Judica El

A module calculus for Pure Type Systems Preliminary version

Keywords: Module systems, PTS, higher-order type systems, subject-reduction, normalization, type inference R esum e

Several proof-assistants rely on the very formal basis of Pure Type Systems. However, some practical issues raised by the development of large proofs lead to add other features to actual implementations for handling namespace management, for developing reusable proof libraries and for separate veri cation of distincts parts of large proofs. Unfortunately, few theoretical basis are given for these features. In this paper we propose an extension of Pure Type Systems with a module calculus adapted from SML-like module systems for programming languages. Our module calculus gives a theoretical framework addressing the need for these features. We show that our module extension is conservative, and that type inference in the module extension of a given PTS is decidable under some hypotheses over the considered PTS.

Introduction

The notion of Pure Type Systems has been rst introduced by T erlouw and Berardi Bar91]. These systems are well-suited for expressing speci cations and proofs and are the basis of several proof assistants CCF + 95, Pol94, MN94, HHP93]. However, there is actually a gap between PTS and the extensions needed for proof assistants. Indeed, PTS are well-suited to type-theoretic study, but lack some features that a proof-assistant needs.

A rst practical expectation when specifying and proving in a proof assistant is for de nitions. Making a non-trivial proof or even a non-trivial speci cation in a proof assistant is often a long run task that would be impossible if one could not bind some terms to a name. The meta-theoretical study of de nitions and their unfolding, although not very di cult is far from being obvious it has been achieved for instance in SP94].

Another highly expectable feature when developing large proofs is for a practical namespace management. Indeed, it is often di cult to nd a new signi cant name for each theorem. In proof-assistants where proofs can be split across several les, a partial solution is to represent names as pre xed by the name of the le they are de ned in. Then, the user may either refer to a theorem by its long name, or give o n l y t h e s u x part which refers to the last loaded theorem with this su x.

Another one is the ability to parameterize a whole theory with some axioms. For instance, when de ning and proving sorting algorithms, it is very convenient t o h a ve the whole theory parameterized with a set A, a function ord : A ! A ! bool, and three axioms stating that ord is re exive, antisymmetric, transitive, total and decidable. This feature is implemented in the Coq proof-assistant through the sectioning mechanism CCF + 95]. In a given section, one may declare axioms or variables and use them. When the section is closed, these axioms and variables are discharged. That is, every theorem is parameterized by these hypothesis and variables. Thus, one does not have to explicitly parameterize every theorem by these hypothesis and variables.

However, this sectioning mechanism is not a de nite answer. Indeed, it does not allow to instantiate a parameterized theory. F or instance, once the theory of sorting algorithms has been proved, if one wants to use this theory for a given set and an ordering, one has to give the ve parameters describing the ordering each time he needs to use any of the results. In order to have a more convenient w ay to refer to these results, we h a ve to imagine a mechanism allowing the instantiation of several results at once.

Finally, proof assistants also raise the problem of separate veri cation. Thus, in proof-assistants such a s Coq, the veri cation of standard proof-libraries can take s e v eral hours. For the user, this is annoying if the proof-assistant needs to check them each time the user references them. Therefore, a feature allows to save and restore the global state of the proof-assistant o n d i s k t h us, standard libraries are checked once, then the corresponding state is saved, and users start their sessions with this state. But it is not possible to save all available libraries in a given state, because they would require too much memory. Rather, one would like to have a w ay to load only required libraries, but at a reasonable speed. Recently, the Lego and the Coq proof-assistants allowed to put theories they check i n to a compiled form. Such compiled forms can be loaded very fast | several seconds instead of several minutes or hours.

But the possibility o f s a ving proofs in compiled forms is not a true separate veri cation facility. In fact, we lack a notion of speci cation of a proof. Such a notion is desirable for three reasons. The rst one is this would provide a convenient w ay to describe what is proved in a given proof development. The second one is the user may like to give only a speci cation of a theory he needs to make a proof, in order to make his main proof rst, then prove the speci cation he needed. The third one is that would help in making proofs robust with respect to changes: indeed, it is sometimes di cult to predict whether a change in a proof will break proofs depending on it, since there is no clear notion of the speci cation exported by a g i v en le.

Some theorem provers already address some of these issue. Thus IMPS FGT95] implements Bourbaki's notion of structures and theories Bou70], allowing to instantiate a general theory on a given structure at once, getting every instantiations of theorems. Unfortunately, this notion is well-suited in a set-theoretic framework but less in a type-theoretic one.

The Standard ML programming language has a very powerful module system Mac85] that allows the de nition of parametric modules and their composition, although it does not support true separate compilation. This module system was adapted to the Elf implementation of LF HP92]. However, only the part of the SML module system that was well-understood from the semantic and pragmatic point of view was adapted, hence leaving out signi cant p o wer of SML. For instance, the sharing construct of SML had to be ruled out. This is annoying since this construct allows to express that two structures share a given component. For instance, it may be useful to make a theory over groups and mono ds that share the same base set. 1 Recent w orks on module systems however bring hope: Leroy Ler94, Ler95], Harper and Lillibridge HL94] presented \cleaner" variants of the SML module system, allowing true separate compilation since only the knowledge of the type of a module is needed in order to typecheck modules using it. Unfortunately, n o p r o o f of correctness was given for any of these system, thus preventing us to be sure their adaptation to a proof system would not lead to inconsistency. W e g a ve o n e i n a v ariant of these systems in Cou96].

However adaptation of these module systems to Pure Type Systems raises the problem of dealing with -equivalence that appears in the conversion rule of PTS. In this paper, we g i v e an adaptation of the system of Cou96] to Pure Type Systems. This system applies to the LF logical framework, the Calculus of Construction CH88], the Calculus of Constructions extended with universes Luo89]. We do not deal with the problem of adding inductive t ypes to these systems, but the addition of inductive t ypes as rstclass objects should not raise any problem as our proposal is quite orthogonal to the base language: as few properties of -reduction were needed to prove our results, they should also be true in a framework with inductive t ypes and the associated -reduction.

The remaining of this paper is organized as follows: we g i v e in section 2 an informal presentation of the desired features for a module system. Then, in section 3, we expose formally our system. In section 4 we give its meta-theory. W e compare our system with other approaches in section 5. Finally, w e give possible directions for future work and conclude in section 6.

Informal presentation

In order to solve the problem of namespace management, we add to PTS the notion of structure, that is, package of de nitions. An environment m a y n o w c o n tain structures declarations. These structures can even contain sub-structures, which m a y help in structuring the environment. In fact, many mathematical structures own sub-structures. Thus, the polynomial ring A X] o ver a ring A may be de ned as a structure having A as a component a mono d homomorphism may be de ned as a structure having the domain and the range mono ds as components et cetera.

In order to address the issue of robustness of proofs with respect to changes, we i n troduce a notion of speci cation. We require every module de nition be given together with a speci cation. A speci cation for a structure is a declaration of the objects the module should export, together with their types, and possibly their de nitions. The speci cation of a structure is called a signature of this structure. Then, the only thing the type-checker knows about a module in a given environment is its speci cation. The correction of a development is ensured as soon as for every speci cation, a module matching this speci cation is given. Let us consider an example. Assume we w ant t o w ork in the Calculus of Constructions, extended with an equality de ned on any set A, = A . Assuming is any g i v en term of type Set, w e can de ne a mono d structure on ! in the following way: From inside the de nition, components are referred to as E, e, op from outside, they must be referred to as M:E, M:e, M:op, . . . Notice that base is not visible outside the de nition of M since it is not declared in the signature. Only the de nition of M:E is known outside the module de nition, so that for instance no one can take advantage of a particular implementation of op. The declaration E : Set = ! is said to be manifest since it gives the de nition of E.

The naming convention M:S:c might become heavy when working on a given module. Therefore, in the SML module system, there is an open construct such that after an open M, a n y c o m p o n e n t c of M can be referred to as c instead of M:c. H o wever, this is only syntactic sugar, so we will not consider it in our theoretical study.

Since we wish to handle parameterized theories, we extend the module language in order to allow p arameterized modules. Then, one can develop for instance a general theory T of mono ds parameterized by a generic mono d structure, then de ne the module T M of the theory of the mono d M. P arameterized modules are built through the functor keyword, that is the equivalent o f a -abstraction at the module level, and of a 8-quanti cation at the module type level: . . . end = (T M) Functors are also interesting for the construction of mathematical structures. For instance, the product mono d of two generic mono ds can be de ned easily through a functor, then instantiated on actual mono ds.

Finally, before we g i v e a formal de nition of our system, it should be noticed that a name con ict can appear when instantiating a functor: as in -calculus, (y:x z)fx yg is not (y:y z), if f : functor(x : : : :)sig y = : : :z= x:n end then (f y) is not of type sig y = : : :z= y:n end The usual solution in -calculus is capture-avoiding substitutions that rename binders if necessary. Here, a eld of a structure can not be renamed since we w ant to be able to access components of a structure by their names. In fact, the problem is a confusion between the notion of component name and binder. Therefore, we modify the syntax of declarations and speci cations: declarations and speci cations shall be of the form x . y = : : :(or x . y : : : :or x . y : : : := : : :), the rst identi er being the name of the component and the second one its binder. This syntax has been proposed by Harper and Lillibridge in HL94]. They suggested pronouncing \." as \as". From inside a structure or signature, the component is referred by its binder, and from outside, it is referred by its name. Then, we a void name clashes by capture-avoiding substitutions. For instance, the mono d previously de ned could be written:

module M : sig E . E 0 : Set = !
e . e 0 : E 0 op . op 0 : E 0 ! E 0 ! E 0 assoc . assoc 0 : 8x y z : E 0 :(op 0 (op 0 x y) y) = E 0 (op 0 x (op 0 y z)) left neutral . left neutral 0 : 8x : E 0 :(op 0 e 0 x) = E 0 x right neutral . right neutral 0 : 8x : E 0 :(op 0 x e 0) = E 0 x end = : : : Of course, we shall allow x : t as a syntactic sugar for x . x : t (similarly for x = t).

A module calculus

We n o w formalize our previous remarks in a module calculus derived from the propositions of Ler94, Ler95, HL94, Cou96]. Notice that this syntax is an extension of the syntax of pre-terms in PTS, and that this extension is quite orthogonal to the syntax of these pre-terms. Since we i n tend to study the reductions of the module calculus, we shall distinguish -reductions at the level of the base-language calculus and at the level of the module calculus. Therefore we c a l l -reduction the -reduction at the level of module system. That is, -reduction is the least context-stable relation on the syntax such t h a t ((functor(x : M)m 1) m 2) ! m 1 fx i m 2 g. We de ne -equivalence as the least equivalence relation including the -reduction.

As for -reduction, we shall consider it as the least relation on terms such t h a t (v : e 1 :e 2 e 3) ! e 2 fv e 3 g e 1 ! e 0 1) (e 1 e 2) ! (e 0 1 e 2) e 2 ! e 0 2) (e 1 e 2) ! (e 1 e 0 2) e 1 ! e 0 1) v : e 1 :e 2 ! v : e 0 1 :e 2 e 2 ! e 0 2) v : e 1 :e 2 ! v : e 1 :e 0 2 e 1 ! e 0 1) 8 v : e 1 :e 2 ! 8v : e 0 1 :e 2 e 2 ! e 0 2) 8 v : e 1 :e 2 ! 8v : e 1 :e 0 2 That is, -reduction of a term can not be performed inside any module expression.

Context rules (E `ok):

`ok E `e :

2 Sv = 2 E E v : e `ok Typing rules (E `e : e 0): E v : e E 0 `ok E v : e E 0 `v : e E `ok (c) 2 A E `c : E `e : 1 E v : e `e0 : 2 (1 2 3) 2 R E 8 v : e:e 0 : 3 E `e1 : 8v : e:e 0 E `e2 : e E `(e 1 e 2) : e 0 fv e 2 g E v : e `e0 : e 00 E 8 v : e:e 00 :

2 S E ` v : e:e 0 : 8v : e:e 00 E `e : e 0 E `e00 :

2 SE `e0 e 00 E `e : e 00 Term equivalence (E `e e 0): e = e 0 E `ok E `e e 0 e = e 0 E `ok E `e e 0 (congruence rules omitted) Let S a set of constants called the sorts, A, a s e t o f p a i r (c) where c is a constant and 2 S , a n d R a set of triples of elements of S. The Pure Type System (PTS) determined by the speci cation (S A R) i s de ned in gure 1. Three kinds of judgments are de ned: a given environment i s w ell-formed, a given term is of a given type, and two g i v en terms are convertible. In order to build a module system over this PTS, we add rules given gures 2 and 3, that de ne the following new judgments: In these rules we m a k e use of the following de nitions. The rst one helps in introducing a eld of a module in the environment, the second one gives the set of elds de ned in a structure body and the third one gives the set of couples (names,identi er) appearing in a given structure: We n o w g i v e our main theoretical results about our module extension: this extension is sound since it is conservative, and if type inference is possible in a PTS, it is possible in its module extension.

Context formation (E `ok):

E `M modtype x = 2 BV(E) E module x : M `ok E `e : e 0 w = 2 BV(E) E w : e 0 = e `ok Module type and signature body formation (E `M modtype):

E `ok E ` modtype E module x : M `S modtype y = 2 N(S) E `module y . x : M S modtype E v : e `S modtype w = 2 N(S) E `term w . v : e S modtype E v : e = e 0 `S modtype w = 2 N(S) E `term w . v : e = e 0 S modtype E `S modtype E `sig S end modtype E `M modtype x = 2 BV(E) E module x : M `M0 modtype E `functor(x : M)M 0 modtype Module expressions (E `m : M) and structures (E `s : S):

E module x : M E 0 `ok E module x : M E 0 `x : M E `m : sig S 1 module x . y : M S 2 end E `m:x : Mfn m:n 0 j (n 0 n) 2 BV(S 1)g E module x : M `m : M 0 E `functor(x : M)M 0 modtype E `functor(x : M)m : functor(x : M)M 0 E `m1 : functor(x : M)M 0 E `m2 1 <: functor(x : M 2)M 0 2 E `M < : M 0 E `module x . y : M < : module x . y : M 0 E `e e 0 E `term v . w : e = e 00] <: term v . w : e 0 E `e1 e 0 1 E `w e 0 2 E `term v . w : e 1 = e 2] <: term v . w : e 0 1 = e 0 2 Term equivalence (E `e e 0): E 1 w : e = e 0 E 2 `ok E 1 w : e = e 0 E 2 `w e 0 E `m : sig S 1 term v . w = e S 2 end E `m:v efn m:n 0 j (n 0 n) 2 BV(S 1)g E `m:t : T E `m0 :t : T m and m 0 have the same head variable c for all m i , m 0 i argument o f c in m, m 0 with type M i , E `mi m 0 i : M i E `m:t m 0 :t Module equivalence (E `m m 0 : M): E `m : sig D 1 : : : D n end E `m0 : sig D 1 : : : D n end 8i 2 f 1 : : : n g D i = term v . w : e = e 0) E `m:v m 0 :v D i = module x . y : M) E `m:x m 0 :x : Mfn m:n 0 j (n 0 n) 2 BV(sig D 1 : : : D n end)g E `m m 0 : sig D 1 : : : D n end E `m : functor(x : M 1)M 2 E `m0 : functor(x : M 1)M 2 E module x i : M 1 `(m x i) (m 0 x i) : M 2 E `m m 0 : functor(x : M 1)M 2 We n o w focus on reductions in the module language. We g i v e our results rst, then explain brie y at the end of this subsection how w e p r o ved them.

Theorem 1 (subject reduction for -reduction) If E `m : M, and m ! m 0 , t h e n E `m0 : M. Theorem 2 (Con uence of -reduction) The -reduction is con uent. Theorem 3 (Strong normalization for -reduction) The -reduction is strongly normalizing.

However, -reduction in itself is not very interesting. Indeed, modules expressions are very often in -normal form. Instead, we can study what happens when we unfold modules and terms de nitions, that is, what happens when we a d d t o -reduction the -reduction de ned as the least context-stable relation such that struct s 1 term v . w : e = e 0 s 2 end:v ! efn struct s 1 type v . w : e = e 0 s 2 end:n 0 j (n 0 n) 2 BV(s 1)g struct s 1 module x . y : M = m s 2 end:x ! mfn struct s 1 module x . y : M = m s 2 end:n 0 j (n 0 n) 2 BV(s 1)g

In an empty e n vironment, a -normalizing expression struct s end:result normalizes to a term where no module construct appears: -normalization is a way to transform any expression of a Pure Type System extended with modules into a term of the corresponding Pure Type System.

We h a ve the following results:

Theorem 4 (Subject reduction for reduction) If E `m : M, a n d m ! m 0 , t h e n E `m0 : M. Theorem 5 (Con uence of -reduction) The -reduction is con uent. Theorem 6 (Strong normalization for -reduction) The -reduction is strongly normalizing.

As a consequence of theorem 6, we h a ve:

Theorem 7 (Conservativity of the module extension) In the empty environment, a type T of a PTS is inhabited if and only if it is inhabited i n i t s m o dule extension.

For both reduction notions, con uence properties are proved with the standard Tait and Martin-L of's method Tak93]. Subject reduction for and is proved as usual (substitution property and study of possible types of a functor).

In this proof, we h a ve in particular to prove the following proposition:

Proposition 1 If E `M modtype and E `((functor(x : M 0)m) x i) : M then E `((functor(x : M 0)m) x i) m : M This proposition implies that two -equivalent modules of a given type are equal for this type.

As for theorems 3 and 6, strong normalization is proved rst for a typing system `w that is weaker than `, obtained by requiring that signatures in a subtype relation have the same number of components (m = n in the subtyping rule for signatures). Thus, sig term v . w : f = e term t . u : f 0 = e 0 end is a subtype of sig term v . w : f term t . u : f 0 = e 0 end but not of sig term v . w : f end.

We can do for `w a proof similar to Coq87] for the Calculus of Constructions (in fact, we only need the part of the proof concerning dependent t ypes): we de ne a notion of full premodel for our calculus (that is, an in nite set of constants such that for every module type built upon this set there is a constant o f t h a t type in this set), and interpret the terms of our calculus in such a w ay t h a t e v ery interpretation of a module type is strongly normalizing, and the interpretation of a module type is the set of module expressions of this type.

The case of `is then handled by the study of explicit coercions. These proofs are not detailed because of their lengths.

Context rules (E `A ok):

`A ok E `A e :

2 Sv = 2 E E v : e `A ok Typing rules (E `A e : e 0): E v : e E 0 `A ok E v : e E 0 `A v : e E `A ok (c) 2 A E `A c : E `A e : 1 E v : e `A e 0 : 2 (1 2 3) 2 R E `A 8v : e:e 0 : 3 E `A e 1 : 8v : e:e 0 E `A e 2 : e 00 E `A e e 00 E `A (e 1 e 2) : e 0 fv e 2 g E v : e `A e 0 : e 00 E `A 8v : e:e 00 :

2 S E `A v : e:e 0 : 8v : e:e 00 Term equivalence (E `A e e 0): e = e 0 E `ok E `A e e 0 e = e 0 E `ok E `A e e 0 (congruence rules omitted)

Figure 4: Type inference in a PTS

Type inference

In this subsection, we i n tend to give a t ype inference algorithm for our module extension. A su cient condition for the ty p e o f a g i v en term to be unique up to -equivalence in a given PTS is that the PTS is singly sorted2 . A su cient condition in such PTS for type inference to be decidable is strong normalization of -reduction, since term equivalence can then be decided by comparison of normal forms of terms. A type inference system for such PTS is given gure 4. Therefore, we shall in this subsection consider only singly-sorted PTS such that -reduction is strongly normalizing. It is to be noticed that the module extension preserves strong normalization of -reduction.

In order to obtain a type inference algorithm, we p r o vide in gures 5 and 6 an inference system which runs in a deterministic way for a given module expression except for term comparison (where two main rules plus re exivity, symmetry, transitivity and context stability m a y lter the same terms). We show i n subsection 4.2.1 that this system gives the most general type of a given module expression if this expression is well-typed. Then we give in subsection 4.2.2 a procedure to decide if two t ypes of the base-language are in the comparison relation. Finally, w e state in subsection 4.2.3 that this algorithm stops even if the given module is ill-typed.

The inference system is obtained from the one given gures 2 and 3 in the usual way b y m o ving subsumption and strengthening rules in the application rule, and a notion of -reduction of a type is added in order to orient the equality b e t ween a eld of structure and the corresponding declaration in its signature.

Soundness and completeness

Theorem 8 (Soundness) If E `A m : M then E `m : M (and thus E `m : M=m) i f E `A M < : M 0 then E `M < : M 0 i f E `A e e 0 then E `e e 0 .

Context formation (E `A ok):

E `A M modtype x = 2 BV(E) E module x : M `A ok E `A e : e 0 w = 2 BV(E) E w : e 0 = e `A ok Module type and signature body formation (E `A M modtype):

E `A ok E `A modtype E module x : M `A S modtype y = 2 N(S) E `A module y . x : M S modtype E v : e `A S modtype w = 2 N(S) E `A term w . v : e S modtype E v : e = e 0 `A S modtype w = 2 N(S) E `A term w . v : e = e 0 S modtype E `A S modtype E `A sig S end modtype E `A M modtype x = 2 BV(E) E module x : M `A M 0 modtype E `A functor(x : M)M 0 modtype Module expressions (E `A m : M) and structures (E `A s : S):

E module x : M E 0 `A ok E module x : M E 0 `A x : M E `A m : sig S 1 module x . y : M S 2 end E `A m:x : Mfn m:n 0 j (n 0 n) 2 BV(S 1)g E module x : M `A m : M 0 E `functor(x : M)M 0 modtype E `A functor(x : M)m : functor(x : M)M 0 E `A s : S E `A (struct s end) : (sig S end) E `A ok E `A : E `A m 1 : functor(x : M)M 0 E `A m 2 : M 00 E `A M 00 =m 2 <: M E `A (m 1 m 2) : M 0 fx m 2 g E `A e : e 0 v = 2 BV(E) E v : e 0 = e `A s : S w = 2 N(s) E `A (term w . v = e s) : (term w . v : e = e 0 S) E `A m : M x = 2 BV(E) E module x : M `A s : S y = 2 N(s) E `A (module y . x : M = m s) : (module y . x : M S) E 1 w : e = e 0 E 2 `A ok E 1 w : e = e 0 E 2 `A w ! e 0 E `A m : sig S 1 term v . w = e S 2 end E `A m:v ! efn m:n 0 j (n 0 n) 2 BV(S 1)g Module equivalence (E `A m m 0 : M):

E `A m : N E `A N=m <: sig D 1 : : : D n end E `A m 0 : N 0 E `A N 0 =m 0 <: sig D 1 : : : D n end 8i 2 f 1 : : : n g D i = term v . w : e = e 0) E `A m:v m 0 :v D i = module x . y : M) E `A m:x m 0 :x : Mfn m:n 0 j (n 0 n) 2 BV(sig D 1 : : : D n end)g E `A m m 0 : sig D 1 : : : D n end E `A m : N E `A N=m <: functor(x : M 1)M 2 E module x i : M 1 `A (m x i) (m 0 x i) : M 2 E `A m m 0 : functor(x : M 1)M 2 Proof: Induction on the derivation. Theorem 9 (Completeness) If E `m : M, then there exists a unique M 0 such that E `A m : M 0 and E `A M 0 =m <: M. Thus M 0 =m is the principal type o f m. I f E `M < : M 0 then E `A M < : M 0 i f E `e e 0 then E `A e e 0 . Proof: Induction on the derivation.

Term normalization

To compare two t ypes, we shall give a notion of type normalization in our system in order to have for each type a canonical form. The rst notion coming to mind is -normalization. However, this does not work thus in environment E x : functor(x : sig term v . v 0 : e end)sig term u . u 0 : e 0 end where f : e, the expressions (x ((functor(x : sig end)struct term v . v 0 = f end) struct end)):u and (x struct term v . v 0 = f end):u are in -normal form, and syntactically distinct though they are easily proved equivalent: E `A ((functor(x : sig end)struct term v . v 0 = f end) struct end) struct term v . v 0 = f end : sig term v . v 0 end However, we shall see that we c a n a l w ays proceed in this way to compare types, that is, -normalizing them rst, then comparing recursively modules expressions that are arguments of the head variable. Then, we m a y w onder whether this process always terminates or not. In order to answer this question, we rst give the following de nition:

De nition 1 (-reducible terms and -reducible modules for a given module type) In an environment E, we say a module m is -reducible for module type M if E `m : M, and one of the following cases is veri ed: M = sig D 1 : : : D n end, for all i such that D i = term v . v 0 = e], m:v is -reducible and for all i such that D i = module x . x 0 : N, m:x is -reducible for type Nfn m:n 0 j (n 0 n) 2 BV(D 1 : : : D i;1)g M = functor(x : M 1)M 2 , a n d m(x) is -reducible for type M 2 in E module x : M 1 A term e is said to be -reducible if and only if it is strongly -normalizing and its -normal is -reducible. A -normal term e is said to be -reducible if and only if one of the following cases is veri ed: e = (e 1 e 2) and e 1 and e 2 are -reducible e = v : e 1 :e 2 and e 1 and e 2 are -reducible e has form (: : : ((xm 1 : : : m i):x 1 n 1 : : : n j) : : :):v where t h e a r guments m 1 : : : m i : : : n 1 : : : n j : : :of the head variable x are -reducible for types expected b y x (x m 1) : : : . Notice the expression \its normal form" is justi ed by the easily proved con uence of -reduction. We then have the following results:

Theorem 10 (Term -reducibility) If E `A m : M then m is -reducible for M i f E `A e : e 0 then e is -reducibility.

Secondly, the abstraction mechanism is very limited. Indeed, either every component of a record is known (in the case of an explicit term or of a constant) or every component is hidden (in the case of a variable or an opaque constant)3 . F or instance, the product of two v ectorial spaces is de ned only if their eld component is the same. This restriction is easily expressed in our system where we can de ne a module as functor(V 1 : <<vectorial space>>) functor(V 2 : <<vectorial space with K:E = V 1 :K:E K:+ = V 1 :K:+ : : : >>) : : : But, it is very di cult to de ne such a functor in a record-based formalism since there is no way to express that two given eld are convertible. One could of course think of de ning a notion of K-vectorial space, but this would require the addition of one parameter for each function on vectorial space.

Moreover, separate compilation of non-closed code fragments is not possible. Indeed, one sometimes needs the de nition of a term in order to type-check an expression e, but the only way t o k n o w a component of a record is to know the whole record, hence it has to be compiled before e is checked. On the contrary, our notion of speci cation allows us to give i n a n i n terface le a speci cation containing only the level of details needed from the outside of a module.

Conclusion

We propose a module system for Pure Type Systems. This module system can be seen as a typed lambdacalculus of its own, since it enjoys the subject reduction property. This system has several desirable properties:

it is independent of the considered PTS, hence should be robust to changes in the base type system (addition of inductive t ypes for instance) it is powerful enough to handle usual mathematical operations on usual structures it is strongly normalizing it is conservative with respect to the considered Pure Type System, especially it does not introduce any logical inconsistency type inference is decidable provided the -reduction in the considered PTS is strongly normalizing thus allowing an e ective implementation of it it allows true separate compilation of non-closed code fragments. Our approach also brings several new issues. Firstly, i t w ould also be interesting to see which m e c hanisms are needed for helping the user search through module libraries. The work done in Rou90, Rou92, DC95] may be of great interest in this respect.

Another issue is how t o i n tegrate proof-assistant tools in our module system. Thus, it would be interesting to add tactics components to modules helping the user by constructing proof-terms in a semi-automatic w ay. Similar work has been done for the IMPS prover FGT95]: each theory comes together with a set of macetes that are speci c tactics for a proof in this theory. A similar idea can be found in the prover CiME CM96], where the user may declare he is in a given theory in order to get associated simpli cation rules.

It would also be interesting to see how far the idea of independence with respect to the base language can be formalized. In order to adapt the system of Cou96] t o P T S , w e had to deal with -equivalence and the interaction of -reduction with -reduction is it possible to give an abstract notion of equivalence on a base language, and general conditions allowing to extend this base language with modules (one may especially think of the Calculus of Constructions with Inductive T ypes and the associated -reduction, or of the Calculus of Constructions with -equivalence rule for conversion...).

Finally, possible extensions of our system have to be studied. Allowing signature abbreviations as structure components may seem to be a slight extension. But, as pointed out in HL94], such an extension can lead to subtype-checking undecidability if one allows abstract signature abbreviation components in signatures. However, while one allows only manifest abbreviations, no problem arises. More generally, a c hallenging extension is to add type signatures variables, type signatures operators,. . . without losing type inference decidability. Another direction would be the addition of overloaded functors as in Cas94, A C96].

We also hope to implement soon ideas given in this paper in the Coq proof assistant.

 z : E:(op (o p x y) y) = E (op x (op y z)) left neutral : 8x : E:(op e x) = E x right neutral : 8x : E:(op x e) base ! base: x : base:(f (g x)) assoc = : : : left neutral = : : : right neutral = : : : end This de nition adds to the environment a module M of the given signature. Signatures are introduced by the keyword sig, structures by struct. Both are ended by t h e k eyword end.

 module T : functor(M : <<monoid signature>>) sig unique left neutral : 8x : M:E:(8y : M:E:(M:op x y) = M:E y) ! (x = M:E M:e) instantiate the general theory on a given module as follows: module T M : sig unique left neutral : 8x : M:E:(8y : M:E:(M:opxy) = M:E y) ! (x = M:E M:e)

 = term v 1 . v 2 = e term de nition j module x 1 . x 2 : M = m module de nition Module type : M ::= sig S end signature type j functor(x : M 1)M 2 functor type Signature body : S ::= j D S Signature component : D ::= term v 1 . v 2 : e term declaration j term v 1 . v 2 : e 1 = e 2 manifest term declaration j module x 1 . x 2

Figure

 Figure 1: PTS rules

E

 1 is a subtype of M 2 E `m = m 0 : M considered as modules of type M, m and m 0 are de ning equal terms

 term v . w : e = w : e term v . w : e = e 0 = w : e = e 0 module x . y : M = module y : M N(term v . w = e s) = fvg N(s) N(module x . y : M = m s) = fxg N(s) N() = BV() = BV(term v . w : e = e 0] s) = f(v w)g BV(s) BV(module x . y :M s) = f(x y)g BV(s) BV(E v : e = e 0]) = fvg BV(E) BV(E module x : M) = fxg BV(E)Following Ler94, Ler95], one typing rule for modules makes use of the strengthening M=m of a module type M by a module expression m: this rule is a way to express the \self" rule saying that even if the component v of a module m is declared as abstract, one knows that this component is equal to m:v, a n d may add this information to the type of m. The strengthening operation is de ned as follows:(sig S end)=m = sig S=m end (functor(x : M 1)M 2)=m = functor(x : M 1)(M 2 =m(x)) =m = (D S)=m = D=m (S=m) (term v . w :e)=m = term v . w :e=m:v (term v . w : e 1 =e 2)=m = term v . w : e 1 =e 2 (module x . y : M)=m = module x . y : (M=m:x) 4 Meta-theory

 Figure 2: Typing rules

Figure

 Figure 3: Typing rules

Figure 5 :

 5 Figure 5: Type inference system

Figure 6 :

 6 Figure 6: Type inference system

Plusieurs assistants de preuves sont fond es sur les Syst emes de Types Purs (PTS). Cependant, des consid erations pratiques provenant d u d eveloppement de grandes preuves conduisent a ajouter aux impl ementations des m ecanismes permettant une gestion rationnelle des noms, le d eveloppement de biblioth eques de preuves r eutilisables, et la v eri cation s epar ee des di erentes parties d'un gros d eveloppement. Alors que la correction des PTS utilis es est th eoriquement bien fond e, ces m ecanismes sont e n r e v anche peu etudi es, alors qu'ils peuvent mettre en p eril la correction de l'ensemble de l'outil de d emonstration. Pour r epondre a ce probl eme, nous proposons dans ce rapport une extension des PTS par un syst eme de modules similaire a celui de SML pour le langage de programmation ML. Notre syst eme de modules donne un cadre th eorique rigoureux pour l' etude des m ecanismes que nous avons cit es. Nous montrons que l'extension propos ee est conservative, et que l'inf erence de type est d ecidable moyennant quelques hypoth eses raisonnables sur le PTS consid er e.Mots-cl es: Syst emes de modules, PTS, syst emes de types d'ordre sup erieur, autor eduction, normalisation, inf erence de type

This research w as partially supported by the ESPRIT Basic Research Action Types and by the GDR Programmation co nanced by MRE-PRC and CNRS.

The mathematical structure of rings is de ned as the data of a group and a mono d that share the same base set, and verify some other conditions (distributivity).

The PTS determined by the speci cation (S A R) i s s a i d singly-sorted or functional if and only if the relations c 7 ! for (c) 2 A and (1 2) 7 !

for (1 2 3) 2 R are functional.

It should be noticed that Jones Jon96] p r o p o s e d a w ay t o s o l v e this problem in a programming language with records and the ability to de ne abstract types, but this approach applies only in system where polymorphism is implicit and where types do not depend on terms.

Sketch of proof: First, we can prove that we can deal only with -normalization instead of -normalization in the de nition of -reducible terms. This can be done because of strong normalization of -reduction together with the fact that if e -reduces to e 0 , the -normal form of e -reduces to the -normal form of e 0 . Then, the proof can be done by de ning a reducibility notion as in GLT89] for the simply-typed lambda-calculus.

Then we h a ve t o c heck that normalization is a way to compare base-language types:

Lemma 1 For all terms e and e 0 such that E `A e e 0 , -normal forms of e and e 0 have the same head variables moreover eld selections and arguments applied to these variables are e qual (for the expected t y p es for the head variables).

Proof: By induction on the derivation of the equality.

Termination

We h a ve seen that we h a ve a w ay to compare well-formed type. We n o w o n l y h a ve to see that we h a ve a typing algorithm, i.e. an algorithm which stops even if the given module is ill-typed.

Theorem 11 The `A gives a type inference algorithm, terminating on every module expression. Therefore, type inference for the module system is decidable.

Proof: Typing rules terminates, since the size of module expressions we w ant to infer the type of are decreasing and the subtyping test needed for the application rule is only performed between well-formed module types.

Comparison with other works

Compared to the module system of Elf HP92], our system is much more powerful, because of manifest declarations. Moreover, we can give a proof of its consistency through the study of reductions. Finally, w e are not aware of separate compilation mechanism for the module system of Elf. Extended ML San90, K S T a r] i s a v ery interesting framework for developing SML modular (functional) programs together with their speci cation and the proof of their speci cation. However, it is not as general as provers based on PTS can be for developing mathematical theories. Moreover, we are not aware of any proof of consistency of the EML approach.

Another way to structure a development and make parameterized theories is to add dependent record types to PTS. In systems with dependent sum types such as the Extended Calculus of Construction Luo89], or inductive t ypes such as the Calculus of Construction with Inductive T ypes PM93], this is quite easy, a n d is more or less a syntactic sugar Sai96]. This approach h a ve s o m e a d v antages over ours.

Firstly, functors are represented by functions from a record type to another. Therefore, there is no need for speci c rules for abstraction and application of modules, since they are only particular cases of the type system rules.

Secondly, h a ving \modules" as rst-class citizens allows powerful operations since it gives the \module" language the whole power of the base language. For instance, one can de ne a function taking as input a natural n and a mono d structure M and giving back as output the mono d M n . Such a function has to be recursive whereas a functor cannot be recursive in our approach.

However the module-as-record approach su ers severe disadvantages. Firstly, the addition of records may be di cult from a theoretical point of view. Indeed, too powerful elimination schemes can make a system logically inconsistent. For instance, Russel's paradox can be formulated in the Calculus of Construction where one can have records of type Set having a set as only component if strong elimination i s a l l o wed. Hence, records are mainly useful in systems with a universes hierarchy, s u c h as the Calculus of Construction with Inductive T ypes and Universes, or the Extended Calculus of Construction. Thus, the conceptual simplicity of the record approach is lost with the complexity of universes. On the other hand, our system is orthogonal to the considered PTS, and therefore much more robust to changes in the base language from a logical point of view.