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Abstract

In this paper we extend� by allowing rank � intersection types� the type assign�
ment system for the detection and elimination of dead code in typed functional
programs presented by Coppo et al Giannini and the �rst author in the Static
Analysis Symposium ���� The main application of this method is the optimiza�
tion of programs extracted from proofs in logical frameworks� but it could be
used as well in the elimination of dead code determined by program special�
ization� This system rely on annotated types which allow to exploit the type
structure of the language for the investigation of program properties� The de�
tection of dead code is obtained via annotated type inference� which can be
performed in a complete way� by reducing it to the solution of a system of in�
equalities between annotation variables� Even though the language considered
in the paper is the simply typed ��calculus with cartesian product� if�then�else�
�xpoint� and arithmetic constants we can generalize our approach to polymor�
phic languages like Miranda� Haskell� and CAML�

Keywords� Intersection Types� Dead�Code Analysis� Annotated Types

R�esum�e

Dans ce papier nous �etendons� en permettant des types intersections de rang
�� un syst�eme d�inf�erence de types pour la d�etection et l��elimination du code
mort dans les programmes fonctionnels typ�es pr�esent�e par Coppo et al dans
le Static Analysis Symposium ���� La principale application de cette m�ethode
est l�optimisation de programmes extraits de preuves� mais il peut aussi bien
�etre utilis�e pour l��elimination du code mort produit par la sp�ecialisation de pro�
grammes� Ce syst�eme repose sur des types annot�es qui permettent d�exploiter la
structure des types du langage pour trouver des propri�et�es sur un programme�
La d�etection du code mort est obtenue via un syst�eme d�inf�erence de types�
L�inf�erence peut �etre r�ealis�e en r�eduisant le probl�eme �a la solution d�un sys�
t�eme d�in�egalit�es entre les variables d�annotations� Bien que le langage consid�er�e
soit le ��calcul simplement typ�e �etendu par le produit cart�esien� le if�then�else�
le point �xe et des constantes arithm�etiques� nous pouvons g�en�eraliser notre
approche aux langages polymorphes tels que Miranda� Haskell et CAML�

Mots�cl�es� Types intersection� analyse de code mort� types annot�es
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Abstract� In this paper we extend� by allowing rank � intersection types� the
type assignment system for the detection and elimination of dead code in typed
functional programs presented by Coppo et al in the Static Analysis Sympo�

sium ���� The main application of this method is the optimization of programs
extracted from proofs in logical frameworks� but it could be used as well in the
elimination of dead code determined by program specialization� This system
rely on annotated types which allow to exploit the type structure of the lan�
guage for the investigation of program properties� The detection of dead code
is obtained via annotated type inference� which can be performed in a com�
plete way� by reducing it to the solution of a system of inequalities between
annotation variables� Even though the language considered in the paper is the
simply typed ��calculus with cartesian product� if�then�else� �xpoint� and arith�
metic constants we can generalize our approach to polymorphic languages like
Miranda� Haskell� and CAML�

Introduction

Types have been recognized as useful in programming languages because they provide a
semantical 
context dependent� analysis of programs� Such analysis can be incorporated
in the compiling process� It is used on one side to check the consistency of programs
and on the other to improve the e�ciency of the code produced�
In addition to prevent run�time errors� type systems can characterize run�time prop�

erties of programs� For instance intersection types� see ��� 
and also ���� in their full
generality� provide a characterization of normalization�
Type systems tailored to speci�c analysis� such as strictness� totality� binding time

etc� have been introduced� see ��� ��� �� ��� ��� ��� ��� ���� In this perspective types
represent program properties and their inference systems are systems for reasoning for�
mally about them� In this paper we keep a clear distinction between the type structure
of the language 
types in the usual sense� and the annotated types 
�non standard�
types� which represent� inside the type structure of the language� particular properties�
This distinction is very useful from a theoretical point of view� see ��� �� ���� as well
as in the design of both checking algorithms� see ��� ���� and inference algorithms�
see ��� ���� Type based analyzers rely on an implicit representation of types� either via
type inequalities� see ���� or via lazy 
implicit� types� see ���� In this paper we pursue
the �rst approach� reducing the annotated type inference problem to the solution of a
system of inequalities between annotations on types�
Type analysis is also used in the area of program extraction from formal proof�

see �� �� ��� �� �� ���� The programs extracted from proofs are usually very ine�cient� as
they contain parts that are useless for the computation of the �nal result� they therefore
require some sort of simpli�cation� One of the more e�ective simpli�cation techniques
is the �pruning�� and has been developed by Berardi� see ��� In this technique useless
terms 
also called �dead code�� are discovered by analyzing the type of terms� The
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method was improved in �� 
see also �� Chap� �� with the use of type inclusion� an
application is well typed if the argument has a type included in the input type of the
corresponding function� The optimization algorithm proposed in �� is rather di�cult
to understand and this makes its correctness proof even more di�cult to follow�
In �	� is presented a type inference system for detecting �dead code�� and an al�

gorithm that simpli�es ��terms based on the system of ��� The method presented in
the paper is much more self�evident than the original one� The language considered
is the simply typed ��calculus with a primitive recursor over natural numbers� pairs
and arithmetic constants� The idea is to start from a typed term and to decorate it
by properties 
called re�nement or annotated types� that indicate whether or not a
subterm is dead code� To this aim two annotations for the basic type nat 
the type
of natural numbers� are introduced� The �rst� �nat corresponds to the idea that the
value may be used� and so could only be replaced with a term with the same behavior

observationally equivalent�� The second� �nat� corresponds to the fact that the value
is not used� and so it does not matter what the term is 
it could be any closed term of
the same type�� These properties are propagated to higher types�
For instance� if a function of type nat � nat has the properties �nat � �nat or
�nat � �nat then the whole term will not be used� The property �nat � �nat� instead�
informally represents the set of all the terms of type nat � nat which yield a useful
output whenever applied to an argument which is not used for the computation of this
output 
like �xnat�Q where x does not occur in Q�� In other words� �nat � �nat char�
acterizes all the functions of type nat � nat that don�t use their argument� Finally�
the property �nat � �nat does not contain any information about dead code�
The soundness of the system and of the optimizing transformation induced is proved
via a partial equivalence relation semantics of the annotated types� showing that the
optimized programs are observationally equivalent to the original ones�
Let us consider a simple example� Let M � 
�xnat���P where P is a term of type
nat� Since x is not used in the body of the lambda we can assign the annotated type
�nat � �nat to �xnat��� so we discover that P is not useful for the computation of M
and could be replaced by any constant of the right type�
In this paper� we extend the annotated type inference system of �	� by allowing

rank � intersection 
see ���� of annotated types�
To see the usefulness of this extension� consider the term�

N � 
�f �nat�nat��nat�nat�f
�xnat���P � f
�ynat�y�Q� 
�znat�nat�z� �

it is easy to see that the subterm P is dead code� To prove this by the annotated type
assignment system we need to assign the annotated type �� � 
�nat � �nat�� �nat �
�nat to the �rst occurrence of f in the body of the ��abstraction� On the other hand�
since Q is useful to the computation of the �nal value of N � we are forced to assign the
annotated type� �� � 
�nat � �nat� � �nat � �nat to the the second occurrence of f
in the body of the ��abstraction�
The two annotated types �� and �� are not comparable using the type inclusion relation
of �	�� i�e�� in the language of properties considered in �	� there is not a property �

that implies both them� So with the system of �	� it is not possible to prove that P
is dead code� since for doing this is necessary to assume such a property � for the ��
abstracted variable f � As we will see� the system proposed in the present paper allows
to assume the intersection 
or conjunction� of �� and �� for f � and so allows to prove
that P is dead code�
The �rst section of this paper introduces the language we are dealing with and

its semantics� Section � presents the rank � annotated type assignment system� In the
third section we introduce a code simpli�cation based on annotated type information� in
particular we show that a term and its simpli�ed version are observationally equivalent�
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Section � presents an algorithm for inferring annotated typings of terms� The algorithm
is complete� i�e�� given a term� it allows to �nd all the dead code that can be detected
by using the annotated type assignment system of Sect� ��

� A Typed Functional Language and its Semantics

In this section we introduce a typed functional language 
basically the simply typed
��calculus with cartesian product� if�then�else� �xpoint� and arithmetic constants� and
its operational semantics� The set of types is de�ned assuming as basic types nat and
bool� the set of naturals and the set of booleans� Types are ranged over by �� �� ���

De�nition� �Types�� The language of types 
T � is de�ned by the following grammar�
� ��� � j �� � j �� �� where � � fnat� boolg�

Typed terms are de�ned from a set of typed term constants

K � f �nat� �nat� � � � succnat�nat� pred nat�nat� �nat�nat�nat� �nat�nat�nat� � � �

true bool� false bool� not bool�bool� � bool�bool�bool� and bool�bool�bool� � � �

� nat�nat�bool� �nat�nat�bool� � � � g �


ranged over by C�� and a set V of typed term variables 
ranged over by x�� y� � � � ���
The type of a constant C is denoted by T 
C�� Typed terms� ranged over byM � N � � � ��
are de�ned as follows�

De�nition� �Typed terms�� We write �T M � �� and say that M is a typed term
of type �� if �M � � is derivable by the rules in Fig� ��

�Var	 � x� � � �Con	 � C� � �

�� I	 �M � �
� �x ��M � �� �

�� E	 �M � �� � � N � �
�MN � �

��I	
� M� � �� � M� � ��
� hM��M�i � �� � ��

��Ei	
�M � �� � ��
� �iM � �i

i � f�� �g

�Fix	 �M � �
� fixx ��M � �

�If	 � N � bool �M� � � �M� � �
� if N thenM� elseM� � �

�Case	 � N � nat �M � � � F � nat� �
� case�N�M�F 	 � �

�It	 � N � nat �M � � � F � �� �
� it�N�M�F 	 � �

�Rec	
� N � nat �M � � � F � nat� �� �

� rec�N�M�F 	 � �

Fig� �� Rules for term formation

The program constructors case� it and rec have been included in view of an application
to the optimization of terms extracted from proofs� Note that with this notation we
explicitly mention in M the types of all its variables and constants� In the following
we often omit to write types which are understood� The set of free variables of a term
M � denoted by FV 
M �� is de�ned in the standard way�
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As usual a substitution is a �nite function mapping term variables to terms� denoted
by x� �� N�� � � � � xn �� Nn�� which respects the types� i�e�� each x

�i
i is substituted by

a term Ni of the same type� Substitution acts on free variables� the renaming of the
bound variables is implicitly supposed�
Let 	T be the set of the terms� i�e�� 	T � fM j �T M � � for some type �g� and 	�T

be the set of the closed terms� i�e�� 	�T � fM j M � 	T and FV 
M � � �g� Following
Kahn� see ���� we de�ne the values of terms in 	�T via a standard operational semantics
described by judgments of the formM � K� whereM is a closed term and K is a closed
canonical term� i�e�� K � K � f�x��N j �x��N � 	�Tg � fhM��M�i j hM��M�i � 	�Tg�
Assume that any functional constant has a type of the shape �� � �� or ����� � ��� for
some ��� ��� �� � fnat� boolg� The meaning of a functional constant C is given by a set
mean
C� of pairs� i�e�� if 
P�� P�� � mean
C� then CP� evaluates to P�� For example

�� �� � mean
succ� and 
h�� �i� �� � mean
���

De�nition� �Value of a term�� We write M � K if this statement is derivable by
using the rules in Fig� ��

�CAN	 K � K �FIX	
M �x �� fixx�M � � K

fixx�M � K

�APP	
M � �x�P P �x �� N � � K

MN � K �PROJi	
P � hM��M�i Mi � K

�iP � K
i � f�� �g

�IF�	
N � true M� � K

if N thenM� elseM� � K
�IF�	

N � false M� � K
if N thenM� elseM� � K

�CASE�	
N � � M � K

case�N�M�F 	 � K
�CASE�	

N � n F n � K
case�N�M�F 	 � K

n �� �

�IT�	
N � � M � K
it�N�M�F 	 � K

�IT�	
N � n F �it�predn�M�F 		 � K

it�N�M�F 	 � K
n �� �

�REC�	
N � � M � K
rec�N�M�F 	 � K

�REC�	
N � n F n �rec�pred n�M�F 		 � K

rec�N�M�F 	 � K
n �� �

�APP�	
M � C N � C�

MN � C�
�C�� C�	 �mean�C	

�APP�	
M � C N � hN��N�i N� � C� N� � C�

MN � C�
�hC�� C�i� C�	 �mean�C	

Fig� �� �Natural semantics� evaluation rules

Let M � mean that for some K� M � K� We are interested in observing the behavior
of terms at the ground level� so� as in Pitts �	�� we consider the congruence on terms
induced by the contextual preorder that compares the behavior of terms just at the
ground type nat� Let 
C ���� denote a typed context of type � with a hole of type
� in it� Let M and N be terms of type �� De�ne M �obs N whenever� for all closed
contexts 
C ���nat� if CM � and CN � are closed terms� then CM � � implies CN � ��
Let �obs be the equivalence induced by �obs� 
As shown in �	� such equivalence can
also be de�ned directly as a bisimilarity��
The closed term model M of 	T is de�ned by interpreting each type � as the set

of the equivalence classes of the relation �obs on the closed terms of type �� Let I
��
denote the interpretation of type � in this model� and M � denote the equivalence class

�



of term M � For each type �� fix x��x� is the least element� w�r�t� �obs� of I
��� An
environment is a mapping e � V �

S
��T I
�� which respects types� i�e�� such that� for

each x�� e
x�� � I
��� The interpretation of a termM in an environment e is de�ned in a
standard way by� M ��e � M x� �� N�� � � � � xn �� Nn��� where fx�� � � � � xng � FV 
M �
and Nl� � e
xl� 
� 	 l 	 n��

��� Dummy Terms

For each type �� we consider a dummy term 
� of type �� Intuitively dummy terms
should be considered as special terms without operational meaning� In fact� they are
not present in the original programs� but 
as we will show� they are introduced by the
dead code elimination algorithm presented in Sect� �� that replaces all the maximal
subterms that are proved to be dead code by dummy terms of the proper type� So�
each occurrence of a dummy term in a program is dead code� and this justi�es the
claim that dummy terms have not operational meaning� they are simply placeholders
for some dead code removed�
To ensure that the output of the optimization algorithm is a well typed term� we

extend the term formation rules of Fig� � by the following rule�



�
� � T

� 
� � �
�

Remark� Despite to the claim above� for technical reasons� in the proof of the correct�
ness of the dead code elimination algorithmO of Sect� � 
see in particular Theorem ����
we will deal with terms containing occurrences of dummy terms that are not dead code�
So we have to associate an operational meaning to dummy terms� This can be easily
done� In fact� since the evaluation rules in Fig� � do not mention dummy terms� we get
that� for every type �� 
� 
�� This means that the dummy term 
� is observationally
equivalent to the divergent computation of type �� i�e�� 
�� � fix x��x�� �

� A Type Assignment for Detecting Dead Code

In this section we introduce a 
non standard� type assignment system for detecting
useless code in typed terms� Starting from a typed term we want to be able to repre�
sent dead code information about this term� To this aim we de�ne two annotations of
the basic types� �� and �� 
� � fnat� boolg�� which represent� respectively� the notion of
values of type � which are 
possibly� necessary or 
certainly� useless for the determi�
nation of the �nal value of a computation� I�e�� we identify �� with �possibly	 live and
�� with dead� Annotated types are de�ned from fa� j a � f�� �g and � � fnat� boolgg
following the type construction rules� Moreover� to get more expressivity� we allow the
use of intersection at rank ��

��� Annotated Types

De�nition� �Rank 	 annotated types�� The language L� of annotated rank 
 in�
tersection types 
a�
�types for short�� ranged over by �� is de�ned by the following
grammar� � ��� a� j �� � j �� �� where a � f�� �g and � � fnat� boolg�

Let �
�� denote the T type obtained from the annotated type � by removing all the
annotations a � f�� �g� i�e�� by replacing each occurrence of �� and �� with �� Moreover�
if � is a type and a � f�� �g� let a
�� denote the annotated type obtained from � by
replacing each occurrence of any basic type � by a�� For instance�

����nat � nat	� nat� nat	� nat	 � ���nat � �nat	� �nat � �nat	� �nat �

�



De�nition
 �Rank � annotated types�� The language L� of annotated rank � in�
tersection types 
a���types for short�� ranged over by �� is de�ned by�

L� �
�

��T

f�� � � � � � �n j n  �� ��� � � � � �n � L�� and �
��� � � � � � �
�n� � �g �

One can note the restriction �
��� � � � � � �
�n�� which is not usual for standard inter�
section types� It intuitively corresponds to the fact that each �i represents a property
of a same term� For example� the term I � �xnat�nat�x� of type 
nat � nat� �
nat � nat� can be assigned both the a�	�types �� � 
�nat � �nat� � �nat � �nat

and �� � 
�nat � �nat�� �nat � �nat� So it can be passed as argument to a function
requiring an input satisfying the property �� � ���

De�nition� �Rank � annotated types�� The language L� of annotated rank � in�
tersection types 
a���types for short�� ranged over by � is inductively de�ned by�

� � � L�� if � � L��
� � �  � L�� if � � L� and and  � L��
� � � � � L�� if �� � � L��

Notice that L� � L�� L� � L�� and L� � L� � L��
Since a�types are properties of terms� in the following we will use the words a�type
and property interchangeably� The notation �
�� introduced above naturally extends to
a���types and a���types� �
�� and �
� denote respectively the 
standard� type obtained
from the a���type � and the a���type  by removing all the annotations a � f�� �g and
by keeping just the �rst component of each intersection� For instance�

������nat � �nat	� �nat � �nat	 � ��	nat � �nat	� 	nat � �nat		� �nat	 �
��nat� nat	� nat� nat	� nat �

Intuitively� an a���type  � ���� � ���n � � � L� such that �
� � �� �� represents
the set of all functional terms of type �� �� sending an input satisfying �� � � � � � �n
into an output satisfying ��
The informal meaning of a�types is formalized by interpreting each a�type  as a

partial equivalence relation 
p�e�r� for short� over the interpretation of the type �
��
i�e�� the set of equivalence classes of closed terms of type �
� with respect to �obs� Let
� denote the cartesian product of sets and M � denote the equivalence class of M in
�obs�

De�nition �Semantics of annotated types�� �� The interpretation �� of an a�
��type is de�ned by�

������ � fh�N �� �N �i j �N � � I�
	g ��	��� � I�
	� I�
	 ���� � ���� � ������� ������

��� � ��� � fh�M �� �N �i j �h�P �� �Q�i � ������h�MP �� �NQ�i � �����g �

where the interpretation ��� of an a���type � � �� � � � � � �n is de�ned by�

����� �
T

��i�n��i�� �

�� By �� we denote the p�e�r� �� on I
�
�� and by �� we denote the p�e�r� ��� on
I
�
����

��annotated types 
��a�types for short� and ��annotated types 
��a�types � respec�
tively formalize the notions of not being and of 
possibly� being relevant to the com�
putation� i�e�� of being or 
possibly� not being dead code� at higher types�

�



De�nition� ���a�types and ��a�types�� �� The set L�
� of ��a���types is the subset

of L� containing only � annotations�
The sets L�

� of ��a�	�types and L
�
� of ��a���types are de�ned in the same way�

�� The set L�
� of ��a���types is inductively de�ned by�

� �� � L�
�� if � � fnat� boolg�

� � �  � L�
�� if � � L� and  � L�

��
� � � � � L�

� � if �� � � L�
��

The sets L�
� of ��a�	�types is de�ned by L

�
� � L�

��L
�� and the set L�

� of ��a���types
is de�ned by�

L�
� �

�

��T

f�� � � � � � �n j n  �� ��� � � � � �n � L�
�� and �
��� � � � � � �
�n� � �g �

Note that� if  is an ��a���type� then �� � I
�
���I
�
��� i�e�� �� is the p�e�r� which
relates all pairs of elements of I
�
��� The same holds for ����types�
We now introduce a notion of inclusion between a���types� denoted 	�� � 	� �

means that � is less informative then �� i�e�� that ��� � ���� The 	� inclusion
relation is de�ned on the top of the inclusion relation for a�	�types� 	�� This choice
is justi�ed by the key role played by the 	� inclusion in the syntax directed a�type
assignment system in Sect� ��

De�nition� �Inclusion relations 	� and 	��� �� Let ��� �� � L�� We write �� 	�

�� to mean that �� 	� �� is derivable by the rules in Fig� �� and we write �� ��� ��
if both �� 	� �� and �� 	� �� hold�

�� Let �� � � L�� We write � 	� � to mean that � 	� � is derivable by the
rules in Fig� �� and we write �

��� � if both � 	� � and � 	� � hold�
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� � ��

���	
� 	� 

�
� � 	� 

�
�

� � � 	� 
�
� � ��

Fig� �� Inclusion rules for a���types
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Fig� �� Inclusion rules for a���types

It is immediate to show that both 	� and 	� are re�exive and transitive� and that they
behave in the same way on L�� i�e�� for all �� �� � L�� � 	� �

� if and only if � 	� �
��

With �����
we the denote the ����equivalence class of the a�	�type �� similarly for ����

Notice that� if � and � are ��a���types such that �
�� � �
��� then �
��� ��

Moreover� for all �� � � L�� � 	� � implies �
�� � �
���

�



The 	� relation between annotated types is sound w�r�t� the interpretation� indeed�
the following theorem holds�

Theorem�� �Soundness of 	��� � 	� � implies ��� � ����

��� Annotated Type Assignment System

Annotated types are assigned to 	T terms by a set of type inference rules� If x� is a
term variable of type �� an assumption for x� is an expression of the shape x� � �� or
x � � for short� where � � L�� and �
�� � �� A basis is a set � of a�types assumptions for
term variables� The functions �
��� �
�� and �
�� de�ned above are extended to bases�
More precisely� �
�� � fx� j x� � �g is the set of term variables which occur in �

and� for any �nite set � of term variables� �
� � and �
� � denote respectively the basis
fx� � �
�� j x� � �g and fx� � �
�� j x� � �g� We will prove judgments of the form
� �L M� where �
M�� is a typed term of type �
� whose free variables are in �� i�e��
such that �T �
M�� � �
� and �
�� � FV 
M �� We use this notation since it allows
to attach an a�type to all subterms of M � Note the di�erence with the more usual
notation � �L M �  in which this is not possible�
For each constant C an a�	�type L
C�� such that �
L
C�� � T 
C�� is speci�ed� For
example� for all integers n� L
n� � �nat and L
�� � �nat � �nat � �nat� In the
following we require� as it is indeed natural� that L
C� 	� � implies either � ��� L
C�
or � � L�

��

De�nition�� �A�type assignment system �L�� An a�typing statement is an ex�
pression � �L M� where � is a basis containing an assumption for each free variable
of M � �� x � �� � � � �� �n denotes the basis � � fx � �� � � � ���ng where it is assumed
that x does not appear in �� We write � �L M� to mean that � �M� can be derived
by the rules in Fig� ��

If � �L M� then M� has written in it the a�types assigned to its subterms� We say
that M� is an annotated term� Note that� being �L an inference system� the same
terms can have di�erent annotations�

Remark� �� Note that the 	� inclusion relation is only used in the rules 
If� and

Case�� In all the other rules the 	� inclusion su�ces�

�� It is worth mentioning that� in the rule 
� E�� the condition

 
� L�
� implies �i � f�� � � � � ng��

�
i 	� �i �

is used instead of
�i � f�� � � � � ng���i 	� �i �

This is done to take into account the fact that� if �� � � � �� �n �  is an ��a�type
then ��� � � � � �n can be any a�	�types such that �
��� � � � � �
�n� � �
���� � � � � �
�
��n��

�� The ��sequence N��

� � � � � � N��

n � in the rule 
� E�� is just a way of storing n

decorations of the argument of an application� These decorations correspond to
di�erent uses of the argument in the function� Indeed� as pointed out in the remark
at the end of Sect� ���� the code duplication is not necessary and can easily be
avoided in the implementation of the a�type inference algorithm of Sect� �� �

The functions �
��� �
��� and �
��� de�ned for annotated types in Sect� ���� can naturally
be extended to annotated terms� �
M�� in particular is simply the term M� in which
each ��sequence has been replaced by its �rst component and all the a�type annotations
have been erased� The proof of the following fact is immediate�

�



�Var	 i 	� 
�
i

��x � � � � � � � n � x
��

i

� 	 i 	 n �Con	
L�C	 	� 

� � C�

�� I	 ��x � � � � � � � n �M
�

� � ��x��������n �M�	
��������n��

�� E	

� �M��������n�� � � N��

� � � � � � N��

n

�i � f�� � � � � ng�� �� L�
� implies �i 	� i

� � �M��������n���N��

� � � � � �N��

n 		
�

��I	 � �M�
�� � �M�

��

� � hM�
�� �M�

�� i
�����

��Ei	
� �M�����

� � ��iM
����� 	

�i
i � f�� �g

�Fix	
��x �  �M�

� � �fixx��M�	
� �If	

� � N�bool � � M�
�� � �M�

��

�� 	� � �� 	� �

� � �if N�bool thenM�
�� elseM�

��	
�

�Case	

� � N�nat � �M�� � � Fanat���

�� 	� � �� 	� �

� � case�N�nat �M�� � Fanat��� 	
�

�It	

� � N�nat � �M�� � � F�����

� 	�  � � � 	� � 

� � it�N�nat �M�� � F����� 	
�

�Rec	

� � N�nat � �M�� � � Fanat������

� 	�  anat � � � � 	� �
nat � � 

� � rec�N�nat �M�� � Fanat������ 	
�

Fig� �� Rules for a�type assignment

Fact ��� �� � �L M� implies �T �
M�� � �
� and �
�� � FV 
M ��
�� �T M � � implies for a � f�� �g a
FV 
M �� �L a
M ��

To state the soundness of the a�type assignment system w�r�t� the semantics we
introduce the following de�nition�

De�nition��� �� Two environments e�� e� are ��related if and only if� for all x �
�� � � � � � �n � �� e�
x� ���������n e�
x��

�� Let � �L M� and � �L N�� We write �
M�� ��
� �
N�� to mean that for all e��

e�� if e� and e� are ��related� then �
M����e� �� �
N����e� �

Now we can state the main theorem for p�e�r� interpretation� which is standard 
in
various forms� in the literature� The proof of the following theorem is by induction on
terms�

Theorem�� �Soundness of �L�� Let � �L M�� Then �
M�� ��
� �
M���

Let us now identify a subset of a�typings for which the ��
� relation implies the �obs

relation�

De�nition�
 �Faithful a�type assignment�� � �L M� is a faithful a�type assign�
ment statement if � � L�

� � and for all x � �� � � � � � �n � �� n � � and �� � L�
� � L�

��

�



The correctness proof of the optimization mappings of Sect� � rely on the following
theorem�

Theorem��� Let � �L M� and � �L N� be faithful a�typings� Then �
M�� ��
�

�
M�� implies �
M�� �obs �
N���

Remark� The condition of being a faithful a�type assignment is simply the translation
in our framework of the condition introduced by Berardi in �� to �nd dead code�
Namely� in the Berardi�s type assignment system a subterm is dead code if once removed

replaced by a dummy constant having a special type� corresponding to our ��a�types�
the global type of the term is unchanged� More precisely� in a faithful a�type assignment�
the fact that the global a�type of the term is in L�

�� re�ects the Berardi�s requirement
that all the basic types that occurs in the global type are considered as useful� �

� Dead Code Elimination

In this section we introduce an optimization mapping O that� given an annotated term
M�� returns an optimized version of �
M���
To de�ne the optimization mapping we introduce� following ��� a notion of pruning

and an operation of least upper bound on the set of terms 	T �

De�nition� �Pruning relation�� Let �T M � � and �T N � �� We say that M is a
pruning of N � and write M �prune N � ifM can be obtained from N by replacing some
subterms by dummy constants of the corresponding type�

De�nition�� �Operation sup�� �� Let �T M � �� M� �prune M � and M� �prune

M � Then sup
M��M�� is the term de�ned by the clauses in Fig� ��
�� Let �T M � ��M� �prune M � � � � � Mn �prune M � 
n  �� Then sup
M�� isM� and�
for n  �� sup
M�� � � � �Mn� is short for sup
� � � sup
sup
M��M���M�� � � � �Mn��

Theorem��� Let �T M � �� The set

fM � jM � �prune Mg �

with the order relation �prune is a �nite lattice with bottom 
� and top M � The oper�
ation sup of De�nition �� is the join of the lattice�

Let 	L be the set of all annotated terms which are de�ned according to De�ni�
tion ��� i�e�� 	L � fM� j � �L M� for some a���type  and basis �g�

De�nition�	 �Optimization mapping O on terms�� �� The function

O � 	L � 	T

is de�ned by the clauses in Fig� ��
�� If � is a basis then

O
�� � fx	���� j x � �� � � � � � �n � �� n  � and �i � f�� � � � � ng��i 
� L�
�g�

The fact that the optimization mapping produces well typed terms is stated by the
following proposition�

Proposition��� If � �L M� then �T O
M�� and O
�� � FV 
O
M����

The following result can be proved using the a�type semantics�

�	



sup�M�� �	 � sup�� ��M	 �M �

sup�C �� C �	 � C �

sup�x �� x �	 � x �

sup�hM��M�i� hN��N�i	 � hsup�M��N�	� sup�M��N�	i
sup��iM��iN	 � �isup�M�N	� where i � f�� �g
sup�M�M��N�N�	 � sup�M��N�	sup�M��N�	
sup��x ��M� �x ��N	 � �x ��sup�M�N	
sup�fixx ��M� fixx ��N	 � fixx ��sup�M�N	
sup�if M thenM� elseM�� if N thenN� elseN�	 �

if sup�M�N	 then sup�M��N�	 else sup�M��N�	
sup�case�M�P�F 	� case�N�Q�G		 � case�sup�M�N	� sup�P�Q	� sup�F�G		
sup�rec�M�P�F 	� rec�N�Q�G		 � rec�sup�M�N	� sup�P�Q	� sup�F�G		

Fig� �� Operation sup

O�M�	 � ������ if � � L�
�

otherwise�

O�C�	 � C����

O�x�	 � x����

O�hM�
�� �M�

�� i
����� 	 � hO�M�

�� 	�O�M�
��	i

O���iM
����� 	

�i	 � �iO�M
�����	� where i � f�� �g

O��M��������n���N��

� � � � � �N��

n 		
�
	 � O�M��������n��	sup�O�N��

� 	� � � � �O�N��

n 		

O���x��������n �M�	
��������n��

	 � �x������O�M�	

O��fixx��M�	
�
	 � fixx�����O�M�	

O��if N�bool thenM�
�� elseM�

�� 	
�

	 � if O�N�bool	 thenO�M�
��	 elseO�M�

�� 	

O�case�N�nat �M�� � Fanat��� 	
�

	 � case�O�N�nat	�O�M�� 	�O�Fanat��� 		

O�it�N�nat �M�� � F����� 	
�

	 � it�O�N�nat	�O�M�� 	�O�F����� 		

O�rec�N�nat �M�� � Fanat������ 	
�
	 � rec�O�N�nat	�O�M�� 	�O�Fanat������ 		

Fig� �� Mapping O on terms

Theorem��� If � �L M� then for each termN  O
M�� �prune N implies �
M�� ��
�

N �

Note that� since the �prune relation is re�exive� we have in particular that �
M
�� ��

�

O
M��� This result is especially interesting when the typing of M is faithful since�
from the above theorem and Theorem ��� we get that if � �L M� is a faithful a�
typing statement then �
M�� and O
M�� are observationally equivalent�

Theorem�	� Let � �L M� be a faithful typing� Then �
M�� �obs O
M���

Example �� Let �T M � nat where FV 
M � � fu�nat� u�natg and M �

��f �nat�nat��nat�nat�
�hf ��xnat�	u�� f ��y

nat�y	 u�i	
��znat�nat�z	 �

Note that M is very similar to the term N considered in the Introduction� the only

��



di�erences are the use of the pre�x notation for the operator � and the replacement
of the subterm P and Q by the free variables u� and u��
Let �� � 
�nat � �nat� � �nat � �nat and �� � 
�nat � �nat� � �nat � �nat�

It is easy to check that � �L M ��
nat

is a faithful a�typing� where 
writing� for short� �

and � instead of �nat and �nat�� � � fu�� � u� �g and M �� �

���f����� �
�������h��f����x� ��	���	���u�� 	

�� ��f����y� �y�	���	���u��	
�i���	�	�������

���z��� �z���	��

�
��z����z���	�� 		� �

Applying the O optimization mapping we get O
M ��� �

��f �nat�nat��nat�nat�
�hf ��xnat�	�nat� f ��ynat�y	 u�i	

��znat�nat�z	 �

where �T O
M ��� � nat� and FV 
�
O
M ����� � O
�� � funat� g � �

� An Algorithm for Annotated Type Inference

In this section we deal with the problem of de�ning a complete inference algorithm for
the annotated type assignment system �L� To this aim the main problem is to use the
inference rules to detect a faithful decoration showing the maximum amount of dead
code� i�e�� assigning an ��a�type to all the maximal subterms that can be proved to
be dead code by the system� The application of the optimization function O is then
trivial�
The algorithm rely on a syntax directed version of the a�type assignment system

�L which avoids free use of the assumptions and uses only the 	� inclusion relation�
To de�ne the new system we need some preliminary notations�

De�nition�� �Operation ��� Let �� �� be two basis� then ���� denotes the basis

fx � � � �� j x � � � � and x � �� � ��g
�fx � � j x � � � � and x 
� ��g � fx � �� j x � �� � �� and x 
� �g �

De�nition�
 �Sets L
p��� For every natural number p� let L
p� denote the set of
the a���types of the shape

�� � � � � � �p � � �

where ��� � � � � �p � L� and � � L��

In the judgments of the syntax directed a�type assignment system there are two basis�
the �rst contains a set of variables for which it is allowed to assume only a�	�types 
and
not a���types�� while the second contains exactly the free variables of the term that
does not occur in the �rst one� Moreover each judgment is parameterized by a natural
number p� The idea is that� if the judgment � �� ��p� M� holds� then  � L
p��

De�nition�� �Syntax directed a�type assignment system�� Let � denote a ba�
sis containing only assumption of the shape x � �� where � � L�� and let p be a natural
number� We write � �� ��p� M� if � �� ��p� M� can be derived by the rules in Fig� ��

Fact �
� Let � �� ��p� M�� Then  � L
p� �
� ���
�� � � and �
�� � FV 
�
M��� �
�
� � � �
���

��



The notion of faithful typing for the system ��p� is given by the following de�nition�

De�nition�� �Faithful �����type assignment�� � � � ���� M� is a faithful �����type
assignment statement if � � L�

�� and for all x � �
� � � � �� � L�

� � L�
� �

The relation between the a�type assignment system �L of De�nition �� and its syntact
directed formulation ��p� is stated by the following theorem�

Theorem��� �� � �� ��p� M� implies � �� �L M��
�� Let �T M � �� Then for each faithful a�typing of M  � �L M �� there is a faithful
�����typing of M  � � � ���� M ��� such that O
M ��� � O
M �����

�Varp��� 	  	� 
�

�� x � �  ��p� x�
� �Varp��� 	  	� 

�

� � fx � g ��p� x�
� x �� �

�Conp��	
L�C	 	� 

� �  ��p� C�
�� Ip��� 	

�� x � �� ���� M��

� �� ���� ��x��M��

	
����

�� Ip��� 	 � ���x � � � � � � � n �
�p��� M�

� �� ��p� ��x��������n �M�	
��������n��

�� Ip��� 	 � �� ��p��� M�

� �� ��p� ��x��M�	
��� x �� � ��

�� Ep��	

� �� ��p��� M��������n�� � ��� �
��� N��

� � � � � ��n �
��� N��

n

� �� L�
� implies �i � f�� � � � � ng��i 	� i

� �� ��� � � � � � �n �
�p� �M��������n���N��

� � � � � �N��

n		
�

��Ip��	 � ��� �
�p� M�

�� � ��� �
�p� M�

��

� ��� ��� �
�p� hM�

�� �M�
��i

�����
��Ep��

i 	 � �� ��p� M�����

� �� ��p� ��iM
����� 	

�i
i � f�� �g

�Fixp��	 �� x � �� ���� M�

� �� ��p� �fixx��M�	
�

�If p��	

� �� ���� N�bool � ��� �
�p� M�

��������p��� � ��� �
�p� M�

��
�
�������p���

� 	�  � 	� 

� �� ��� ��� �
�p� �if N�bool thenM�

�� elseM�
�� 	

����
�

�
������p��

�

p��

�Casep��	

� ��� ��p� M��������p��� � ��� ��p� F
a�

nat�����an
nat���

�
�������p���

� �� ���� N�nat anat 	� a�
nat � � � anat 	� an

nat � 	�  � 	� 

� �� ��� ��� �
�p� case�N�nat �M�� � Fanat��� 	

����
�

�
������p��

�

p��

�Itp��	

� �� ���� N�nat � ��� �
��� M�� � ��� �

��� F�����

� 	�  � � � 	� � 

� �� ��� ��� �
�p� it�N�nat �M�� � F����� 	

�

�Recp��	

� �� ���� N�nat � ��� ���� M�� � ��� ���� Fanat������

� 	�  anat � � � � 	� �
nat � � 

� �� ��� ��� �
�p� rec�N�nat �M�� � Fanat������ 	

�

Fig� �� Rules for ��p��type assignment
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Using the technique described in �	�� we can develop an algorithm that� given a well
typed term� returns a decoration of the term containing annotation variables and a set
of constraints involving annotation variables� The output of the algorithm characterizes
all the possible faithful �����typings of the term� more precisely� any solution of the set
of constraints corresponds to a faithful �����typing� and vice versa� Moreover� the set
of constraints has a maximal solution� i�e�� a solution corresponding to a �����typing
showing all the dead code that can be proved using the type assignment system �����
This solution can be found in an e�ective way�
We start by de�ning the notions of a�type pattern and a�type scheme�

��� Annotated Type Schemes

De�nition�	 �Annotated type patterns�� Let A be the set of annotation vari�
ables� ranged by �� � � � � � � ��

�� The language P � of a�
�type patterns 
a�
�patterns for short�� ranged over by �� is
de�ned from the grammar of De�nition � by replacing a � f�� �g by � � A� i�e�
� ��� �� j � � � j � � �� where � � A and � � fnat� boolg�

�� The language P � of a���type patterns 
a���patterns for short�� ranged over by ��
is de�ned according to the clauses of De�nition � by replacing a�	�types by a�	�
patterns�

�� The language P � of a���type patterns 
a���patterns for short�� ranged over by �� is
de�ned according to the clauses of De�nition � by replacing a�	�types and a���types
by a�	�patterns and a���patterns�

The function � � L� � L� � L� � T is extended in the obvious way to a�patterns�

De�nition�� �Constraints�� A constraint is a formulaof one of the following shapes�

� �� � ��
� �� v ��
� 
� in G�� E

where ��� �� � f�g � A� G is a �nite not empty subset of f�g � A and E is a �nite set
of constraints�

The symbol� denotes the equality on the set of annotations f�� �g� while v denotes the
order relation de�ned by� � v �� � v � and � v �� A constraint is simply an equality
or an inequality 
between annotation variables or the constant ��� or a guarded set of
constraints� For instance� the set of constraints

f �� v ��� 
� in f��� ��g�� f�� v ��� �� v �g g

can be read as ��� v �� and if �� � � or �� � �� then �� v �� and �� v ���

De�nition�� �Annotated type schemes�� An a���type scheme is a pair h�� Eiwhere
� is an a���pattern and E is a �nite set of constraints�

An a���type scheme h�� Ei represents the set of a���types that can be obtained from
the pattern � by replacing annotation variables with annotations in such a way that
the constraints in E are satis�ed� A�types and a�typings can be obtained from patterns
by instantiation�

De�nition�� �Renamings and instantiations�� �� A renaming is a one�to�one
mapping r � A � A�

�� An instantiation is a mapping i � A � f�� �g�

��



Both renaming and instantiation can be extended to annotation constants 
by de�ning
i
a� � a and r
a� � a� for a � f�� �g� and to a�types and patterns 
in the obvious way��
For example� i
�nat � �nat� � i
��nat � i
��nat� Of course� for any a�type  � L��
i
� �  and r
� � �

De�nition��� Let h�� Ei be an a���scheme� An instantiation i satis�es E if

� �� � �� � E implies i
��� � i
���� and
� �� v �� � E implies i
��� v i
���� and
� 
� in G�� E � � E implies that� if � � i
G�� then i satis�es E ��

The set of all the instantiations that satisfy E is denoted by sat
E�� An a���scheme
h�� Ei represents all the a���types i
��� for any i � sat
E��

De�nition�
� Let i�� i� be instantiations� We write i� v i� if� for all � � A� i�
�� v
i�
���

Fact 	�� Let E be a �nite set of constraints� The sets sat
E� is not empty and has a
maximum element�

Example �� Consider the sets of constraints�

E � f ��in��	� � E� � E� � E��
f��inf�	g	� f��
 v �	� �� v ���� ��inf�
g	� f�� v �
� �� v ��gg�
��inf�	g	� f��
 v �	� �� v ���� ��inf�
g	� f�� v �
� �� v ��gg g 	 g

E� � f ��in��	�
f��inf��g	� f �� v �� �	 v �g�
��inf��	g	� f ��� v ����

��inf��	g	� f ��inf��	g	� f �	 v ��	� �
�
� v ���

��inf��g	� f�� v ���� �
�
� v ��gg

��inf��g	� f �� v ���� �
�
� v ��ggg

��inf��	g	� f ��� v ����
��inf��	g	� f ��inf��	g	� f �	 v ��	� �

�
� v ���

��inf��g	� f�� v ���� �
�
� v ��gg

�� v ��� ��inf��g	� f�� v ���� �
�
� v ��ggg

��	 v ��� �
�
	 v �	

g g
E� � f ��in�
�	� f�
 v ��
� �

�
� v ��g g

E� � f ��in�
�	� f�
 v ��
� �
�
� v ��g g

E � � f ��inf��g	� f�� � �g� ��inf��g	� f�� � �g� �� � � g �

To �nd the maximum element i of sat
E � E �� observe that from the last constraint
of E we get i
��� � �� Then from the �rst constraint of E� we get i
��� � i
��� � ��
By proceeding in this way we �nally get that� for each � � A� i
�� � � if and only if
� � I� where

I � f��� �
�
�� �	� �

�
	� ��� �
� �

�

�

��� �
�
�� ��� �

�
�� ��� �

�
�� �	� �

�
	� ��� ��� ��� �

�
�� �
� �

�

�

��� �
�
�� ��� �	� �� g �

So i de�ned by� i
�� � � if � � I and i
�� � � otherwise� is the maximuminstantiation
in sat
E � E ��� �

The ��p��type inference of a term is reduced to the solution of a �nite set of constraints�
A maximal instantiation then corresponds to a faithful �����typing that shows the
maximal amount of dead code� The algorithm for �nding the maximal instantiation i
that satis�es a �nite set of constraints E is presented in natural semantics style using

��



judgments E � I� where I is the set of annotation variables that represents i� i�e�� such
that � � I if and only if i
�� � �� The idea is simply that of recognizing� following the
equalities and the inequalities� all the annotation variables that are forced to represent
�� All other annotation variables are then replaced by � in the maximal solution�

De�nition� �Constraints solution�� Let E be a �nite non empty set of constraints�
We write E � I to mean that this judgment is derivable by the rules in Fig� ��

�STOP 	 no other rule can be applied
E � 

�GUARD	 E � E �� � I � � G
E � f�� in G	� E ��g� I

��	
f��� ��g � f�� �g E������ I

E � f�� � ��g� I � f�g
�v	

E������ I
E � f� v �g� I � f�g

Fig� 	� �Natural semantics� rules for constraints solution

It is easy to see that� given a �nite set of constraints E � we can �nd I such that E � I
in a time linear in the number of constraints which occur in E �

Proposition	�� Let E be a �nite set of constraints� Then E � I if and only if I
represents the maximum of sat
E��

��� An Algorithm to Infer Annotated Types

To de�ne the algorithm we need some preliminary notations� By newa
� we denote a
	�ary function that� whenever called� returns a fresh annotation variable�
Let � be a type� By fresh
�� we denote an a�	�pattern obtained from � by an�
notating each occurrence of any basic type in � with a fresh annotation variable�
For example� fresh
nat � nat� � �nat � �nat� For a set of term variables � �
fresh
� � � fx � fresh
�� j x� � �g�
The function vars maps an a���pattern � to its �nite set of annotation variables� For
example� vars
�nat � �nat� � f�� �g�
The function tail� that maps a���patterns and a���types 
not containing �� to �nite
subsets of f�g � A� is inductively de�ned by� tail
� �� � f�g 
for � � f�g � A��
tail
�� � ��� � tail
��� � tail
���� and tail
�� �� � tail
���
Let �� �� be a�	�patterns or a�	�types 
not containing �� such that �
�� � �
����
cs�
�� �

��� cs��

�� ��� and ucs��


�� ��� denote the constraints sets inductively de�ned
by the clauses in Fig� �	� We have that for all instances i�

� i
�� � i
��� if and only if i � sat
cs�
�� �
���� and

� i
�� 	� i
��� if and only if i � sat
cs��

�� ����� and

� i
��� 
� L�
� implies i
�� 	� i
��� if and only if i � sat
ucs��


�� �����

Note that ucs��
is just an auxiliary function� it has been introduced to simplify the set

of constraints generated by the function cs��
� More precisely the auxiliary function is

used to avoid to introduce� in the right part of a guarded constraint� some guards that
are always satis�ed�
For each constant C an a�	�scheme ats
C� is speci�ed� For example� for any integer
n� ats
n� � h�nat� �i and ats
�� � h��

nat � ��
nat � �nat� ff�g � ff�� v �� �� v

�gggi�

��



cs����
�� ��

�	 � f�� � ��g� where ��� �� � f�g �A
cs���� � ��� �

�
� � ���	 � cs����� �

�
�	 � cs����� �

�
�	

cs���� � ��� �
�
� � ���	 � cs����� �

�
�	 � cs����� �

�
�	

cs��
���

�� ��
�	 � f�� v ��g� where ��� �� � f�g �A

cs��
��� � ��� �

�
� � ���	 � cs��

���� �
�
�	 � cs��

���� �
�
�	

cs��
��� � � � � � �n � �� ��� � � � � � ��n � ��	 �

f�� in tail���		� �ucs��
��� ��	 �

S
��l�n

cs��
���l� �l		g�

where n � � and �� �� are not arrow a�patterns or arrow a�types�

ucs��
��� � � � � � �n � �� ��� � � � � � ��n � ��	 �

cs��
��� ��	 �

S
��l�n cs��

���l� �l	�

where n � � and �� �� are not arrow a�patterns or arrow a�types�

Fig� �
� Functions cs�� cs��
and ucs��

De�nition�� �Sets P 
p��� For every natural number p� let P 
p� denote the set of
the a���patterns of the shape

�� � � � � � �p � � �

where ��� � � � � �p � P � and � � P ��

Consider the rules 
Ifp��� and 
Casep��� in Fig� �� and the a���types � � �� � � � � �
�p � ��� � � ��� � � � � � ��p � ��� and  � �� � ��� � � � � � �p � ��p � � that
occur in these rules� Let ��� �� � P 
p� be a���patterns corresponding respectively to
�� � � L
p�� Then J 
p� ��� ���� where J is the algorithm in Fig� ��� returns an a�
��pattern � � P 
p� and a set of constraints E that characterize the a���type � More
precisely� the following proposition holds�

Proposition��� Let ��� �� � P 
p� �
��� � �
��� � � and h�� Ei � J 
p� ��� ���� Then

�� � � P 
p� and
�� for every instantiation i � sat
E� i
��� 	� i
�� and i
��� 	� i
�� and
�� for every instantiation i and a���type  such that i
��� 	�  and i
��� 	� 

there is an instantiation i� � sat
E� such that i�
��� � i
��� i�
��� � i
��� and
i�
�� 	� �

J ��� �� ��	 � let ��� � fresh����		
in h���� cs��

��� ���	 � cs��
���� ���	i end

J �p� �� ��	 � case h�� ��i of
h��

�� ��
�i � let � � newa�	
in h�� f�� v �� �� v �gi end

h�� �� �� � ��i � let h����Ei � J �p� �� �� ��	
in h� � �� � ����Ei end

h�� � ��� �
�
� � ���i � let h�

��
� �E�i � J �p� ��� �

�
�	 and h�

��
� �E�i � J �p� ��� �

�
�	

in h���� � ���� �E� � E�i end

Fig� ��� Algorithm J

��



We can now proceed to de�ne the annotated type inference algorithm W� This
algorithm is presented in Fig� ��� �� and ��� Let �T M � �� if W
M � � h��M �
� Ei

then � is a basis that associates to each term variable in FV 
M � an a�	�pattern� M �


is a term annotated with a�patterns� and E is a �nite set of constraints� We will prove
that h��M �
� Ei represents all the �����typings of M � More precisely� for any � and

M ��� such that �
� � � FV 
M � and �
M ���� �M � we have that � � � ���� M ��� implies

� � i
�� and M ��� � i
M �
�� for some i that satis�es E �

W�P 	 � let � � fresh�FV �P 		
and h� P ��Ei �W������P 	

in h��P ��Ei end

Fig� ��� Algorithm W

Correctness and completeness of the inference w�r�t� ��p��typings containing as many
� annotations as possible is expressed by the following lemma�

Lemma��� �T M � � � � FV 
M � � � fresh
� � and W�
p���M � � h��M ��� Ei
implies

�� if i is the maximum of sat
E� then i
��� i
�� ��p� i
M ��� and

�� for all �  � and M ��� such that �
� � � �  �
�� � �
�� and �
M ���� � M 

if � �� ��p� M ��� then exists i � sat
E� such that i
�� � �  i
�� � � and

i
M ��� � M ����

We are interested in faithful �����typings� so we want to restrict the set of solutions
of the constraints generated by the algorithm to those that correspond to faithful a�
typings� This can be done as shown by the following theorem�

Theorem��� Let �T M � � and W
M � � h��M �
� Ei� If i is the maximum of

sat
E � faithful
�� ��� then i
��� � ���� i
M �
� is a faithful assignment showing the
maximum amount of dead code where faithful
�� �� �

�

x	
��

f
� in tail
����� f� � �j� � vars
���gg � f� � �j� � vars
��g �

The constraint 
� in tail
���� � f� � �j� � vars
���g means that �� must be instanti�
ated either to an ��a�	�type or to an ��a�	�type�

Example �� Let �T M � � be the typed term of Example �� Let �� � 
�� � ��� �
�� � ��� �

�
� � 
��� � ���� � ��� � ���� �� � 
�� � ��� � �� � ��� and ��� �


��� � ���� � ��� � ���� Then W
M � � h��M ���
nat

� Ei where 
writing� for short� �

instead of �nat�� � � fu� � ��� u� � ��g� M �
 �

���f	��	��

��
��
��
� h��f	
�

���x�� ���	����� 	�
�

�
���

�u

�

�

� 	�
�

� �

��f	
�

���y�� �y��	����� 	�
�

�
���

�u

�

�

� 	�
�

� i�
�

�
���

�	
� 	�	��	���
�

���z����� �z�
�

�
���

� 	����������

�
���

�

�

��z����� �z�
�

�
���

� 	����������

�
���
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� �
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W��p���C	 �
let h��Ei � ats�C	
in h� C	�Ei end

W��p��� x�	 �
let � � fresh��	 and �� � fresh��	
in if x � ���	

then h� x	
�

� cs��
���x	� ��	i

else hfx � �g� x	
�

� cs��
��� ��	i

end
W��p��� � x��M	 �

let � � fresh��	 in if p � �

then let h��M �	�

�Ei �W����� � fx � �g�M	

in h�� ��x	�M �	�

		�	�

�Ei end
else let h��M ��Ei �W��p� �� ��M	

QUI in case � of
� �� x � �� h� �� ��x��M �	�� �Ei
� h�� ��x	�M �		��Ei end

end
W��p���MN	 �

let h���M
�	������	n� �E�i �W��p� ����M	

and h��N �	�Ei �W������ N	

and� for each l � f�� � � � � ng� h�l�N
	�

l

l �Eli � rl�h��N
�	�Ei	�

where rl is a fresh renaming of all the annotation variables not in �
in h�� ��� � � � � ��n�

�M �	������	n��N �	�

� � � � � �N �	�

n		�
f�� in tail��		� �E� �

S
��l�n

�El � cs��
���l� �l			gi end

W��p��� hM��M�i	 �
let h���M

��
� � E�i �W��p���M�	

and h���M
��
� �E�i �W��p���M�	

in h�� ���� �hM
��
� �M ��

� i	��� �E� � E�i end
W��p��� �iM	 �

let h��M ���� �Ei �W��p� ��M	
in h�� ��iM

���� 	i �Ei end
W��p��� fix x��M	 �

let �� � fresh��	
and h��M �	� �Ei �W����� � fx � ��g�M	

in h�� �fixx	�M �			�E � cs����� ��	i end
W��p��� if N then M� else M�	 �

let h���N
��bool

� E�i �W��p���N	
and h���M

��
� �E�i �W��p���M�	

and h���M
��
� �E�i �W��p���M�	

and h��Ei � J �p� ��� ��	
in h�� ��� ����

�if N ��bool

then M �	�
� else M �	�

� 	�
f�� in tail��		� �f� � �g � E� � E� � E� � E	gi end

Fig� ��� Algorithm W� �continue	
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W��p��� case�N�M�F 		 �

let h���N
���

nat

�E�i �W��p� ��N	
and h���M

�� �E�i �W��p���M	

and h��� F
���

nat������n
nat�� �E�i �W��p���F 	

and � � newa�	
and h��Ei � J �p� ��� ��	

in h�� ��� ����

�case�N ���
nat

�M �	� � F ��
nat�	�		�

f�� in tail��		� �f�� � �� � v ��� � � � � � v �ng � E� � E� � E� � E	gi end
W��p��� it�N�M�F 		 �

let h���N
���

nat

�E�i �W���� ��N	
and h���M

�	� �E�i �W���� ��M	
and h��� F

�	��	� �E�i �W���� ��F 	
and � � fresh�����		

in h�� ��� ����

�it�N ���
nat

�M �	� � F �	��	�		�
f�� in tail��		 � �f�� � �g � E� � E� � E� � ucs��

���� �	�
ucs��

��� � ��� �� �		gi end
W��p��� rec�N�M�F 		 �

let h���N
���

nat

�E�i �W���� ��N	
and h���M

�	� �E�i �W���� ��M	

and h��� F
���

nat�	��	� �E�i �W������ F 	
and � � fresh�����		

in h�� ��� ����

�rec�N ���
nat

�M �	� � F ���
nat�	��	�		�

f�� in tail��		 � �f�� � �g � E� � E� � E� � ucs��
���� �	�

ucs��
���

nat � �� � ��� �
nat � � � �		gi end

Fig� ��� Algorithm W�

and E is the �rst set of constraints introduced in Example ��
The set faithful
�� ��� is the set E � in Example �� so E � faithful
�� ��� � I�

where
I � f��� �

�
�� �	� �

�
	� ��� �
� �

�

�

��� �
�
�� ��� �

�
�� ��� �

�
�� �	� �

�
	� ��� ��� ��� �

�
�� �
� �

�

�

��� �
�
�� ��� �	� �� g �

Let i be de�ned by� i
�� � � if � � I and i
�� � � otherwise� Then i
��� � ���� i
M �
�
is the faithful �����typing that shows all the dead code that can be detected by using
the a�type assignment system �L�
Note that i
�� �L i
M �
� is the faithful a�typing used in Example �� �

Remark� The algorithm W is presented it this form to make it as close to the �����
type assignment system as possible� Indeed it generates some constraints that can be
avoided in a real implementation�
Moreover� an e�cient implementation of the algorithm should avoid the use of ��
sequences� recording just the annotation that contain the relevant information w�r�t�
the dead code elimination� In fact� as it is easy to see� for every a���pattern � asso�
ciated to a subterm� it su�ces to keep just the annotation variables in tail
��� So it
is possible to record all the relevant annotations by decorating the terms with sets of
annotation variables� For instance� the decorated term of Example � could be replaced
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by the following�
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Conclusions and Future Work

In this paper we have presented an extension of the type assignment system for de�
tecting dead code introduced in �	�� The main achievement over that system is the
extension of the language of annotated types with rank � intersection� We have also
presented an inference algorithm which is correct and complete� in the sense that it
�nds all the dead code that can be detected by using the annotated type assignment
system�
The idea of using intersection types for dead code detection seems very natural�

In fact they allow to handle some problem in the detection and elimination of dead
code in applications� Take for instance the term 
�f�M �N � If we look at the di�erent
occurrences of the bound variable f in M 
let us denote them by fi�� then it may
happen that each fi has a di�erent annotated type�
Note that in the original framework of �� this raise problems since� after the optimiza�
tion process� the di�erent occurrences fi have di�erent types� This problem can be
partially handled by allowing subtyping� as done in �� 
see also �	��� But subtyping
is contravariant in the left part of the arrow operator� whereas� to specialize a term

see ���� covariance is needed�
As showed in the present paper� by using rank � intersection it is possible to deal with
covariance�
The idea of specializing terms seems quite interesting for future works� Consider

the following application�


�f� � �h�
f M N 	�� ��
fP Q 	�i�

�x g���xnat��ynat��znat�if � hx� yi then hx� zi else g 
�hx� yi� y 
�h�� zi� �

where � � nat� nat� nat� 
nat�nat� andM � N � P � Q are terms of type nat� The
lambda abstracted variable f is bounded to a function which� given � natural numbers
x� y� and z� returns the pair formed by the remainder plus z and the quotient of the
Euclidean division of x by y 
thus when z is 	� it is just the standard Euclidean division��
In the �rst occurrence of f in the body of the lambda abstraction� both the components
of the pair computed are used� but in the second occurrence� the remainder is useless�
and since z is only used to compute the remainder� it is dead code 
in this occurrence��
Indeed� it would be interesting to have two di�erent version of the Euclidean division�
the �rst one like the original version� and the second one for the cases when only the
remainder is purchased� In this way an optimized version of the term above would look
like�


�f� �h�
f M N 	�� ��
f P Q�i�


�x g���xnat��ynat��znat�if � hx� yi then hx� zi else g
�hx� yi�y
�h�� zi�
�

�x g���xnat��ynat�if � hx� yi then x else g
�hx� yi� y��� �

��



where � � nat� nat� nat�
If we allow these kind of optimization� we have to handle overloaded functions� Indeed�
in this case f is bound to two di�erent branches� and when it is used in the body of the
lambda abstraction� we have to choose the right branch� This can be done by looking
at the actual type of f in the body of the lambda abstraction� The � calculus of
Castagna� see ��� seems a good candidate to explore further this idea�
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