�

Proof� Typing rules terminates� since the size of module expressions we want to infer the type of are
decreasing and the subtyping test needed for the application rule is only performed between well�formed
module types�

� Comparison with other works

Compared to the module system of Elf
HP��
� our system is much more powerful� because of manifest
declarations� Moreover� we can give a proof of its consistency through the study of reductions� Finally� we
are not aware of separate compilation mechanism for the module system of Elf�
Extended ML
San��� KSTar
 is a very interesting framework for developing SML modular �functional�

programs together with their speci�cation and the proof of their speci�cation� However� it is not as general
as provers based on PTS can be for developing mathematical theories� Moreover� we are not aware of any
proof of consistency of the EML approach�
Another way to structure a development and make parameterized theories is to add dependent record

types to PTS� In systems with dependent sum types such as the Extended Calculus of Construction
Luo��
�
or inductive types such as the Calculus of Construction with Inductive Types
PM��
� this is quite easy� and
is more or less a syntactic sugar
Sai��
� This approach have some advantages over ours�
Firstly� functors are represented by functions from a record type to another� Therefore� there is no need

for speci�c rules for abstraction and application of modules� since they are only particular cases of the type
system rules�
Secondly� having �modules� as �rst�class citizens allows powerful operations since it gives the �module�

language the whole power of the base language� For instance� one can de�ne a function taking as input a
natural n and a mono��d structure M and giving back as output the mono��dMn� Such a function has to be
recursive whereas a functor cannot be recursive in our approach�
However the module�as�record approach su�ers severe disadvantages�
Firstly� the addition of records may be di�cult from a theoretical point of view� Indeed� too powerful

elimination schemes can make a system logically inconsistent� For instance� Russel	s paradox can be formu�
lated in the Calculus of Construction where one can have records of type Set having a set as only component
if strong elimination is allowed� Hence� records are mainly useful in systems with a universes hierarchy� such
as the Calculus of Construction with Inductive Types and Universes� or the Extended Calculus of Construc�
tion� Thus� the conceptual simplicity of the record approach is lost with the complexity of universes� On the
other hand� our system is orthogonal to the considered PTS� and therefore much more robust to changes in
the base language from a logical point of view�

��

Secondly� the abstraction mechanism is very limited� Indeed� either every component of a record is known
�in the case of an explicit term or of a constant� or every component is hidden �in the case of a variable or an
opaque constant��� For instance� the product of two vectorial spaces is de�ned only if their �eld component
is the same� This restriction is easily expressed in our system where we can de�ne a module as

functor�V� � ��vectorial space���
functor�V� � ��vectorial space with K�E � V��K�E� K� � V��K� � � � ���� � � �

But� it is very di�cult to de�ne such a functor in a record�based formalism since there is no way to express
that two given �eld are convertible� One could of course think of de�ning a notion of K�vectorial space� but
this would require the addition of one parameter for each function on vectorial space�
Moreover� separate compilation of non�closed code fragments is not possible� Indeed� one sometimes

needs the de�nition of a term in order to type�check an expression e� but the only way to know a component
of a record is to know the whole record� hence it has to be compiled before e is checked� On the contrary�
our notion of speci�cation allows us to give in an interface �le a speci�cation containing only the level of
details needed from the outside of a module�

� Conclusion

We propose a module system for Pure Type Systems� This module system can be seen as a typed lambda�
calculus of its own� since it enjoys the subject reduction property� This system has several desirable proper�
ties�

 it is independent of the considered PTS� hence should be robust to changes in the base type system
�addition of inductive types for instance��

 it is powerful enough to handle usual mathematical operations on usual structures�

 it is strongly normalizing�

 it is conservative with respect to the considered Pure Type System� especially it does not introduce
any logical inconsistency�

 type inference is decidable provided the ��reduction in the considered PTS is strongly normalizing thus
allowing an e�ective implementation of it�

 it allows true separate compilation of non�closed code fragments�

Our approach also brings several new issues�
Firstly� it would also be interesting to see which mechanisms are needed for helping the user search

through module libraries� The work done in
Rou��� Rou��� DC��
 may be of great interest in this respect�
Another issue is how to integrate proof�assistant tools in our module system� Thus� it would be interesting

to add tactics components to modules helping the user by constructing proof�terms in a semi�automatic way�
Similar work has been done for the IMPS prover
FGT��
� each theory comes together with a set of macetes
that are speci�c tactics for a proof in this theory� A similar idea can be found in the prover CiME
CM��
�
where the user may declare he is in a given theory in order to get associated simpli�cation rules�
It would also be interesting to see how far the idea of independence with respect to the base language

can be formalized� In order to adapt the system of
Cou��
 to PTS� we had to deal with ��equivalence
and the interaction of ��reduction with ��reduction� is it possible to give an abstract notion of equivalence
on a base language� and general conditions allowing to extend this base language with modules �one may
especially think of the Calculus of Constructions with Inductive Types and the associated ��reduction� or of
the Calculus of Constructions with �
�equivalence rule for conversion�����

�It should be noticed that Jones �Jon	
� proposed a way to solve this problem in a programming language with records and
the ability to de�ne abstract types� but this approach applies only in system where polymorphism is implicit and where types
do not depend on terms�

��

Finally� possible extensions of our system have to be studied� Allowing signature abbreviations as struc�
ture components may seem to be a slight extension� But� as pointed out in
HL��
� such an extension can lead
to subtype�checking undecidability if one allows abstract signature abbreviation components in signatures�
However� while one allows only manifest abbreviations� no problem arises� More generally� a challenging
extension is to add type signatures variables� type signatures operators�� � � without losing type inference
decidability� Another direction would be the addition of overloaded functors as in
Cas��� AC��
�
We also hope to implement soon ideas given in this paper in the Coq proof assistant�

References

AC��
 Mar��a Virginia Aponte and Giuseppe Castagna� Programmation modulaire avec surcharge et
liaison tardive� In Journ	ees Francophones des Langages Applicatifs� January �����

Bar��
 H� Barendregt� Lambda calculi with types� Technical Report ������ Catholic University Nijmegen�
����� in Handbook of Logic in Computer Science� Vol II�

Bou��
 Nicolas Bourbaki� El	ements de Math	ematique� Th	eorie des Ensembles� chapter IV� Hermann�
Paris� �����

Cas��
 G� Castagna� Surcharge� sous�typage et liaison tardive � fondements fonctionnels de la pro�
grammation orient	ee objets� Th�ese de doctorat� Laboratoire d	Informatique de l	Ecole Normale
Sup�erieure� January �����

CCF���
 C� Cornes� J� Courant� J��C� Filli!atre� G� Huet� P� Manoury� C� Mu"noz� C� Murthy� C� Parent�
C� Paulin�Mohring� A� Sa��bi� and B� Werner� The Coq Proof Assistant Reference Manual Version
����� Technical Report ����� INRIA� July �����

CH��
 T� Coquand and G� Huet� The calculus of constructions� Inf� Comp�� �����#���� �����

CM��
 Evelyne Contejean and Claude March�e� Cime� Completion modulo e� In Harald Ganzinger�
editor�
th International Conference on Rewriting Techniques and Applications� Lecture Notes in
Computer Science� Springer�Verlag� Rutgers University� NJ� USA�� July �����

Coq��
 Thierry Coquand� A meta�mathematical investigation of a Calculus of Constructions� Private
Communication� �����

Cou��
 Judica�el Courant� A module calculus enjoying the subject�reduction property� Research Report
RR ������ LIP� ����� Preliminary version�

DC��
 Roberto Di Cosmo� Isomorphisms of types� from ��calculus to information retrieval and language
design� Progress in Theoretical Computer Science� Birkhauser� ����� ISBN�������������X�

FGT��
 William M� Farmer� Joshua D� Guttman� and F� Javier Thayer� The IMPS User�s Manual� The
MITRE Corporation� �rst edition� version � edition� �����

GLT��
 Jean�Yves Girard� Yves Lafont� and Paul Taylor� Proofs and Types� volume � of Cambridge Tracts
in Theoretical Computer Science� Cambridge University Press� �����

HHP��
 Robert Harper� Furio Honsell� and Gordon Plotkin� A framework for de�ning logics� Journal
of the ACM� ���������#���� January ����� Preliminary version appeared in Proc� �nd IEEE
Symposium on Logic in Computer Science� ����� ���#����

HL��
 R� Harper and M� Lillibridge� A type�theoretic approach to higher�order modules with sharing�
In �
st Symposium on Principles of Programming Languages� pages ���#���� ACM Press� �����

HP��
 Robert Harper and Frank Pfenning� A module system for a programming language based on the
LF logical framework� Technical Report CMU�CS�������� Carnegie Mellon University� Pittsburgh�
Pennsylvania� september �����

��

Jon��
 Mark P� Jones� Using parameterized signatures to express modular structures� In ��rd Symposium
on Principles of Programming Languages� ACM Press� ����� To appear�

KSTar
 S� Kahrs� D� Sannella� and A� Tarlecki� The de�nition of Extended ML� a gentle introduction�
Theoretical Computer Science� To appear�

Ler��
 Xavier Leroy� Manifest types� modules� and separate compilation� In �
st symp� Principles of
Progr� Lang�� pages ���#���� ACM Press� �����

Ler��
 Xavier Leroy� Applicative functors and fully transparent higher�order modules� In ��nd Sympo�
sium on Principles of Programming Languages� pages ���#���� ACM Press� �����

Luo��
 Zhaohui Luo� Ecc� an extended calculus of constructions� In Proc� of IEEE �th Ann� Symp� on
Logic In Computer Science� Asilomar� California� �����

Mac��
 David B� MacQueen� Modules for Standard ML� Polymorphism� ����� ����� �� pages� An earlier
version appeared in Proc� ���� ACM Conf� on Lisp and Functional Programming�

MN��
 Lena Magnusson and Bengt Nordstr�om� The ALF proof editor and its proof engine� In Henk
Barendregt and Tobias Nipkow� editors� Types for Proofs and Programs� pages ���#���� Springer�
Verlag LNCS ���� �����

PM��
 C� Paulin�Mohring� Inductive de�nitions in the system Coq � Rules and Properties� In M� Bezem�
J�F� Groote� editor� Proceedings of the TLCA� �����

Pol��
 Robert Pollack� The Theory of LEGO� A Proof Checker for the Extended Calculus of Construc�
tions� PhD thesis� University of Edinburgh� �����

Rou��
 Fran$cois Rouaix� Alcool ��� Typage de la surcharge dans un langage fonctionnel� Th�ese� Universit�e
Paris VII� �����

Rou��
 Fran$cois Rouaix� The Alcool �� report� Technical report� INRIA� ����� Included in the distribu�
tion available at ftp�inria�fr�

Sai��
 Amokrane Saibi� ����� Private Communication�

San��
 Don Sannella� Formal program development in Extended ML for the working programmer� In
Proc� �rd BCS�FACS Workshop on Re�nement� pages ��#���� Springer Workshops in Computing�
�����

SP��
 P� Severi and E� Poll� Pure type systems with de�nitions� Lecture Notes in Computer Science�
���� �����

Tak��
 M� Takahashi� Parallel reductions in ��calculus� Technical report� Department of Information
Science� Tokyo Institute of Technology� ����� Internal report�

��

