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In this paper we extend, by allowing rank 2 intersection types, the type assignment system for the detection and elimination of dead code in typed functional programs presented by Coppo et al Giannini and the rst author in the Static Analysis Symposium '96. The main application of this method is the optimization of programs extracted from proofs in logical frameworks, but it could be used as well in the elimination of dead code determined by program specialization. This system rely on annotated types which allow to exploit the type structure of the language for the investigation of program properties. The detection of dead code is obtained via annotated type inference, which c a n b e performed in a complete way, b y reducing it to the solution of a system of inequalities between annotation variables. Even though the language considered in the paper is the simply typed -calculus with cartesian product, if-then-else, xpoint, and arithmetic constants we can generalize our approach to polymorphic languages like Miranda, Haskell, and CAML.

Introduction

Types have been recognized as useful in programming languages because they provide a semantical (context dependent) analysis of programs. Such analysis can be incorporated in the compiling process. It is used on one side to check the consistency of programs and on the other to improve the e ciency of the code produced.

In addition to prevent run-time errors, type systems can characterize run-time properties of programs. For instance intersection types, see 11] (and also 1]), in their full generality, p r o vide a characterization of normalization.

Type systems tailored to speci c analysis, such as strictness, totality, binding time etc. have been introduced, see 18, 16, 2, 1 2 , 1 5 , 2 2 , [START_REF] Wright | Reduction Types and Intensionality in the Lambda-Calculus[END_REF][START_REF] Dussart | Polymorphic Recursion and Subtype Qualications: Polymorphic Binding-Time Analysis in Polynomial Time[END_REF]. In this perspective t ypes represent program properties and their inference systems are systems for reasoning formally about them. In this paper we k eep a clear distinction between the type structure of the language (types in the usual sense) and the annotated types (\non standard" types) which represent, inside the type structure of the language, particular properties. This distinction is very useful from a theoretical point of view, see 16, 2 , 2 2 ], as well as in the design of both checking algorithms, see [START_REF] Hankin | Deriving algorithms for type inference systems: Applications to strictness analysis[END_REF][START_REF] Solberg | Annotated T ype Systems for Program Analysis[END_REF], and inference algorithms, see [START_REF] Dussart | Polymorphic Recursion and Subtype Qualications: Polymorphic Binding-Time Analysis in Polynomial Time[END_REF][START_REF] Damiani | An Inference Algorithm for Strictness[END_REF]. Type based analyzers rely on an implicit representation of types, either via type inequalities, see 19], or via lazy (implicit) types, see 15]. In this paper we pursue the rst approach, reducing the annotated type inference problem to the solution of a system of inequalities between annotations on types.

Type analysis is also used in the area of program extraction from formal proof, see 7, 6, 23, 3 , 5 , 2 1 ]. The programs extracted from proofs are usually very ine cient, as they contain parts that are useless for the computation of the nal result they therefore require some sort of simpli cation. One of the more e ective simpli cation techniques is the \pruning", and has been developed by Berardi,see 3]. In this technique useless terms (also called \dead code") are discovered by analyzing the type of terms. The method was improved in 4] (see also 5] Chap. 4) with the use of type inclusion: an application is well typed if the argument h a s a t ype included in the input type of the corresponding function. The optimization algorithm proposed in 4] is rather di cult to understand and this makes its correctness proof even more di cult to follow.

In 10] is presented a type inference system for detecting \dead code", and an algorithm that simpli es -terms based on the system of 4]. The method presented in the paper is much more self-evident than the original one. The language considered is the simply typed -calculus with a primitive recursor over natural numbers, pairs and arithmetic constants. The idea is to start from a typed term and to decorate it by properties (called re nement or annotated types) that indicate whether or not a subterm is dead code. To this aim two annotations for the basic type nat (the type of natural numbers) are introduced. The rst, nat corresponds to the idea that the value may be used, and so could only be replaced with a term with the same behavior (observationally equivalent). The second, ! nat , corresponds to the fact that the value is not used, and so it does not matter what the term is (it could be any closed term of the same type). These properties are propagated to higher types.

For instance, if a function of type nat ! nat has the properties nat ! ! nat or ! nat ! ! nat then the whole term will not be used. The property ! nat ! nat , instead, informally represents the set of all the terms of type nat ! nat which yield a useful output whenever applied to an argument which is not used for the computation of this output (like x nat :Q where x does not occur in Q). In other words, ! nat ! nat characterizes all the functions of type nat ! nat that don't use their argument. Finally, the property nat ! nat does not contain any information about dead code.

The soundness of the system and of the optimizing transformation induced is proved via a partial equivalence relation semantics of the annotated types, showing that the optimized programs are observationally equivalent to the original ones. Let us consider a simple example. Let M = ( x nat :3)P where P is a term of type nat. Since x is not used in the body of the lambda we can assign the annotated type ! nat ! nat to x nat :3, so we discover that P is not useful for the computation of M and could be replaced by a n y constant of the right t ype.

In this paper, we extend the annotated type inference system of 10] b y a l l o wing r a n k 2 i n tersection (see 24]) of annotated types. To see the usefulness of this extension, consider the term: N = ( f (nat!nat)!nat!nat :f( x nat :3)P + f( y nat :y)Q) ( z nat!nat :z) it is easy to see that the subterm P is dead code. To p r o ve t h i s b y the annotated type assignment system we need to assign the annotated type 1 = ( ! nat ! nat ) ! ! nat ! nat to the rst occurrence of f in the body of the -abstraction. On the other hand, since Q is useful to the computation of the nal value of N, w e are forced to assign the annotated type: 2 = ( nat ! nat ) ! nat ! nat to the the second occurrence of f in the body of the -abstraction. The two annotated types 1 and 2 are not comparable using the type inclusion relation of 10], i.e., in the language of properties considered in 10] there is not a property that implies both them. So with the system of 10] it is not possible to prove that P is dead code, since for doing this is necessary to assume such a property for theabstracted variable f. A s w e will see, the system proposed in the present paper allows to assume the intersection (or conjunction) of 1 and 2 for f, and so allows to prove that P is dead code.

The rst section of this paper introduces the language we are dealing with and its semantics. Section 2 presents the rank 2 annotated type assignment system. In the third section we i n troduce a code simpli cation based on annotated type information,in particular we s h o w that a term and its simpli ed version are observationally equivalent. Section 4 presents an algorithm for inferring annotated typings of terms. The algorithm is complete, i.e., given a term, it allows to nd all the dead code that can be detected by using the annotated type assignment system of Sect. 2.

A T yped Functional Language and its Semantics

In this section we i n troduce a typed functional language (basically the simply typed -calculus with cartesian product, if-then-else, xpoint, and arithmetic constants) and its operational semantics. The set of types is de ned assuming as basic types nat and bool: the set of naturals and the set of booleans. Types are ranged over by , , . . . De nition1 (Types). The language of types (T ) is de ned by the following grammar:

::= j ! j , w h e r e 2 f nat boolg:

Typed terms are de ned from a set of typed term constants K = f 0 nat 1 nat : : : succ nat!nat p r e d nat!nat + nat nat!nat nat nat!nat : : : true bool false bool n o t bool!bool = bool bool!bool and bool bool!bool : : : = nat nat!bool < nat nat!bool : : : g (ranged over by C), and a set V of typed term variables (ranged over by x y : : : ).

The type of a constant C is denoted by T(C). Typed terms, ranged over by M, N, : : : , are de ned as follows.

De nition2 (Typed terms). We write `T M : , and say t h a t M is a typed term of type , i f `M : is derivable by the rules in Fig. 1.

(Var) `x : (Con) `C : The program constructors case, it and rec have been included in view of an application to the optimization of terms extracted from proofs. Note that with this notation we explicitly mention in M the types of all its variables and constants. In the following we often omit to write types which are understood. The set of free variables of a term M, denoted by F V(M), is de ned in the standard way.

(! I) `M : ` x :M : ! (! E) `M : ! `N : `MN: ( I) `M1 : 1 `M2 : 2 h M1 M 2i :
As usual a substitution is a nite function mapping term variables to terms, denoted by x 1 := N 1 : : : x n := N n ], which respects the types, i.e., each x i i is substituted by a term N i of the same type. Substitution acts on free variables, the renaming of the bound variables is implicitly supposed.

Let T be the set of the terms, i.e., T = fM j T M : for some type g, and T be the set of the closed terms, i.e., T = fM j M 2 T and F V(M) = g. F ollowing Kahn, see 17], we de ne the values of terms in T via a standard operational semantics described by judgments of the form M + K, where M is a closed term and K is a closed canonical term, i.e., K 2 K f x :N j x :N 2 T g f h M 1 M 2 i j h M 1 M 2 i 2 T g. Assume that any functional constant has a type of the shape 1 ! 2 or 1 2 ! 3 , f o r some 1 2 3 2 f nat b o o l g. The meaning of a functional constant C is given by a s e t mean(C) of pairs, i.e., if (P 1 P 2 ) 2 mean(C) then CP 1 evaluates to P 2 . F or example (5 6) 2 mean(succ) a n d ( h1 3i 4) 2 mean(+). De nition3 (Value of a term). We write M + K if this statement is derivable by using the rules in Fig. 2.

(CAN) K + K (FIX) M x := fixx:M] + K fixx:M+ K (APP) M + x:P P x := N] + K MN+ K (PROJi) P + h M1 M 2i Mi + K iP + K i 2 f 1 2g (IF1) N + true M1 + K if N then M1 else M2 + K (IF2) N + false M2 + K if N then M1 else M2 + K (CASE1) N + 0 M + K case(N M F) + K (CASE2) N + n F n + K case(N M F) + K n 6 = 0 (IT1) N + 0 M + K it(N M F) + K (IT2) N + n F(it(pred n M F)) + K it(N M F) + K n 6 = 0 (REC1) N + 0 M + K rec(N M F) + K (REC2) N + n F n (rec(pred n M F)) + K rec(N M F) + K n 6 = 0 (APP1) M + C N + C1 MN+ C2 (C1 C 2) 2 mean(C) (APP2) M + C N + h N1 N 2i N1 + C1 N2 + C2 MN+ C3 (hC1 C 2i C 3) 2 mean(C)

Fig. 2. \Natural semantics" evaluation rules

Let M + mean that for some K, M + K. W e are interested in observing the behavior of terms at the ground level, so, as in Pitts 20], we consider the congruence on terms induced by the contextual preorder that compares the behavior of terms just at the ground type nat. L e t ( C ] ) denote a typed context of type with a hole of type in it. Let M and N be terms of type . De ne M obs N whenever, for all closed contexts (C ] ) nat , i f C M] and C N] are closed terms, then C M] + implies C N] +. Let ' obs be the equivalence induced by obs . (As shown in 20] such equivalence can also be de ned directly as a bisimilarity.)

The closed term model M of T is de ned by i n terpreting each t ype as the set of the equivalence classes of the relation ' obs on the closed terms of type . L e t I( ) denote the interpretation of type in this model, and M] denote the equivalence class of term M. F or each t ype , fixx :x] is the least element, w.r.t. obs , o f I( ). An environment is a mapping e : V ! S 2T I( ) which respects types, i.e., such that, for each x , e(x ) 2 I( ). The interpretation of a term M in an environment e is de ned in a standard way b y: M] ] e = M x 1 := N 1 : : : x n := N n ]], where fx 1 : : : x n g = F V(M) and N l ] = e(x l ) ( 1 l n).

Dummy T erms

For each t ype , w e consider a dummy term of type . I n tuitively dummy terms should be considered as special terms without operational meaning. In fact, they are not present in the original programs, but (as we will show) they are introduced by t h e dead code elimination algorithm presented in Sect. 3, that replaces all the maximal subterms that are proved to be dead code by d u m m y terms of the proper type. So, each occurrence of a dummy term in a program is dead code, and this justi es the claim that dummy terms have not operational meaning: they are simply placeholders for some dead code removed.

To ensure that the output of the optimization algorithm is a well typed term, we extend the term formation rules of Fig. 1 by the following rule:

( ) 2 T ` : :

Remark. Despite to the claim above, for technical reasons, in the proof of the correctness of the dead code elimination algorithm O of Sect. 3 (see in particular Theorem 22), we will deal with terms containing occurrences of dummy terms that are not dead code. So we h a ve to associate an operational meaning to dummy terms. This can be easily done. In fact, since the evaluation rules in Fig. 2 do not mention dummy terms, we g e t that, for every type , 6 +. This means that the dummy term is observationally equivalent to the divergent computation of type , i.e., ] = fixx :x].

A T ype Assignment for Detecting Dead Code

In this section we i n troduce a (non standard) type assignment system for detecting useless code in typed terms. Starting from a typed term we w ant to be able to represent dead code information about this term. To this aim we de ne two annotations of the basic types: and ! ( 2 f nat boolg), which represent, respectively, the notion of values of type which are (possibly) necessary or (certainly) useless for the determination of the nal value of a computation. I.e., we identify with (possibly) live and ! with dead. Annotated types are de ned from fa j a 2 f ! g and 2 f nat boolgg following the type construction rules. Moreover, to get more expressivity, w e allow t h e use of intersection at rank 2.

Annotated Types

De nition4 (Rank 0 annotated types). The language L 0 of annotated r a n k 0 i ntersection types (a-0-types for short), ranged over by , is de ned by the following grammar: ::= a j ! j where a 2 f ! g and 2 f nat b o o l g.

Let ( ) denote the T type obtained from the annotated type by r e m o ving all the annotations a 2 f ! g, i.e., by replacing each occurrence of and ! with . M o r e o ver, if is a type and a 2 f ! g, l e t a( ) denote the annotated type obtained from by replacing each occurrence of any basic type by a . F or instance:

(((nat ! nat) ! nat ! nat) ! nat) = ( ( nat ! nat ) ! nat ! nat ) ! nat :
De nition5 (Rank 1 annotated types). The language L 1 of annotated r a n k 1 i ntersection types (a-1-types for short), ranged over by , is de ned by:

L 1 = 2T f 1 ^ ^ n j n 1 1 : : : n 2 L 0 and ( 1 ) = = ( n ) = g :
One can note the restriction ( 1 ) = = ( n ), which is not usual for standard intersection types. It intuitively corresponds to the fact that each i represents a property of a same term. For example, the term I = x nat!nat :x, o f t ype (nat ! nat) ! nat ! nat, can be assigned both the a-0-types 1 = ( ! nat ! nat ) ! ! nat ! nat and 2 = ( nat ! nat ) ! nat ! nat . So it can be passed as argument to a function requiring an input satisfying the property 1 ^ 2 . De nition6 (Rank 2 annotated types). The language L 2 of annotated r a n k 2 i ntersection types (a-2-types for short), ranged over by , is inductively de ned by:

{ 2 L 2 , i f 2 L 0 . { ! 2 L 2 , i f 2 L 1 and and 2 L 2 . { 1 2 2 L 2 , i f 1 2 2 L 2 . Notice that L 0 L 1 , L 0 L 2 , a n d L 1 \ L 2 = L 0 .
Since a-types are properties of terms, in the following we will use the words a-type and property i n terchangeably. The notation ( ) i n troduced above naturally extends to a-1-types and a-2-types: ( ) a n d ( ) denote respectively the (standard) type obtained from the a-1-type and the a-2-type by removing all the annotations a 2 f ! g and by k eeping just the rst component o f e a c h i n tersection. For instance:

(((

( nat ! nat ) ! nat ! nat ) ^((! nat ! nat ) ! ! nat ! nat )) ! nat ) = ((nat ! nat) ! nat ! nat) ! nat :
Intuitively, an a-2-type = 1 ^ ^ n ! 0 2 L 2 such that ( ) = ! 0 represents the set of all functional terms of type ! 0 sending an input satisfying 1 ^ ^ n into an output satisfying 0 .

The informal meaning of a-types is formalized by i n terpreting each a -t ype as a partial equivalence relation (p.e.r. for short) over the interpretation of the type ( ), i.e., the set of equivalence classes of closed terms of type ( ) with respect to ' obs . L e t denote the cartesian product of sets and M] denote the equivalence class of M in ' obs . De nition7 (Semantics of annotated types). 1. The interpretation ]] o f a n a -

2-type is de ned by:

] ] = fh N] N]i j N] 2 I( )g ! ] ] = I( ) I( )

1 2]] = 1]] 2]] ! ] ] = fh M] N]i j 8 h P] Q]i 2 ] ]:h MP] NQ]i 2 ] ]g
where the interpretation ]] o f a n a -1 -t ype = 1 ^ ^ n is de ned by:

] ] = T 1 i n i]] :
2. By we denote the p.e.r. ] ] o n I( ( )) and by we denote the p.e.r. ] ] o n I( ( )).

!-annotated types (!-a-types for short) and -annotated types ( -a-types ) respectively formalize the notions of not being and of (possibly) being relevant to the computation, i.e., of being or (possibly) not being dead code, at higher types.

De nition8 ( -a-types and !-a-types). 1. The set L 2 of -a-2-types is the subset of L 2 containing only annotations. The sets L 0 of -a-0-types and L 1 of -a-1-types are de ned in the same way. 2. The set L 2 ! of !-a-2-types is inductively de ned by:

{ ! 2 L 2 ! , i f 2 f nat boolg, { ! 2 L 2 ! , i f 2 L 1 and 2 L 2 ! , { 1 2 2 L 2 ! , i f 1 2 2 L 2 ! .
The sets L 0 ! of !-a-0-types is de ned by L 0 ! = L 2 ! \L 0 , and the set L 1 ! of !-a-1-types is de ned by: L

1 ! = 2T f 1 ^ ^ n j n 1 1 : : : n 2 L 0 ! and ( 1 ) = = ( n ) = g :
Note that, if is an !-a-2-type, then ]] = I( ( )) I( ( )), i.e., ]] is the p.e.r. which relates all pairs of elements of I( ( )). The same holds for !-1-types.

We n o w i n troduce a notion of inclusion between a-2-types, denoted 2 1 2 2 means that 1 is less informative then 2 , i.e., that 1 ] ] 2 ]]. The 2 inclusion relation is de ned on the top of the inclusion relation for a-0-types, 0 . T h i s c hoice is justi ed by t h e k ey role played by t h e 0 inclusion in the syntax directed a-type assignment system in Sect. 4.

De nition9 (Inclusion relations 0 and 2 ). 1. Let 1 2 2 L 0 . W e write 1 0 2 to mean that 1 0 2 is derivable by the rules in Fig. 3, and we write 1 =0 2 if both 1 0 2 and 2 0 1 hold.

2. Let 1 2 2 L 2 . W e write 1 2 2 to mean that 1 2 2 is derivable by the rules in Fig. 4, and we w r i t e 1 =2 2 if both 1 2 2 and 2 2 1 hold.

(Ref 0 ) 0 (!0) 2 2 L 0 ! ( 1) = ( 2) 1 0 2 (!0) 2 0 0 2 0 1 0 1 1 ! 2 0 0 1 ! 0 2 ( 0) 1 0 0 1 2 0 0 2 1 2 0 0 1 0 2 Fig. 3. Inclusion rules for a-0-types (Ref 2 ) 2 (!2) 2 2 L 2 ! ( 1) = ( 2) 1 2 2 (!2)
2 0 8i 2 f 1 : : : m g:9j 2 f 1 : : : n g:

0 j 0 i 1 ^ ^ m ! 2 0 1 ^ ^ 0 n ! 0 ( 2) 1 2 0 1 2 2 0 2 1 2 2 0 1 0 2 Fig. 4

. Inclusion rules for a-2-types

It is immediate to show that both 0 and 2 are re exive and transitive, and that they behave in the same way o n L 0 , i.e., for all 0 2 L 0 , 0 0 if and only if 2 0 . With ] =0 we the denote the =0-equivalence class of the a-0-type , similarly for =2. Notice that, if 1 and 2 are !-a-2-types such t h a t ( 1 ) = ( 2 ), then 1 =2 2 .

Moreover, for all 1 2 2 L 2 , 1 2 2 implies ( 1 ) = ( 2 ).

The 2 relation between annotated types is sound w.r.t. the interpretation, indeed, the following theorem holds.

Theorem 10 (Soundness of 2 ). 1 2 2 implies 1 ] ] 2 ] ].

Annotated Type Assignment System

Annotated types are assigned to T terms by a s e t o f t ype inference rules. If x is a term variable of type , an assumption for x is an expression of the shape x : , o r x : for short, where 2 L 1 , a n d ( ) = . A basis is a set of a-types assumptions for term variables. The functions ( ), ( ) a n d !( ) de ned above are extended to bases.

More precisely: ( ) = fx j x 2 g is the set of term variables which occur in and, for any nite set ; of term variables, (;) and !(; ) denote respectively the basis fx : ( ) j x 2 ;g and fx : !( ) j x 2 ;g. W e will prove judgments of the form `L M where (M ) i s a t yped term of type ( ) whose free variables are in , i.e., such that `T (M ) : ( ) a n d ( ) F V(M). We use this notation since it allows to attach a n a -t ype to all subterms of M. Note the di erence with the more usual notation `L M : in which this is not possible.

For each constant C an a-0-type L(C), such t h a t (L(C)) = T (C), is speci ed. For example, for all integers n, L(n) = nat and L(+) = nat nat ! nat . In the following we require, as it is indeed natural, that L(C) 0 implies either =0 L(C) or 2 L 0 ! . De nition11 (A-type assignment system `L). An a-typing statement i s a n e xpression `L M where is a basis containing an assumption for each free variable of M. x: 1 ^ ^ n denotes the basis f x : 1 ^ ^ n g where it is assumed that x does not appear in . W e write `L M to mean that `M can be derived by the rules in Fig. 5.

If `L M then M has written in it the a-types assigned to its subterms. We s a y that M is an annotated term. Note that, being `L an inference system, the same terms can have di erent annotations. Remark. 1. Note that the 2 inclusion relation is only used in the rules (If) and (Case). In all the other rules the 0 inclusion su ces. 2. It is worth mentioning that, in the rule (! E), the condition 6 2 L 2 ! implies 8i 2 f 1 : : : n g: 0 i 0 i is used instead of 8i 2 f 1 : : : n g: 0 i 0 i : This is done to take i n to account the fact that: if 1 ^ ^ n ! is an !-a-type then 1 : : : n can be any a-0-types such that ( 1 ) =

( n ) = ( 0 1 ) = = ( 0 n ). 3. The -sequence N 0 1 N 0 n , in the rule (! E), is just a way of storing n decorations of the argument of an application. These decorations correspond to di erent uses of the argument in the function. Indeed, as pointed out in the remark at the end of Sect. 4.2, the code duplication is not necessary and can easily be avoided in the implementation of the a-type inference algorithm of Sect. 4.

The functions ( ), ( ), and !( ), de ned for annotated types in Sect. 2.1, can naturally be extended to annotated terms. (M ) in particular is simply the term M in which each -sequence has been replaced by its rst component and all the a-type annotations have been erased. The proof of the following fact is immediate.

(Var)

i 0 0 i x: 1 ^ ^ n `x 0 i 1 i n (Con) L(C) 0 `C (! I) x: 1 ^ ^ n `M `( x 1 ^ ^ n :M ) 1 ^ ^ n! (! E) `M 1 ^ ^ n! `N 0 1 `N 0 n 8i 2 f 1 : : : n g: 6 2 L 2 ! implies 0 i 0 i `(M 1 ^ ^ n! (N 0 1 N 0 n )) ( I) `M1 1 `M2 2 h M1 1 M 2 2 i 1 2 ( Ei) `M 1 2 `( iM 1 2 ) i i 2 f 1 2g (Fix) x: `M `(fixx :M ) (If) `N bool `M1 1 `M2 2 1 2 2 2 `(if N bool then M1 1 else M2 2 ) (Case) `N nat `M 1 `Fa nat ! 2 1 2 2 2 `case(N nat M 1 F a nat ! 2 ) (It) `N nat `M 1 `F 2 ! 3 1 0 2 ! 3 0 ! `it(N nat M 1 F 2 ! 3 ) (Rec) `N nat `M 1 `Fa nat ! 2 ! 3 1 0 a nat ! 2 ! 3 0 nat ! ! `rec(N nat M 1 F a nat ! 2 ! 3 )
Fig. 5. Rules for a-type assignment Fact 12. 1. `L M implies `T (M ) : ( ) and ( ) F V(M). 2. `T M : implies, for a 2 f ! g, a(F V(M)) `L a(M).

To state the soundness of the a-type assignment system w.r.t. the semantics we introduce the following de nition. De nition13. 1. Two e n vironments e 1 , e 2 are -related if and only if, for all x :

1 ^ ^ n 2 , e 1 (x) 1^ ^ n e 2 (x). 2. Let `L M and `L N . W e write (M ) (N ) t o m e a n t h a t f o r a l l e 1 , e 2 , i f e 1 and e 2 are -related, then (M )] ] e1 (N )] ] e2 . Now w e can state the main theorem for p.e.r. interpretation, which is standard (in various forms) in the literature. The proof of the following theorem is by induction on terms.

Theorem 14 (Soundness of `L). Let `L M . T h e n (M ) (M ).

Let us now identify a subset of a-typings for which t h e relation implies the ' obs relation.

De nition15 (Faithful a-type assignment). `L M is a faithful a-type assignment statement i f 2 L 0 , and for all x : 1 ^ ^ n 2 , n = 1 and 1 2 L 0 ! L 0 .

The correctness proof of the optimization mappings of Sect. 3 rely on the following theorem.

Theorem 16. Let `L M and `L N be faithful a-typings. Then (M ) (M ) implies (M ) ' obs (N ).

Remark. The condition of being a faithful a-type assignment is simply the translation in our framework of the condition introduced by Berardi in 3] to nd dead code. Namely, in the Berardi's type assignment system a subterm is dead code if once removed (replaced by a dummy constant h a ving a special type, corresponding to our !-a-types) the global type of the term is unchanged. More precisely, in a faithful a-type assignment, the fact that the global a-type of the term is in L 0 , re ects the Berardi's requirement that all the basic types that occurs in the global type are considered as useful.

Dead Code Elimination

In this section we i n troduce an optimization mapping O that, given an annotated term M , returns an optimized version of (M ).

To de ne the optimization mapping we i n troduce, following 3], a notion of pruning and an operation of least upper bound on the set of terms T .

De nition17 (Pruning relation). Let `T M : and `T N : . W e s a y t h a t M is a pruning of N, and write M prune N, i f M can be obtained from N by replacing some subterms by dummy constants of the corresponding type.

De nition18 (Operation sup). 1. Let `T M : , M 1 prune M, a n d M 2 prune M. Then sup(M 1 M 2 ) is the term de ned by the clauses in Fig. 6.

2. Let `T M : , M 1 prune M, : : : M n prune M, ( n 1) Then sup(M 1 ) i s M 1 and, for n 2, sup(M 1 : : : M n ) is short for sup( sup(sup(M 1 M 2 ) M 3 ) M n ). 

If is a basis then

O( ) = fx ( 1) j x : 1 ^ ^ n 2 n 1 and 9i 2 f 1 : : : n g: i 6 2 L 0 ! g:

The fact that the optimization mapping produces well typed terms is stated by t h e following proposition.

Proposition21. If `L M then `T O(M ) and O( ) F V(O(M )).

The following result can be proved using the a-type semantics. Note that, since the prune relation is re exive, we h a ve in particular that (M ) O(M ). This result is especially interesting when the typing of M is faithful since, from the above theorem and Theorem 16, we get that if `L M is a faithful atyping statement then (M ) and O(M ) are observationally equivalent. Theorem 23. Let `L M be a faithful typing. Then (M ) ' obs O(M ). Example 1. Let `T M : nat where F V(M) = fu 1 nat u 2 nat g and M = ( f (nat!nat)!nat!nat : +hf ( x nat :3) u1 f ( y nat :y) u2i) ( z nat!nat :z) :

O(M ) = ( ) if 2 L 2 ! otherwise: O(C ) = C ( ) O(x ) = x ( ) O(hM1 1 M 2 2 i 1 2 ) = hO(M1 1 ) O (M2 2 )i O(( iM 1 2 ) i ) = iO(M 1 2 ) where i 2 f 1 2g O((M 1 ^ ^ n! (N 0 1 N 0 n )) ) = O(M 1 ^ ^ n! )sup(O(N 0 1 ) : : : O (N 0 n )) O(( x 1 ^ ^ n :M ) 1 ^ ^ n! ) = x ( 1 ) :O(M ) O((fixx :M ) ) = fixx ( ) :O(M ) O((if N bool then M1 1 else M2 2 ) ) = if O(N bool ) then O(M1 1 ) else O(M2 2 ) O(case(N nat M 1 F a nat ! 2 ) ) = case(O(N nat ) O (M 1 ) O (F a nat ! 2 )) O(it(N nat M 1 F 2 ! 3 ) ) = it(O(N nat ) O (M 1 ) O (F 2 ! 3 )) O(rec(N nat M 1 F a nat ! 2 ! 3 ) ) = rec(O(N nat ) O (M 1 ) O (F a nat ! 2 ! 3 ))
Note that M is very similar to the term N considered in the Introduction, the only di erences are the use of the pre x notation for the operator + and the replacement of the subterm P and Q by the free variables u 1 and u 2 .

Let 1 = ( ! nat ! nat ) ! ! nat ! nat and 2 = ( nat ! nat ) ! nat ! nat . It is easy to check t h a t `L M 0 nat is a faithful a-typing, where (writing, for short, and ! instead of nat and ! nat ): = fu 1 ! u 2 g and M 0 = (( f 1 ^ 2 :

(+ ! h((f 1 ( x ! :3

) !! ) !! u ! 1 ) ((f 2 ( y ! :y ) ! ) ! u 2 ) i ) ) 1 ^ 2 ! (( z !! :z !! ) 1 ( z ! :z ! ) 2 )) :
Applying the O optimization mapping we g e t O(M 0 ) = ( f (nat!nat)!nat!nat : +hf ( x nat :3) nat f ( y nat :y) u2i) ( z nat!nat :z)

where `

T O(M 0 ) : nat, a n d F V( (O(M 0 ))) = O( ) = fu nat 2 .
4 An Algorithm for Annotated Type Inference

In this section we deal with the problem of de ning a complete inference algorithm for the annotated type assignment system `L. T o this aim the main problem is to use the inference rules to detect a faithful decoration showing the maximum amount o f d e a d code, i.e., assigning an !-a-type to all the maximal subterms that can be proved to be dead code by the system. The application of the optimization function O is then trivial.

The algorithm rely on a syntax directed version of the a-type assignment system `L which a voids free use of the assumptions and uses only the 0 inclusion relation.

To de ne the new system we need some preliminary notations.

De nition24 (Operation ]

). Let , 0 be two basis, then ] 0 denotes the basis fx : ^ 0 j x : 2 and x : 0 2 0 g fx : j x : 2 and x 6 2 0 g f x : 0 j x : 0 2 0 and x 6 2 g : De nition25 (Sets L(p)). For every natural number p, l e t L(p) denote the set of the a-2-types of the shape 1 ! ! p ! where 1 : : : p 2 L 1 and 2 L 0 .

In the judgments of the syntax directed a-type assignment system there are two basis: the rst contains a set of variables for which i t i s a l l o wed to assume only a-0-types (and not a-1-types), while the second contains exactly the free variables of the term that does not occur in the rst one. Moreover each judgment is parameterized by a natural number p. The idea is that, if the judgment `(p) M holds, then 2 L(p). De nition26 (Syntax directed a-type assignment system). Let denote a basis containing only assumption of the shape x : , where 2 L 0 , and let p be a natural number. We write `(p) M if `(p) M can be derived by the rules in Fig. 8. Fact 27. Let `(p) M . Then 2 L(p), ( )\ ( ) = , and ( ) F V( (M ))

( ) ( ).

The notion of faithful typing for the system `(p) is given by the following de nition. De nition28 (Faithful `(0) -type assignment). (0) M is a faithful `(0) -type assignment statement i f 2 L 0 , and for all x : 0 2 , 0 2 L 0 ! L 0 .

The relation between the a-type assignment system `L of De nition 11 and its syntact directed formulation `(p) is stated by the following theorem. Theorem 29. 1. `(p) M implies `L M . 2. Let `T M : . Then, for each faithful a-typing of M, `L M 0 , there is a faithful `(0) -typing of M, (0) M 00 , such that O(M 0 ) = O(M 00 ).

(Var p 0 1 ) 0 0 x : (p) x 0 (Var p 0 2 ) 0 0 fx : g (p) x 0 x 6 2

(Con p 0 ) L(C) 0 (p) C (! I p=0 1 )
x :

`(0) M 0 `(0) ( x :M 0 ) ! 0 (! I p 1 2 )
x:

1 ^ ^ n `(p;1) M `(p) ( x 1 ^ ^ n :M ) 1 ^ ^ n! (! I p 3 ) `(p;1) M `(p) ( x :M ) ! x 6 2 (! E p 0 ) `(p+1) M 1 ^ ^ n! 1 `(0) N 0 1 n `(0) N 0 n 6 2 L 2 ! implies 8i 2 f 1 : : : n g: 0 i 0 i ] 1 ] ] n `(p) (M 1 ^ ^ n! (N 0 1 N 0 n )) ( I p 0 ) 1 `(p) M1 1 1 `(p) M2 2 1 ] 2 `(p) hM1 1 M 2 2 i 1 2 ( E p 0 i ) `(p) M 1 2 `(p) ( iM 1 2 ) i i 2 f 1 2g (Fix p 0 ) x : `(0) M `(p) (fi xx :M ) (If p 0 ) `(0) N bool 1 `(p) M1 1 ! ! p! 1 2 `(p) M2 0 1 ! ! 0 p ! 2 1 0 2 0 ] 1 ] 2 `(p) (if N bool then M1 1 else M2 2 ) 1 ^ 0 1 ! ! p ^ 0 p ! (Case p 0 ) 1 `(p) M 1 ! ! p ! 1 2 `(p) F a 1 nat ^ ^an nat ! 0 1 ! ! 0 p ! 2 `(0) N nat a nat 0 a1 nat a nat 0 an nat 1 0 2 0 ] 1 ] 2 `(p) case(N nat M 1 F a nat ! 2 ) 1 ^ 0 1 ! ! p ^ 0 p ! (It p 0 ) `(0) N nat 1 `(0) M 1 2 `(0) F 2 ! 3 1 0 2 ! 3 0 ! ] 1 ] 2 `(p) it(N nat M 1 F 2 ! 3 ) (Rec p 0 ) `(0) N nat 1 `(0) M 1 2 `(0) F a nat ! 2 ! 3 1 0 a nat ! 2 ! 3 0 nat ! ! ] 1 ] 2 `(p) rec(N nat M 1 F a nat ! 2 ! 3 )
Fig. 8. Rules for `(p) -type assignment Using the technique described in 10], we can develop an algorithm that, given a well typed term, returns a decoration of the term containing annotation variables and a set of constraints involving annotation variables. The output of the algorithm characterizes all the possible faithful `(0) -typings of the term, more precisely: any solution of the set of constraints corresponds to a faithful `(0) -typing, and vice versa. Moreover, the set of constraints has a maximal solution, i.e., a solution corresponding to a `(0) -typing showing all the dead code that can be proved using the type assignment system `(0) . This solution can be found in an e ective w ay.

We start by de ning the notions of a-type pattern and a-type scheme.

Annotated Type Schemes

De nition30 (Annotated type patterns). Let A be the set of annotation variables, ranged by , , , : : : . 1. The language P 0 of a-0-type p atterns (a-0-patterns for short), ranged over by , i s de ned from the grammar of De nition 4 by replacing a 2 f ! g by 2 A , i . e . ::= j ! j where 2 A and 2 f nat boolg.

2. The language P 1 of a-1-type p atterns (a-1-patterns for short), ranged over by , is de ned according to the clauses of De nition 5 by replacing a-0-types by a-0patterns. 3. The language P 2 of a-2-type p atterns (a-2-patterns for short), ranged over by , i s de ned according to the clauses of De nition 6 by replacing a-0-types and a-1-types by a-0-patterns and a-1-patterns.

The function : L 0 L 1 L 2 ! T is extended in the obvious way to a-patterns. De nition31 (Constraints). A constraint is a formula of one of the following shapes:

{ 1 2 { 1 v 2 { ( i n G) ) E where 1 2 2 f g A , G is a nite not empty subset of f g A and E is a nite set of constraints.
The symbol denotes the equality on the set of annotations f ! g, while v denotes the order relation de ned by: v , v ! and ! v !. A constraint is simply an equality or an inequality ( b e t ween annotation variables or the constant ), or a guarded set of constraints. For instance, the set of constraints f 3 v 1 ( i n f 1 2 g) ) f 3 v 4 5 v g g can be read as \ 3 v 1 and if 1 = or 2 = , then 3 v 4 and 5 v ". De nition32 (Annotated type schemes). An a-2-type scheme is a pair h Eiwhere is an a-2-pattern and E is a nite set of constraints. An a-2-type scheme h Eirepresents the set of a-2-types that can be obtained from the pattern by replacing annotation variables with annotations in such a w ay t h a t the constraints in E are satis ed. A-types and a-typings can be obtained from patterns by instantiation.

De nition33 (Renamings and instantiations). 1. A renaming is a one{to{one mapping r : A ! A . 2. An instantiation is a mapping i : A ! f ! g. judgments E I, where I is the set of annotation variables that represents i, i.e., such that 2 I if and only if i( ) = . The idea is simply that of recognizing, following the equalities and the inequalities, all the annotation variables that are forced to represent . All other annotation variables are then replaced by ! in the maximal solution.

De nition37 (Constraints solution). Let E b e a n i t e n o n e m p t y set of constraints.

We write E I to mean that this judgment is derivable by the rules in Fig. 9.

(STOP) no other rule can be applied

E (GUARD) E E 00 I 2 G E f ( i n G) ) E 00 g I ( ) f 1 2 g = f g E = ] I E f 1 2 g I f g (v)
E = ] I E f v g I f g Fig. 9. \Natural semantics" rules for constraints solution It is easy to see that, given a nite set of constraints E, w e can nd I such t h a t E I in a time linear in the number of constraints which occur in E. Proposition38. Let E be a nite set of constraints. Then E I if and only if I represents the maximum of sat(E).

An Algorithm to Infer Annotated Types

To de ne the algorithm we need some preliminary notations. By newa() we denote a 0-ary function that, whenever called, returns a fresh annotation variable. Let be a type. By fresh( ) w e denote an a-0-pattern obtained from by a nnotating each occurrence of any basic type in with a fresh annotation variable.

For example: fresh(nat ! nat) = nat ! nat . F or a set of term variables ; , fresh(;) = fx : fresh( ) j x 2 ;g. The function vars maps an a-2-pattern to its nite set of annotation variables. For example: vars( nat ! nat ) = f g.

The function tail, that maps a-2-patterns and a-2-types (not containing !) to nite subsets of f g A , is inductively de ned by: tail( ) = f g (for 2 f g A ), tail( 1 2 ) = tail( 1 ) tail( 2 ), and tail( ! ) = tail( ). Let , 0 be a-0-patterns or a-0-types (not containing !) s u c h that ( ) = ( 0 ), cs = ( 0 ), cs 0 ( 0 ) a n d ucs 0 ( 0 ) denote the constraints sets inductively de ned by the clauses in Fig. 10. We h a ve that for all instances i: { i( ) = i( 0 ) if and only if i 2 sat(cs = ( 0 )), and { i( ) 0 i( 0 ) if and only if i 2 sat(cs 0 ( 0 )), and { i( 0 ) 6 2 L 0 ! implies i( ) 0 i( 0 ) if and only if i 2 sat(ucs 0 ( 0 )).

Note that ucs 0 is just an auxiliary function, it has been introduced to simplify the set of constraints generated by the function cs 0 . More precisely the auxiliary function is used to avoid to introduce, in the right part of a guarded constraint, some guards that are always satis ed. For each constant C an a-0-scheme ats(C) is speci ed. For example, for any i n teger n, ats(n) = h! nat i and ats(+) = h 1 nat ! 2 nat ! nat ff g ) f f 1 v 2 v gggi.

cs=( 1 2 ) = f 1 2 g where 1 2 2 f g A cs=( 1 2 0

1 0 2 ) = cs=( 1 0 1 ) cs=( 2 0 2 ) cs=( 1 ! 2 0 1 ! 0 2 ) = cs=( 1 0 1 ) cs=( 2 0 2 )
cs 0 ( 1 2 ) = f 1 v 2 g where 1 2 2 f g A cs 0 ( 1 2 0 1 0 2 ) = cs 0 ( 1 0 1 ) cs 0 ( 2 0

2 ) cs 0 ( 1 ! ! n ! 0 1 ! ! 0 n ! 0 ) = f( in tail( 0 )) ) (ucs 0 ( 0 ) S 1 l n cs 0 ( 0 l l))g,

where n 1 and 0 are not arrow a-patterns or arrow a-types. ucs 0 ( 1 ! ! n ! 0 1 ! ! 0 n ! 0 ) = cs 0 ( 0 ) S 1 l n cs 0 ( 0 l l),

where n 0 and 0 are not arrow a-patterns or arrow a-types.

Fig. 10. Functions cs=, cs 0 and ucs 0 De nition39 (Sets P(p)). For every natural number p, l e t P (p) denote the set of the a-2-patterns of the shape 1 ! ! p ! where 1 : : : p 2 P 1 and 2 P 0 . Consider the rules (If p 0 ) and (Case p 0 ) in Fig. 8, and the a-2-types 1 = 1 ! ! p ! 1 , 2 = 0 1 ! ! 0 p ! 2 , and = 1 ^ 0 1 ! ! p ^ 0 p ! that occur in these rules. Let 1 2 2 P(p) be a-2-patterns corresponding respectively to 1 2 2 L(p). Then J (p 1 2 ), where J is the algorithm in Fig. 11, returns an a-2-pattern 2 P(p) and a set of constraints E that characterize the a-2-type . More precisely, the following proposition holds. Proposition40. Let 1 2 2 P (p), ( 1 ) = ( 2 ) = , a n d h Ei= J (p 1 2 ). Then 1. 2 P(p), a n d 2. for every instantiation i 2 sat(E), i( 1 ) 2 i( ) and i( 2 ) 2 i( ), a n d 3. for every instantiation i and a-2-type such that i( 1 ) 2 and i( 2 ) 2 , there is an instantiation i 0 2 sat(E) such that i 0 ( 1 ) = i( 1 ), i 0 ( 2 ) = i( 2 ), a n d i 0 ( ) 2 .

J (0 0 ) =let 00 = fresh( ( )) in h 00 c s 0 ( 00 ) cs 0 ( 0 00 )i end J (p 0 ) = case h 0 i of h 1 2 i : l e t = newa() in h f 1 v 2 v gi end h ! 0 ! 0 i : let h 00 Ei= J (p ; 1 0 ) in h ^ 0 ! 00 Eiend h 1 2 0 1 0 2 i : let h 00 1 E1i = J (p 1 0 1 ) and h 00 2 E2i = J (p 2 0

2 ) in h 00 x :M) = let = fresh( ) i n i f p = 0 then let h M 0 0 Ei= W ? (0 f x : g M ) in h ( x :M 0 0 ) ! 0 Ei end else let h M 0 Ei= W ? (p ; 1 M ) QUI in case of 0 x: : h 0 ( x :M 0 ) ! Ei : h ( x :M 0 ) ! Ei end end W ? (p MN) = let h 0 M 0 1 ^ ^ n! E0i = W ? (p + 1 M ) and h N 0 Ei= W ? (0 N ) and, for each l 2 f 1 : : : n g, h l N 0 l l Eli = rl(h N 0 Ei),

where rl is a fresh renaming of all the annotation variables not in

in h 0 ] 1 ] ] n (M 0 1 ^ ^ n! (N 0 0 1 N 0 0 n )) f( i n t a i l ( )) ) (E0 S 1 l n (El cs 0 ( 0 l l)))gi end W ? (p hM1 M 2i) = let h 1 M 0 1 1 E1i = W ? (p M1) and h 2 M 0 2 2 E2i = W ? (p M2) in h 1 ] 2 (hM 0 1 1 M 0 2 2 i) 1 2 E1 E 2 i end W ? (p iM) =
let h M 0 1 2 Ei= W ? (p M) in h ( iM 0 1 2 ) i Ei end W ? (p fix x :M) = let 1 = fresh( ) and h M 0 2 Ei= W ? (0 f x : 1g M ) in h (fi xx :M 0 ) E cs=( 1 2)i end W ? (p if N then M1 else M2) = let h 0 N 0 bool E0i = W ? (p N) and h 1 M 0 1 1 E1i = W ? (p M1) and h 2 M 0 2 2 E2i = W ? (p M2) and h Ei= J W ? (p case(N M F)) = let h 0 N 0 0 nat E0i = W ? (p N) and h 1 M 0 1 E1i = W ? (p M) and h 2 F 0 1 nat ^ ^ n nat ! 2 E2i = W ? (p F) and = newa() and h Ei= J (p 1 2) in h 0 ] 1 ] 2 (case(N 0 0 nat M 0 1 F 0 nat ! 2 ) f( i n t a i l ( )) ) (f 0 v 1 : : : v ng E 0 E 1 E 2 E )gi end W ? (p it(N M F)) = let h 0 N 0 0 nat E0i = W ? (0 N ) and h 1 M 0 1 E1i = W ? (0 M ) and h 3 F 0 2 ! 3 E2i = W ? (0 F ) and = fresh( ( 1))

(p 1 2) in h 0 ] 1 ] 2 (if N 0 bool then M 0 1 1 else M 0 2 2 ) f( i n t a i l ( )) ) (f g E 0 E 1 E 2 E )gi end
in h 0 ] 1 ] 2 (it(N 0 0 nat M 0 1 F 0 2 ! 3 ) f( i n t a i l ( )) (f 0 g E 0 E 1 E 2 ucs 0 ( 1 )
ucs 0 ( 2 ! 3 ! ))gi end W ? (p rec(N M F)) = let h 0 N 0 0 nat E0i = W ? (0 N ) and h 1 M 0 1 E1i = W ? (0 M ) and h 3 F 0 1 nat ! 2 ! 3 E2i = W ? (0 F ) and = fresh( ( 1)) Let i be de ned by: i( ) = if 2 I and i( ) = ! otherwise. Then i( ) (0) i(M 0 ) is the faithful `(0) -typing that shows all the dead code that can be detected by u s i n g the a-type assignment system `L. Note that i( ) `L i(M 0 ) is the faithful a-typing used in Example 1.

in h 0 ] 1 ] 2 (rec(N 0 0 nat M 0 1 F 0 1 nat ! 2 ! 3 ) f( i n t a i l ( )) (f 0 g E 0 E 1 E 2 ucs 0 ( 1 ) ucs 0 ( 1 nat ! 2 ! 3 nat ! ! ))gi end
Remark. The algorithm W is presented it this form to make it as close to the `(0) - type assignment system as possible. Indeed it generates some constraints that can be avoided in a real implementation. Moreover, an e cient implementation of the algorithm should avoid the use ofsequences, recording just the annotation that contain the relevant information w.r.t. the dead code elimination. In fact, as it is easy to see, for every a-2-pattern associated to a subterm, it su ces to keep just the annotation variables in tail( ). So it is possible to record all the relevant annotations by decorating the terms with sets of annotation variables. For instance, the decorated term of Example 3 could be replaced by the following: (( f f 4 4 g : (+ f 5 g h((f f 0 4 g ( x f 5 g :3 f 6 g ) f 6 g ) f 0 4 g u f 0 1 g 1 ) f 0 4 g ((f f 0 4 g ( y f 5 g :y f 6 g ) f 6 g ) f 0 4 g u f 0 2 g 2 ) f 0 4 g i f 0 4 0 4 g ) f 5 g ) f 5 g (( z f 8 8 g :z f 0 8 0 8 g ) f 0 8 0 8 g )) f 5 g :

Conclusions and Future Work

In this paper we h a ve presented an extension of the type assignment system for detecting dead code introduced in 10]. The main achievement o ver that system is the extension of the language of annotated types with rank 2 intersection. We h a ve also presented an inference algorithm which is correct and complete, in the sense that it nds all the dead code that can be detected by using the annotated type assignment system.

The idea of using intersection types for dead code detection seems very natural. In fact they allow to handle some problem in the detection and elimination of dead code in applications. Take for instance the term ( f:M) N. I f w e look at the di erent occurrences of the bound variable f in M (let us denote them by f i ), then it may happen that each f i has a di erent annotated type. Note that in the original framework of 3] this raise problems since, after the optimization process, the di erent occurrences f i have di erent t ypes. This problem can be partially handled by allowing subtyping, as done in 4] (see also 10]). But subtyping is contravariant in the left part of the arrow operator, whereas, to specialize a term (see 8]), covariance is needed. As showed in the present paper, by using rank 2 intersection it is possible to deal with covariance.

The idea of specializing terms seems quite interesting for future works. Consider the following application: ( f : +h+(f M N 0) 1 (fPQ0)i) ( x g : x nat : y nat : z nat :if > hx yi then hx zi else g (;hx yi) y (+h1 z i) , where = nat ! nat ! nat ! (nat nat) a n d M, N, P , Q are terms of type nat. T h e lambda abstracted variable f is bounded to a function which, given 3 natural numbers x y, a n d z, returns the pair formed by the remainder plus z and the quotient o f t h e Euclidean division of x by y (thus when z is 0, it is just the standard Euclidean division). In the rst occurrence of f in the body of the lambda abstraction, both the components of the pair computed are used, but in the second occurrence, the remainder is useless, and since z is only used to compute the remainder, it is dead code (in this occurrence). Indeed, it would be interesting to have t wo di erent v ersion of the Euclidean division, the rst one like the original version, and the second one for the cases when only the remainder is purchased. In this way an optimized version of the term above w ould look like: ( f: +h+(f M N 0) 1 (f P Q )i) (( x g : x nat : y nat : z nat :if > hx yi then hx zi else g(;hx yi)y(+h1 z i) ( x g : x nat : y nat :if < hx yi then x else g(;hx yi) y))) ,

Fig. 1 .

 1 Fig. 1. Rules for term formation

Theorem 19 .

 19 Let `T M : . The set fM 0 j M 0 prune Mg with the order relation prune is a nite lattice with bottom and top M. T h e o p eration sup of De nition 18 is the join of the lattice. Let L be the set of all annotated terms which are de ned according to De nition 11, i.e., L = fM j `L M for some a-2-type and basis g. De nition20 (Optimization mapping O on terms). 1. The function O : L ! T is de ned by the clauses in Fig. 7.

Fig. 6 .

 6 Fig.6. Operation sup
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 7 Fig. 7. Mapping O on terms
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 13 Fig. 13. Algorithm W ? (continue)
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 14 Fig.14. Algorithm W ?
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Both renaming and instantiation can be extended to annotation constants (by de ning i(a) = a and r(a) = a, for a 2 f ! g) and to a-types and patterns (in the obvious way). For example: i( nat ! nat ) = i( ) nat ! i( ) nat . Of course, for any a -t ype 2 L 2 , i( ) = and r( ) = .

De nition34. Let h Eibe an a-2-scheme. An instantiation i satis es E if { 1 2 2 E implies i( 1 ) i( 2 ), and { 1 v 2 2 E implies i( 1 ) v i( 2 ), and { ( i n G) ) E 0 2 E implies that, if 2 i(G), then i satis es E 0 . The set of all the instantiations that satisfy E is denoted by sat(E). An a-2-scheme h Eirepresents all the a-2-types i( ), for any i 2 sat(E). De nition35. Let i 1 , i 2 be instantiations. We w r i t e i 1 v i 2 if, for all 2 A , i 1 ( ) v i 2 ( ).

Fact 36. Let E be a nite set of constraints. The sets sat(E) is not empty and has a maximum element.

Example 2. Consider the sets of constraints:

To nd the maximum element i of sat(E E 0 ) observe that from the last constraint of E we g e t i( 5 ) = . Then from the rst constraint o f E 0 we get i( 3 ) = i( 4 ) = . By proceeding in this way w e nally get that, for each 2 A , i( ) = if and only if 2 I , where So i de ned by: i( ) = if 2 I and i( ) = ! otherwise, is the maximum instantiation in sat(E E 0 ).

The `(p) -type inference of a term is reduced to the solution of a nite set of constraints.

A maximal instantiation then corresponds to a faithful `(0) -typing that shows the maximal amount of dead code. The algorithm for nding the maximal instantiation i that satis es a nite set of constraints E is presented in natural semantics style using

We c a n n o w proceed to de ne the annotated type inference algorithm W. This algorithm is presented in Fig. 12, 13 and 14. Let `T M : , i f W(M) = h M 0 Ei then is a basis that associates to each t e r m v ariable in F V(M) an a-0-pattern, M 0 is a term annotated with a-patterns, and E is a nite set of constraints. We will prove that h M 0 Eirepresents all the `(0) -typings of M. More precisely, f o r a n y and M 00 such that ( ) = F V(M) and (M 00 ) = M, w e h a ve that (0) M 00 implies = i( ) a n d M 00 = i(M 0 ), for some i that satis es E.

W(P) = let = fresh(FV(P))

and h P 0 Ei= W ? (0 P ) in h P 0 Ei end Lemma 41. `T M : , ; F V(M), = fresh(;), a n d W ? (p M) = h M 0 Ei implies 1. if i is the maximum of sat(E), t h e n i( ) i( ) `(p) i(M 0 ), and 2. for all , and M 00 such that ( ) = ; , ( ) = ( ) and (M 00 ) = M, if `(p) M 00 then exists i 2 sat(E) such that i( ) = , i( ) = and i(M 0 ) = M 00 . We are interested in faithful `(0) -typings, so we w ant to restrict the set of solutions of the constraints generated by the algorithm to those that correspond to faithful atypings. This can be done as shown by the following theorem.

Theorem 42. Let `T M : and W(M) = h M 0 Ei. I f i is the maximum of sat(E faithful( )) then i( ) (0) i(M 0 ) is a faithful assignment showing the maximum amount of dead code, where faithful( ) =

x: 0 2 f( in tail( 0 )) ) f j 2 vars( 0 )g g f j 2 vars( )g :

The constraint ( in tail( 0 )) ) f j 2 vars( 0 )g means that 0 must be instanti- ated either to an !-a-0-type or to an -a-0-type.

Example 3. Let `T M : be the typed term of Example 1.

Then W(M) = h M 0 5 nat Eiwhere (writing, for short, instead of nat ): = fu 1 : 1 u 2 : 2 g, M 0 = (( f 1 ^ 2 :

(+ 3 4 ! 5 h((f 0 1 ( x 5 :3 6 ) 5 ! 6 ) 0 3 ! 0 4 u 0 1 1 ) 0 4 ((f 0 2 ( y 5 :y

2 ) 0 4 i 0 4 0 4 ) 5 ) ( 1 ^ 2 )! 5 (( z 7 ! 8 :z 0 7 ! 0 8 ) ( 7 ! 8 )! 0 7 ! 0 8 ( z 7 ! 8 :z 0 7 ! 0 8 ) ( 7 ! 8 )! 0 7 ! 0 where = nat ! nat ! nat.

If we a l l o w these kind of optimization, we h a ve to handle overloaded functions. Indeed, in this case f is bound to two di erent branches, and when it is used in the body of the lambda abstraction, we h a ve t o c hoose the right branch. This can be done by looking at the actual type of f in the body of the lambda abstraction. The & calculus of Castagna, see 9], seems a good candidate to explore further this idea.