Jean-Fran Cois Collard

Paul Feautrier

A Method for Static Scheduling of Dynamic Control Programs Preliminary Version

Keywords: Automatic parallelization, dynamic control program, while loop, scheduling, speculative e x ecution Parall elisation automatique, programme a contrôle dynamique, boucle while, ordonnancement, ex ecution sp

Static scheduling consists in compile-time mapping of operations onto logical execution dates. However, scheduling so far only applies to static control programs, i.e. roughly to nests of do (or for) l o o p s . T o extend scheduling to dynamic control programs, one needs a method that 1) is consistent with unpredictable control ows (and thus unpredictable iteration domains) 2) is consistent with unpredictable data ows, and 3) permits speculative execution. This report describes a means to achieve these goals.

Introduction

Static Control Programs (SCPs) have a l w ays been a central paradigm in compilers. Such programs have a structure that can be known at compile time. More precisely, one may statically enumerate all the operations spawned when executing an SCP. This enumeration may be parametrized w.r.t. symbolic \size" or \structure" parameters. To decide whether a program is an SCP, o n e m ust nd syntactical criteria. SCPs in imperative languages are made of for (or do) loops and sequencing. while loops and gotos a r e forbidden. Moreover, for loop bounds must be tractable, and are usually restricted to a ne forms. (SCPs in applicative languages are rst order expressions 19].) SCPs generally have the additional constraint t h a t array subscripts are a ne functions of surrounding loop counters and size parameters.

In the case of SCPs, each execution spawns the same operations in the same order. Notice that this order may be partial [START_REF] Lengauer | Loop parallelization in the polytope model[END_REF][START_REF] Eautrier | Data ow analysis of scalar and array references[END_REF]. This is the very aim of automatic parallelization: nd a partial order on operations respecting either all data dependences or just data ow dependences 8]. The more partial the order, the higher the parallelism. Obviously, this partial order cannot be expressed as the list of relation pairs. One needs an expression of the partial order that does not grow with problem size. Such an expression may b e 1 a closed form, thus restricting the class of orders we can handle. Additional constraints on the choice of a partial order expression are: have a high expressive p o wer be easily found and manipulated allow optimized code generation.

Well-known closed form expressions are schedules, i.e. mappings from operations onto logical execution dates 18]. These mappings are often functions from loop counters to integers. Two operations are not comparable i they are scheduled to the same logical execution date, i.e., they may s i m ultaneously execute on two distinct (virtual) processors.

So it seems that we h a ve a sound and comprehensive framework for automatic parallelization. However, little work has been done so far on Dynamic Control Programs (DCPs). Such programs are just any programs, and include SCPs. Section 2, however, will give a more constrained de nition of DCPs. The aim of this paper is to schedule DCPs, and the two c o n tributions of this paper are: 1) to provide a single method to handle control dependences or not, depending on whether speculative execution is desired and 2) to derive schedules that respect parameterized sets of data dependences, since no more precise information can be obtained in general.

Section 2 also gives necessary de nitions and a brief review of dependence and array data ow analyses for DCPs. Section 3 then describes how parallelism can be expressed thanks to (possibly multi-dimensional) schedules. Section 4 introduces speculative execution, an optional optimization. Section 5 details the algorithm which m e c hanically constructs the (possibly speculative) schedules. Section 6 concludes and discusses related works.

De nitions

The k-th entry of vector x is denoted by x k]. The dimension of a given vector x is denoted by jxj. The subvector built from components k to l is written as: x k::l]. If k > l , t h e n t h i s v ector is by convention the vector of dimension 0. Furthermore, and denotes the non-strict and strict lexicographical order on such v ectors, respectively. is de ned by: x ỹ , 9k 1 k min(jxj jỹj) s:t:

(8k 0 1 k 0 < k x k 0] = ỹ k 0]) ^((x k] < ỹ k]) _ (x k] = ỹ k] ĵ xj = k < jỹj)):
(1) In this paper, \max" always denotes the maximum operator according to the order. The integer division operator and the modulo operator are denoted by and %, r e s p e c t i v ely. The true and false boolean values are denoted by tt and ff, respectively.

We rst have to stress the di erence between a statement, w h i c h is a syntactical object, and an operation, which i s a dynamic instance of a statement. If a statement is included in a loop, then the execution yields as many instances of the statement as loop iterations. When only do loops appear in a program, giving names to statement instances is easy: one just has to label the operation by the statements' name and the corresponding loop counters' values.

Take for instance the following program:

program A do i = 1 , n do j = 1, n S :

a(i,j) = a(i,j-1) end do end do

The iteration vector for this nest is (i j). The iteration domain of S is D(S) = f(i j)j 1 i n 1 j ng: So, S spawns n 2 operations. An operation is denoted by hS i ji.

However, we can easily add an arti cial counter to any while-loop, whose initial value is also arbitrary, whose step is 1, and for which no upper bound is known. Note that detecting inductive v ariables may exhibit natural counters to while-loops. Hereafter, we will mimic the PL/1 syntax, i.e. use the construct below: while-loop Equivalent loop with explicit counter do while (P) S do w = 1 by 1 while(P) S The program model we will restrict ourselves to is as follows:

The only data structures are integers, reals, and arrays thereof. G 1 : do w = 0 by 1 while (P 1 (w)) G 2 : do x = 0 by 1 while (P 2 (w x)) S : a(w + x) = a (w + x ; 1) end do end do For now, we will suppose that predicates P 1 and P 2 in Program WW do not depend on array a, but only on w and w and x, respectively.

We can now extend the de nition of iteration vectors to while loops: the iteration vector of a statement appearing in a nest of do and/or while loops is the vector built from the counters of the surrounding loops. The dimension of iteration vector x is equal to the number of surrounding loops. For example, the iteration vector of statement S in Program WW is (w x). An instance of S for a given value x of the iteration vector is denoted by hS xi.

The true and false boolean values are denoted by tt and ff, respectively.

Iteration domains

The iteration domain D(S) of statement S is the set of values that the iteration vector takes in the course of execution. Unfortunately, iteration domains for dynamic control programs cannot be predicted at compiletime. In the particular case where there is only one outermost while-loop, we k n o w at compile-time that the iteration domain is built from the integral points inside a convex polyhedron this polyhedron is bounded if the loop terminates, but this bound cannot be known statically 2]. In more general cases, the iteration domain has no particular shape and looks like a (possibly multi-dimensional) \comb " 13].

An additional di culty of DCPs when compared to SCPs lies in the handling of while-loop predicates. For instance, there is not a one-to-one correspondence between the evaluations of predicate P 2 (w x) i n program WW and the instances of S. T w o frameworks have been proposed to describe such a phenomenon.

Griebl and Lengauer 13] map to the same point of the iteration domain the evaluation of one or more while-loop predicates plus possibly the execution of a statement S appearing in the loop nest. Then, a single while-loop that does not iterate at all yields a one-element iteration domain.

An alternative method is to consider the predicates of ifs a n d whiles as full-edged statements having their own iteration domains, and to regard their instances as regular operations. We adopt this method since it allows to disambiguate the meaning of iteration domain elements, and to clarify the study of scheduling and speculative execution (to be discussed later).

Let us go back to Program WW. Throughout this report, we consider an arbitrary execution such that the loop on w iterates 5 times (Predicate P 1 (w) e v aluates to ff when w = 5), and the loop on x iterates 4, 0, 3, 5 and 2 times. G 2 executes one time more than S, i.e. 5, 1, 4, 6 and 3 times respectively.

The method chosen by Griebl and Lengauer is illustrated for Program WW in Figure 1. Iteration domains of S, G 1 and G 2 , according to our method, are displayed in Figure 2.

Approximate iteration domains

De nition 1 The approximate iteration domain b D(S) of a statement S is the set of all instances of S when the predicates of all while loops and ifs surrounding S evaluate to true. This unique approximate domain of S is a conservative superset of the (actual) iteration domain. D(S). However, recall that for any g i v en w, G 2 executes one more time than S. In Figure 3, black dots represent the corresponding instances of the three statements.

A v ery important remark is that, in a static control program, the approximate domain of any statement S is equal to the actual iteration domain, i.e. b D(S) = D(S) for any S, and there is no need for handling control dependences since they are already taken into account in the expression of D(S).

Scanning iteration domains

Griebl and Lengauer have s h o wn that the image of the iteration domain of a nest of do and while-loops cannot always be scanned by another nest of do and while-loops, even when the mapping is a ne and unimodular. Su cient conditions for mappings to yield scannable image domains have b e e n g i v en 13].

When these conditions are not satis ed, the method proposed by these authors to scan the image domain consists in scanning a nite subset of the approximate image domain and in checking on the y whether the current point is an element of the actual iteration domain: D(S) = f x j x 2 b D(S) ^executed(x)g:

This test is done thanks to a predicate called executed, expressed as a recurrence on loop predicates. For a precise and general de nition of this predicate, the reader is referred to 12]. For our running example, this predicate is: executed(w x) = executed 2 (w x) executed 2 (w x) = x 1 ! P 2 (w x) ^executed 2 (w x; 1) x = 0 ! P 2 (w x) ^executed 1 (w) executed 1 (w) = w 1 ! P 1 (w) ^executed 1 (w ; 1) w = 0 ! P 1 (w)

Memory-and value-based dependences

Two operations can execute in parallel if they are independent, i.e. they do not interfere. Bernstein gave three su cient conditions on two operations o 1 and o 2 for the program's semantics to be independent o n t h e order in which these operations execute1 . Let R(o 1) M (o 1) (R(o 2) M (o 2)) be the set of memory cells read and modi ed by o 1 (o 2), respectively. Then, these operations are independent i the three conditions below hold:

C1: M(o 1) T R(o 2) = C2: M(o 2) T R(o 1) = C3: M(o 1) T M(o 2) =
A few comments are in order here: If the rst condition is not satis ed, then there is a true dependence or producer-consumer dependence, denoted by o 1 t o 2 .

If Condition C2 is false, then o 1 has read its input data in some memory cells and o 2 then reuses these cells to store its result. This is an anti-dependence or consumer-producer dependence, denoted by o 1 o 2 . There is an anti dependence on S in Program WW, corresponding to Edge e 8 in Figure 4. If Condition C3 is not satis ed, then there is an output dependence or producer-producer dependence denoted by o 1 0 o 2 . In Program WW, the output dependence between two instances hS i and hS w xi of S is described by Edge e 7 in Figure 4. If any condition C1, C2 or C3 is not satis ed, then o 1 and o 2 are said to be data dependent, denoted by o 1 o 2 . T w o operations o 1 and o 2 can execute in parallel if o 2 is not dependent o n o 1 by transitive closure of . W e s a y that a dependence from o 1 to o 2 is satis ed if o 1 executes before o 2 . All dependences should be satis ed, thus limiting parallelism. Note that, should predicates P 1 and/or P 2 depend on array a, similar edges from S to G 1 and/or G 2 would just have to be added in Figure 4 2 .

Edges

Description Conditions e 1 hG 1 w ; 1i c hG 1 w i w 1 e 2 hG 1 w i c hG 2 w 0i e 3 hG 2 w x ; 1i c hG 2 w x i

x 1 e 4 hG 2 w x i c hS w xi e 5 hS w x ; 1i t hS w xi

x 1 e 6 fhS ij + = w + x ; 1 0 0 <w g t hS w 0i w 1 x = 0 e 7 fhS ij + = w + x 0 0 <w g 0 hS w xi w 1 e 8 fhS ij + ; 1 = w + x 0 0 <w g hS w xi w 1 These dependences, however, are memory-based dependences. They are language-and program-dependent, and are not semantically related to the algorithm. On the contrary, value-based dependences or data ows capture the production and uses of computed values 1]. For instance, hS 2 2i in Program A is PC-dependent on both hS 1 2i and hS 2 1i, but the only ow o f d a t a t o hS 2 2i comes from hS 2 1i. In the sequel, such a data ow is denoted by ; , e . g . hS 1 2i;hS 2 2i. Data ow analysis for SCPs in the presence of arrays is now w ell understood [START_REF] Eautrier | Array expansion[END_REF][START_REF] Maslov | Lazy array data-ow dependence analysis[END_REF][START_REF] Martel | Etude et impl ementation de m ethodes num eriques it eratives bas ees sur l'ex ecution sp eculative[END_REF][START_REF] Pugh | Eliminating false data dependences using the omega test[END_REF]. In the case of DCPs, a fuzzy array d a t a o w analysis (FADA) has been proposed in 10]. The result of fuzzy array data ow analysis is a multi-level conditional called quast. E a c h leaf is a set of potential data ow sources. Notice that these sets may possibly be in nite. Each quast leaf is submitted to a context given by the conjunction of predicates appearing on the unique path from the quast's root to the leaf.

In Program WW, the source (hS w xi) o f hS w xi given by F ADA i s :

(hS w xi) = if x 1 then fhS w x ; 1ig else if w 1 then fhS ij + = w + x ; 1 0 0 < w g f?g else f?g (4)
where ? means that the source operation does not exist, or more precisely, that any possible source operation lies outside the program segment. For instance, the context of the second leaf is x < 1^w 1. The rst two l e a ves give e d g e s e5 and e6, displayed in Figure 5(a) and tabulated in Figure 4. In Figure 5(a), notice that some points have many incoming arrows, meaning that the real ow o f v alue may be carried by a n y of them. These arrows correspond to the second leaf.

If there is no anti or output dependence, then the program has the single-assignment property. More memory is necessary, but since there are less constraints, the potential parallelism is greater. The single-assignment v ersion I2 of Program I1 cannot be obtained without a dynamical mechanism to restore the ow o f v alues in Statement S. T h us, even though converting a program into single-assignment form (SAF) generally exhibits more parallelism, restoring the ow o f v alues may yield an intricate generated code. The pros and cons of SAF for DCPs are not well understood yet and more experiments are needed here. The method presented is this paper can handle both SA and non-SA programs.

Control dependences 2.5.1 De nition

There is a control dependence from operation o 1 to operation o 2 if the very execution of o 2 depends on the result of o 1 . o 1 is called the governing operation. S u c h a dependence is denoted by o 1 c o 2 . In particular, the very evaluation of a while-loop predicate (for instance, hG 1 w i in Program WW) is dependent on the outcome of the previous evaluation (e.g., on hG 1 w ; 1i). The four control dependences of Program WW, call them e 1 ::e 4 , appear in Fig. 4.

Notice that the outcome of a while predicate is given by anding the outcomes of all previous predicate instances plus the outcome of the current instance. For example, the outcome of hG 1 w i in Program WW is:

1 w 0 w P 1 (w 0):
Thus, a while predicate instance is both control and data ow dependent on the previous predicate instances. This mixed dependence justi es the term index dependence coined by Griebl and Lengauer 14].

Description of control dependences

The case of the if construct Let us consider the following program piece:

G if (:::) S ... end if
where S is some statement in the then or else arm, perhaps surrounded by l o o p s . L e t c be the depth of the if construct, i.e. the number of loops surrounding G. Let x (resp. ỹ) be the iteration vector of G (resp. S). Then, there is a control dependence from hG xi to hS ỹi i ỹ 1::c] = x:

(if c = 0, then x and ỹ 1::c] are equal to the vector of dimension 0 and equality (5) is true.)

The case of while loops Let us consider the following program piece:

G while (:::) S ... end while where S is some statement i n t h e while-loop body, perhaps surrounded by loops within the body. L e t c be the depth of the while construct, i.e. the number of loops surrounding G. L e t x (resp. ỹ) be the iteration vector of G (resp. S). Then, there is a control dependence from hG xi to hS ỹi i x 1::c] = ỹ 1:

:c] ^x c + 1] ỹ c + 1] (6)
We h a ve n o w de ned the various dependences that may appear in a program. The following section de nes a suitable internal data structure for a parallelizing compiler to handle these dependences.

Internal data structures 2.6.1 Detailed dependence graph

The most intuitive structure is the detailed dependence graph. The vertices of this graph are program operations and the edges are dependences between these operations. When all data dependences are taken into account, the dependence graph for S in Program WW is depicted in Fig. 5(b). (There is no self control dependence on S.) When only data ow dependences are taken into account, the dependence graph is shown in Figure 5(a). The leaves in (4) give the graph edges. In Figure 5(a), notice that some points have m a n y incoming edges, meaning that the real ow o f v alue may be carried by a n y of them. These edges correspond to the second leaf of (4). The detailed dependence graph has one vertex per operation, and thus is too big a data structure { it may e v en need an in nite number of vertices! We h a ve to guarantee that sizes of internal data structures do not depend on sizes of program data structures nor on the number of spawned operations, i.e. we m ust be able to compile without knowledge of structure parameters values. We are thus looking for a linearly described graph, and the generalized dependence graph ful lls this requirement.

Generalized dependence graph

We augment the Generalized Dependence Graph (GDG) 8] to handle approximate iteration domains and possibly to include anti, output and control dependences. The latter are seen as regular data dependences and treated as such. The GDG is a directed multi-graph de ned by: A set V of vertices: Each v ertex correspond to a statement in the program. More precisely, each v ertex represents the set of operations the statement s p a wns. Note that the predicate expression of a while or an if is considered as a statement.

A set E of edges: There is an edge e from a source statement t(e) (the edge's tail) to a sink statement h(e) (the edge's head) if there is a dependence from t(e) t o h(e). All data ows (value-based dependences) incur an edge in the GDG however, we will see in Section 4.4 that other types of dependences (e.g. control and memory-based) may o r m a y not be taken into account. (Hence, corresponding edges may or may not be inserted in the GDG.) In any case, to each e d g e e is associated a set of constraints on the iteration vectors of t(e) a n d h(e). A function R giving, for each e d g e e 2 E , a relation on couples (x ỹ) described by a system of a ne inequalities.

If the edge corresponds to a data ow, then this relation is given by the context of the corresponding quast leaf and the inequalities in the leaf's expression. By construction, R(e) is de ned by a ne inequalities, and thus is a polyhedron. Moreover, FADA guarantees that this polyhedron is not empty, a v ery useful property in the sequel. Notice x may take s e v eral values in a (polyhedral) set parametrized by ỹ, so the methods of 8, 9] can be applied.

If the edge corresponds to a control dependence, then the relation captures equation (5) or (6).

3 Scheduling In Program A, hS i j ; 1i;hS i ji if j 2. On the other hand, hS i ji 6 ;hS i 0 j i), for any i 0 . T h us, a possible scheduling function for the operations spawned by Program A is (hS i ji) = j ; 1. For a given j, a l l hS i ji 1 i n are scheduled to execute in parallel. Unfortunately, all programs do not have so simple schedules. Take for example Program B: program B do i = 1 , n do j = 1, n S : s = s+ a(i,j) end do end do Suppose we cannot take bene t of algebraic properties of addition. Then, this program cannot be parallelized. Moreover, this program does not have a one-dimensional a ne schedule 9]. However, a valid multi-dimensional component-wise a ne schedule is, for instance:

(hS i ji) = i j :
In this case, the codomain of the scheduling function is N 2 , and the associated order is the strict lexicographical order, denoted by . Hence, a more general de nition of scheduling is either o

1 ;o 2) (o 1) (o 2) or o 1 o 2) (o 1) (o 2):
The latency of a schedule is, by de nition L = Card (): For a one-dimensional schedule (whose period is 1), L = m a x () ; min () + 1: Finally, notice that many di erent de nitions appear in the literature:

for some authors, schedules may h a ve rational coe cients. Programs may h a ve a single schedule for all statements or, on the contrary, o n e s c hedule for each statement. We will stick to the latter kind, and try to derive \a ne-by-statement" schedules. In the sequel, for a statement S and an iteration vector x, w e d e n o t e S (x) the logical execution date of hS xi instead of (hS xi).

Scheduling dynamic control programs

On the contrary to SCPs, scheduling DCPs does not have a n o b vious meaning, since the scheduled operations may not execute at all. Scheduling an operation o 2 in a DCP means that, if this operation executes, then all preceding operations have been computed at previous scheduled dates. These preceding operations will be de ned in Section 4.4.

If no if statement is allowed in DCPs and the only while-loop is the outermost loop, array d a t a o w analysis is exact and does not need tailored analyzes such a s i n 1 0]. An algorithm to schedule this restricted type of DCPs was previously proposed 2, 3]. This algorithm is extended in this paper to handle DCPs.

The need for multi-dimensional scheduling functions

This section answers the following question: Why should the scheduling function have possibly more than one dimension?

The main reason is that the class of DCPs includes all SCPs, and SCPs themselves require multidimensional schedules in the general case (see Program B). Moreover, they allow to easily express the behavior of programs built from while loops. Take for instance Program W (slightly modi ed from Program simple page ??): program W do w=0 by 1 while (P) S : x = ... x . . . end do R : y = x Since we cannot tell when predicate P evaluates to false, we h a ve to consider a possibly non-terminating execution of the while loop. Valid schedules for S and R are

S (w) = 0 w R () = (1) (7)
respectively. Since one cannot know at compile-time when Predicate P evaluates to false, one has to consider a possible non terminating while-loop. We also have to specify that hRi should execute after the last instance of S, which is unknown. A solution to this problem 13] is to use a placeholder denoted by , which essentially is a new variable equal to the execution date of the last instance of S. This placeholder is thus updated during execution, and the execution date of hRi is + 1 .

However, this method has two d r a wbacks according to us: Using placeholders is in a sense a dynamic scheduling. This is an acceptable choice, but the bene ts of static scheduling are lost Composition of schedules is not clear. For instance, let us consider the following program:

Existence of multi-dimensional schedules

Before proceeding on the scheduling problem, another question naturally arises: Do all DCPs have a m ultidimensional scheduling function?

To answer this question, we p r o ve the following:

Proposition 1 All DCPs respecting the restrictions of Section 2 have a multi-dimensional a ne schedule. Proof (A constructive p r o o f b y induction on the structure of DCP .) =do w = 1 by 1 while Q end do. Q is a SCP. Let be the schedule of a statement i n Q, would the while loop be discarded. Then, w i s a v alid schedule for the selected statement o f Q. =if p then Q end if. Q is a SCP. Let be the schedule of a statement i n Q, w ould the conditional be discarded. Then (0) and 1 are valid schedules for p and the selected statement o f Q, respectively.

= 1 2 . 1 and 2 are DCPs. Let 1 (2) be the schedule of a statement i n 1 (2). Then 0 1 1 2 are valid schedules for the selected statements of 1 and 2 , respectively. =if p then Q 1 else Q 2 end if. Q 1 and Q 2 are SCPs. Let 1 (2) b e t h e s c hedule of a statement i n Q 1 (resp. Q 2), would the conditional be discarded. Then, (0) 1 1 1 2 are valid schedules for the evaluation of p and for the selected statements of Q 1 and Q 2 , respectively. (Notice that since instances of both Q 1 and Q 2 will not execute for a given value of the iteration vector, the rst components of their schedules can be equal.)

Note that the proof did not try to minimize schedule dimension. Obviously, w e should try to take bene t of special cases, such as the possible knowledge of an upper bound u on a while loop counter w. For a detailed discussion of speculative execution, see [START_REF] Kelly | Code generation for multiple mappings[END_REF][START_REF] Collard | Space-time transformation of while-loops using speculative execution[END_REF]. Notice that control dependences between instances of the same while predicate can be cut, but the corresponding data ow cannot. This boils down to saying that index dependences cannot be cut.

However, thanks to scheduling functions, we can give a more precise de nition of speculative execution which will allow to derive useful properties. The control ow m ust be restored. Speculative operations are committed or not depending on the outcomes of governing operations. These governing operations must thus execute in nite time. Once a speculative operation is executed, the corresponding governing operation must executes in nite time. That is, the number of operations executed after or simultaneously with the speculative operation and before or simultaneously with the governing operation has to be nite. As a consequence, notice that parallel fronts should be nite. When speculative operation is not brought i n to play, the only executed operations are those belonging to some (actual) iteration domain. On the contrary, speculative execution executes points from approximate iteration domains. Thus, we must take care that speculative fronts are nite or limited 14]. An easy way to guarantee niteness of fronts is to enforce that fronts are not parallel to a nonnegative a n e c o m bination of the approximate domain's rays 3]. However, nite fronts do not imply that delays between speculative operations and their governing operations are nite (there may be an in nite number of nite fronts), but the converse is true.

De nition 3

The ow of data must be restored. When potential sources come from speculative operations, one has to take care that these operations were executed and committed before reading the datum.

Side-e ects from speculative operations must be masked. These side-e ects are writes to memory and exceptions (I/O operations are not considered). For a discussion of these issues, please read [START_REF] Collard | Space-time transformation of while-loops using speculative execution[END_REF][START_REF] Lisper | Detecting static algorithms by partial evaluation[END_REF]. In this paper, we will assume that no exception occurs and that each operation writes into its own private memory cell (i.e., the program has the single-assignment property). Then, speculative operations do not overwrite non-speculative results, and the initial memory state can be restored 3].

To illustrate the second and third dangers of speculative execution, and to show the limits of our method, let us study the following program: The corresponding dependence graph appear in top of Figure 6. If control dependence e1 is \cut", then the dependence graph is still consistent. However, a topological sort would execute all the possible instances of S simultaneously (see second graph in Figure 6): This topological sort yields an in nite front:

fhS wij w 0g:

(8) Equivalently, the schedule for S is (hS wi) = 0 .

The read in hRi requires that the ow of data is re-constructed, and thus that the last instance of S is known. To k n o w this instance, we h a ve t o k n o w the outcome of all instances of G.

Restoring the ow of control

As we said, speculative execution should be used carefully. I n tuitively, not taking a control dependence into account m a y unleash a nonterminating behavior. In the case of DCPs where the only while loop is the outermost loop, a necessary and su cient condition to restore the ow o f c o n trol is that fronts must be nite 2]. The proposition below is more general and subsumes the niteness of fronts. is nite.

Proof Let L be the date of the last scheduled operation, and W be the work performed by t h e program: W = L X t=0 s(t) [START_REF] Eautrier | Some e cient solution to the a ne scheduling problem, part II, multidimensional time[END_REF] where s(t) is the cardinal of the front at time t: s(t) = Card(fuj (u) = tg):

A program can be executed in nite time on a nite number of processors i W is nite. In particular, for a given operation o c governing a speculative operation o, [START_REF] Eautrier | Some e cient solution to the a ne scheduling problem, part II, multidimensional time[END_REF] implies that:

(oc) X t= (o) s(t) < 1
which is equivalent t o s a ying that (o c o) is nite, hence the proposition.

Testing this condition in a naive w ay w ould require to enumerate all possible statements (of whom u is an instance), and split the inequalities according to (1). Notice that enforcing this condition bound both the resources and the time required by speculation. Front (8) g i v en by topological sort has a ray along the w-axis. As said in section 4.1, our method forbids such an in nite front because this front is parallel to the ray. H o wever, a more general condition is given by Proposition 9: (hG 0i) = 0 and (hS wi) = 0, hence:

(hG 0i hS 0i) = fhS wi j w 0g which is not nite. (Thus, our method is not able to parallelize Program simple.)

Comments on this method Proposition 9 gives an a posteriori test on the given schedules (to be constructed in Section 5). However, one may try to take bene t of speculative execution using pseudo-a ne schedules. Future work will tackle this issue, but this paragraph just presents the main idea. Roughly speaking, executing all possible instances of S, i.e. executing all elements of (8) in parallel, is \too speculative".

The mistake i n t h e a b o ve example was to cancel all instances of dependence e 1 in the dependence graph. Instead of canceling all instances of a control dependence, a method is to replace them with delay dependences so as to bound speculative execution. For instance, control dependence e 1 hG wi c hS wi could be replaced by hG wi R hS w + r(w)i where r(w) is a nonnegative i n teger delay. S u c h dependences allow to tile the iteration domain, and to schedule each tile independently in a speculative w ay (see Figure 6). However, constructing these delay dependences is still an open problem. Moreover,, schedules are in general not a ne any more. In the case of Figure 6, valid pseudo-a ne schedules for G and S would be:

G (w) = w 3 w % 3 S (w) = w 3 0 :
Such s c hedules are beyond the scope of this report.

Restoring the ow of data: compensation dependences

Problem description If the source of a read is a singleton (as given by the fuzzy array data ow analysis), then the identity of the source does not depend on the ow o f c o n trol. In other words, if the read executes, the the source executes too. However, if the source is not a singleton, then we cannot decide at compile-time which operation among the source set is the last executed one. Existence of a possible source depends on the outcome of all governing predicates from whiles and ifs, which is formalized by c o n trol dependences. Hence, care must be taken when cutting control dependences, since selecting the actual data ow source depends on them. As a consequence, we m ust ensure that, given operations u v w such that u c v and v 2 (w), if dependence u c v is cut, then u still executes before w. T o enforce this property, w e insert a dependence from u to w. I n tuitively, this dependence compensates for the cut control dependence, and is denoted by u comp w.

We s a w that, in Program simple, executing operation hRi requires the knowledge of the outcomes of all instances of G. So, we insert compensation dependence hG wi comp hRi, for all w 0.

Here is another example: S0 : x = ... G : if (:::) then S1 :

x = . . . end do R : ... = x Speculative execution of S1 can be scheduled before the execution of G. H o wever, R needs to know w h o produced datum x among S0 and S1. Notice that this problems only appear because the ow of data is fuzzy: the source of x in R is fS0 S 1 g, the source for R in Program simple is fhS wij w 0g. W e compensate edge G c S1 by a compensation dependence hGi comp hRi.

Construction of compensation dependences Let us consider a control dependence edge e 1 in the GDG, from some instances of statement G to some instance of statement S, which w e i n tend to cut: hG xi c hS ỹi s:t: R e1 (x ỹ) [START_REF] Collard | Fuzzy array data ow analysis[END_REF] where R e1 (x ỹ) is a system on a ne constraints on x ỹ, labelling edge e 1 in the GDG.

The problem is as follows: For any statement R, whose iteration vector is z, s u c h that there is a data ow edge e 2 from hS ỹi to hR zi if R e2 (ỹ z) holds, construct the set: C(hR zi) = fhG xi j R e1 (x ỹ) R e2 (ỹ z)g Since R e1 (x ỹ) a n d R e2 (ỹ z) are given by systems of a ne constraints, computing C(hR zi) can easily be done: make the conjunction of both systems and eliminate variables ỹ. Hence, this boils down to projecting variables ỹ out.

At rst sight, this method has two drawbacks: rst, it may be costly. Second, the resulting set cannot always be described as the integral points in a convex polyhedron to be consistent, we m a y in the general case have to approximate the resulting set by its hull. However, the second problem seldom occurs due to the form of R e1 given by (5) or [START_REF] Darte | Automatic parallelization based on multi-dimensional scheduling[END_REF].

This mode executes as many speculative operations as possible but is not able to \rollback" and restore the original semantics when these speculative executions happen to be mispredicted. This mode would require that the compiler knows very special properties on the algorithm such a property w as rst described in 28] for \convergent while loops": when the stopping condition evaluates to tt, then all following iterations evaluate the condition to tt too. According to us, this is a dangerous property t h a t a compiler should not assume.

We will thus restrict ourselves to the rst three parallelization modes, and, in all cases, automatically derive a s c heduling function to all program statements. Notice that all four sets of preceding operations may b e in nite.

Examples

We illustrate the de nitions above on three examples. The rst example program cannot be parallelized without using speculative execution. On the contrary, the second example does not need speculation to be parallelized. The third program is slightly di erent from the second example however, it cannot be parallelized without speculation, and moreover there exist no safe (a ne) speculative s c hedules for this program. (Notice that in all three programs, scheduling functions are supposed given. Constructing them in an automatic way is the subject of Section 5.)

First example

Program Iteratif

T : x = a(n) + /* > */ G : do w = 1 by 1 while (j x ; a(n) j)

x = a(n) do i = 1 , n S :

a(i) = a (i) + a (i ; 1) end do end do
Let s be the iteration count of the while loop during the sequential execution. Then, this program executes in s n tops. Moreover, this program cannot be parallelized, even if converted into single-assignment form. However, one may \bet" that the current iteration will not be the last one, and speculate. Formally, this boils down to canceling control dependences from hG wi to all hS w ii, f o r a l l i, 1 i n. Only then can the program be parallelized. Figure 7 displays the corresponding parallel fronts (dark lines), assuming that the input program was rst converted into single-assignment form (SA-S mode). This parallel program Let us check that Proposition 2 is satis ed: 8i i i n (hG wi hS w ii) = fhS w 0 i 0 ij (hS w ii (hS w 0 i 0 i) (hG wi)g that is, 8i 1 i n Card((hG wi hS w ii)) = Card(f(w 0 i 0)j w+i;2 w 0 +i 0 ;2 w+n;1 w 0 1 1 i 0 ng:

The cardinal above is nite because the coe cient o f w in (hS w ii) is nonzero. Intuitively, a s c heduling function whose w coe cient is zero yields in nite fronts along the w axis 2]. w coe cients cannot be negative (since that would correspond to executing the while loop in the order opposite to the sequential order), so w 2 N ? . Notice that the smaller the value of the coe cient o f w, the faster the execution (since the latency, for a given nite , is minimized with respect to w when this coe cient is equal to 1). Hence, a schedule with w coe cient equal to 1 is in a sense the \optimal" speculative s c hedule.

A second example, without speculation

Let us go back to Program WW. The corresponding dependences are summed up in Figure 4 and depicted in Figure 8. Parallelization mode SA-C keeps all edges except for e 7 and e 8 . On this example, some parallelism can be extracted without resorting to speculative execution. A topological sort shows that possible valid schedules are:

(hG 1 w i) = w (hG 2 w x i) = w + x + 1 (hS w xi) = w + x + 2 : (Notice that we do not need to check Proposition 2 since these schedules are not speculative.) If conversion into single-assignment w ere not applied (i.e. mode NSA-C is chosen), all edges e 1 though e 8 would have t o be considered, and the fastest schedule would be (hS w xi) = 3 w + x + 2 a s c a n b e c hecked by hand using topological sort.

An example with speculation

We n o w tackle a slightly di erent example, where a while-loop predicate, say P 1 , depends on side-e ects from the nest body. Suppose P 1 is a function of w and of a scalar variable s. T o a void adding a statement, we use a notation \ a la C" where assignments are expressions:

program WWb G 1 : do w = 0 by 1 while (P 1 (w s)) G 2 : do x = 0 by 1 while (P 2 (w x)) S : s = a (w + x) = a (w + x ; 1) end do end do A new data ow dependence is thus added to dependences of Figure 4 : Edge Description Conditions e 9 fhS w ; 1 x ijx 0g t hG 1 w i w 1 Notice that the approximate source of hG 1 w i is an in nite set.

If the program is put into single assignment form (SA-mode), dependences e 1 to e 6 and e 9 are taken into account. The corresponding graph appears in Figure 9 (where only one instance of e 9 , f r o m fhS 0 x ijx 0g to hG 1 1i is displayed to get a simpler gure.) This program does not have a n y parallelism. A solution is to cancel control dependence e 2 . Then, the parallel fronts we previously found for S and G 2 are valid again. Unfortunately, s c heduling G 1 now causes the following problem: hG 1 w i must execute after all operations hS w ; 1 x i, i . e . :

(hG 1 w i) > max x 0 (hS w ; 1 x i) = max x 0 w + x:

This inequality cannot be satis ed if no upper bound on x is known. Using a second schedule dimension yield schedules:

(hG 1 w i) = 1 w (hG 2 w x i) = 0 w + x (hS w xi) = 0 w + x + 1 : However, we are then in an extreme case where speculative execution may not terminate. According to these schedules, all evaluations of predicate P 1 are done before completion of all instances of S and G 2 . H o wever, we h a ve no guarantee that all instances of the loop on x terminate, i.e. that for any w, there is an x 0 such that P 2 (w x 0) = ff. Just imagine that P 1 (w s) = ff and P 2 (w x) = tt! This fact can be checked thanks to (9):

(hG 1 w i hS w 0 x 0 i) = hS w 00 x 00 i 0 w 0 +x 0 +1 0 w 00 +x 00 +1 1 w ^w00 0 ^x00 0 hG 2 w 00 x 00 i 0 w 0 +x 0 +1 0 w 00 +x 00 1 w ^w00 0 ^x00 0 (hG 1 w i hS w 0 x 0 i) f h S w 00 x 00 ijw 00 w 0 ^x00 0g: [START_REF] Griebl | On the parallelization of loop nests containing while loops[END_REF] Hence (hG 1 w i hS w 0 x 0 i) is in nite. Our method for speculative s c heduling thus fails, and Program WWb is executed sequentially.

An algorithm for automatic static scheduling

Let us go back to Program WW. W e can simultaneously execute all the operations belonging to a given wavefront depicted in Fig. 5. Cases (a) and (b) correspond to single-assignment form SA-S and regular form NSA-S, respectively. P arallelism in the both cases can be expressed by w avefront equations: w + x = K and 3w + x = K, respectively, where K is a parameter. As expected, the amount of parallelism is smaller in the latter case, and the corresponding program latency is higher. (Latencies are equal to 8 and 14, resp.) Since approximate domains are in nite, one cannot know latencies at compile-time. However, a rule of thumb i s to consider that the smaller the coe cients, the faster the execution so the better the schedule. The purpose of the algorithm below is to nd the equations of these wavefronts.

Driving algorithm

The core of the method is an algorithm whose input is a GDG and whose output is a multidimensional a ne-by-statement s c hedule (Section 5.2). However, from a given GDG, many sub-graphs can be derived by canceling some control dependences. This core algorithm has thus to be driven by an algorithm whose task is to try and nd a sub-graph of the initial GDG whose schedule is in a sense optimal.

The driving algorithm is described in Figure 10. It takes as input a GDG G and a function scheduling (the core algorithm), and returns a valid, possibly speculative s c hedule for G. This driving algorithm rst nds a non-speculative s c hedule. It then cancels one control (non \index") dependence at a time, and calls the core algorithm to obtain the corresponding schedule. As explained before, a good metric for schedules is latency, but the latter cannot be de ned for DCPs. Thus, a rule of thumb i s t o p i c k t h e s c hedules whose coe cients are the smallest. Note that changing the metric (for instance, schedule delays) would not change the driving algorithm. Nevertheless, this algorithm can trivially be improved, for instance by considering all possible combinations of control dependences. The aim of the next section is to propose an algorithm for

The problem is as follows: for any statement S, construct a function S satisfying (17) and (18), and de ned on [START_REF] Lengauer | Loop parallelization in the polytope model[END_REF]. To do this, we apply the following lemma:

Lemma 1 (A ne Form of Farkas' Lemma) An a ne function S (x) d] is non-negative on a polyhedron de ned b y (1 9) i f t h e r e exists a set of non-negative integers 0 : : : p (the Farkas coe cients) such that3 :

S (x) d] = 0 + p k=1 k (A k x ; b k]): (20)
The delay being the di erence of two s c hedules, each delay c a n t h us be expressed as a function of the 's.

Figure 1 :

 1 Figure 1: Instances of G 1 , G 2 and S, for the arbitrary execution we consider in this report, according to the convention of Griebl and Lengauer.

4

 4

Figure 2 :

 2 Figure 2: Iteration domains of S, G 2 and G 1 , from left to right, for Program WW. Each dot represents an instance of one of these statements.

Figure 3 :

 3 Figure 3: Data ow and control dependence graph for Program WW. E a c h b l a c k dot represents an instance of G 1 , G 2 or S for the arbitrary execution we consider. Gray dots represent possible instances that have t o b e considered, and thus both black and gray dots built the approximate iteration domains.

Figure 4 :

 4 Figure 4: Dependences in Program WW.

Figure 5 :

 5 Figure 5: Dependence graphs for S in Program WW. E a c h dot represent a possible instance of S, but only dark dots denote real operations for the arbitrary execution we consider. Arrows represent data dependences: ow dependences in (a), and ow, output and anti dependences in (b). Dark lines represent possible wavefronts.

 A function b D giving, for any statement S in V, the conservative a p p r o ximation b D(S) of the iteration domain of S.

 Should the schedule of R be the maximum of the values of two placeholders, or an additional placeholder? However, placeholders are necessary to code generation in the general case 11].

4

 4 Speculative execution Intuitively, one gets speculative executions by ignoring or \cutting" control dependences. More formally: De nition 2 The execution of operation o is said to be speculative if there e x i s t s o c such that o c c o and o c executes after or simultaneously with o.

Figure 6 :

 6 Figure 6: Dependence graphs for statements G and S of Program simple. F rom top to bottom: regular (\SA-C") dependence graph dependence graph without edge e 1 { a topological sort yielding an in nite front dependence graph where delay control dependences replace e 1 corresponding quotient graph, where supernodes appear in an acyclic graph.

Proposition 2

 2 An o p eration o can be s p eculatively executed in a safe way i the set (o c o) of operations scheduled b etween o and o c is nite, i.e. i (o c o) = fuj (o) (u) (o c)g (9)

4

 4 Let us consider the program below:G1 : do w1 = 0 by 1 while (:::) G2 : do w2 = 0 b y 1 w h i l e (:::) 12) is cut. Then, since the source of hR w1i is (hR w1i) = fhS w , cutting dependence(12) implies inserting a compensation dependence edge e3 in the GDG such that t(e3) = G1 and h(e3) = R, labeled with Re 3 (e) Parallelization modes Depending on whether speculative execution is brought i n to play (S) or not (conservative, C), and whether the program is converted into single assignment form (SA) or not (NSA), four parallelization modes exist. Each mode yields, for a given operation o 2 , a set of preceding operations: NSA-C The set of preceding operations is fo 1 jo 1 c o 2 _ o 1 o 2 g: This is the mode of classical compilers. SA-C The set of preceding operations is fo 1 jo 1 c o 2 _ o 1 ;o 2 g: SA-S The set of preceding operations is fo 1 jo 1 ;o 2 _ o 1 comp o 2 g:(13)This mode speculates on operation executions but is able to give b a c k the original semantics.NSA-S The set of preceding operations is fo 1 jo 1 o 2 _ o 1 comp o 2 g:

Figure 7 :

 7 Figure 7: Approximate iteration domains for Statements G and S of Program Iteratif. Data ows are displayed by t h i n a r r o ws. Discarded control dependences are displayed in dashed lines. Bold lines correspond to parallel fronts for schedule w + i ; 2 o f S. executes in s + n tops on n processors. Possible schedules are: (hS w ii) = w + i ; 2

Figure 8 :

 8 Figure 8: Graph of control and ow dependences for Program WW.

Figure 9 :

 9 Figure 9: Control and ow dependences in Program WWb. Each dot denotes an instance of G 1 , G 2 or S (respective iteration domains appear in this order from top to bottom.)

Figure 10 :

 10 Figure 10: Driving algorithm looking for a speculative s c hedule.

 use the fact that b D(S) is a polyhedron de ned by p a ne inequalities: b D(S) = fxjAx ; b 0g:

 Expressions do not include any p o i n ter or pointer-based mechanism such as aliasing, EQUIVALENCE, etc. Basic statements are assignments to scalars or array e l e m e n ts. The only control structures are the sequence, the do loop, the while-o r repeat-loop, and the conditional construct if..then..else, without restriction on stopping conditions of while loops, nor on predicates in if's. gotos are thus prohibited, together with procedure calls. Array subscripts must be a ne functions of the counters of surrounding do, while or repeat loops and of structure parameters. The input program is supposed to be correct, thus subscripts must stay within array bounds.

The fact that array subscripts stay within array bounds cannot be checked at compile-time when subscripts are expressions involving while-loop counters. On the other hand, one may d o t h e opposite deduction: since the program is assumed to be correct, and subscripts stay within bounds, an a ne subscript expression gives very informative a ne constraints on while-loop counters. For instance, if the program below is correct, program lwn integer a(0:n) do w = l by 1 while (:::) a(w) = :::

end do then we can deduce that 0 l w n. If the program is not correct, then so is this deduction, and the parallelized program is as incorrect as the input one. For instance, Program WW follows our program model.

program WW

 There exist formal methods to convert SCPs into single-assignment f o r m 6]. However, the case of DCPs is more intricate.

	Take for instance Program I1:	
	Program I1	Program I2
	if P then x = r t else x = r e end if	t m p = P if tmp then x1 = r t else x2 = r e
	l = x	end if S : l = if tmp then x1 else x2

 The execution of operation o is speculative if at least one control dependence o n o is not satis ed, i.e. there exists an operation o c governing o whose execution date is later than the execution date of o: 9o c 2 j o c c o ^ (o c) (o): 4.1 Legality of Speculative execution Obviously, speculative execution is legal if and only if the semantics of the input program is preserved. Three necessary conditions can then be stated:

 5.2 Core algorithmThe aim of this part is to nd, for a given GDG and for each statement S in V, a n i n teger d S and a multidimensional component-wise-a ne function S from D(S) t o N dS such that, for any e d g e e from t(e) t o h(e) in E, the delay e e (x ỹ) = t(e) (x) ; h(e) (ỹ)For any statement S, the codomain of S is N dS . H o wever, we cannot describe the domain D(S) at compiletime. So, we over-constrain S and require that it is nonnegative o n t h e approximate domain:

			(16)
	satis es:	e (x ỹ) 0	(17)

These conditions are not necessary for instance, executing x:=x+1 and x:=x+2 in any order does not change the semantics.

Control dependences (c type) are introduced in Section 4.

The k th component o f a v ector x is denoted by x k] and the k th row o f a m a t r i x A by A k .

Acknowledgments

We w ould like to thank L. Boug e, M. Griebl, C. Lengauer, B. Lisper, X. Redon and F. Vivien for many vivid, brain-storming discussions.

Let us go back t o P r o g r a m WW. Eq. (3) implies that there exist two i n tegers 0 and 1 such that, for any d, G 1 (w) d] = 0 + 1w: [START_REF] Martel | Etude et impl ementation de m ethodes num eriques it eratives bas ees sur l'ex ecution sp eculative[END_REF] The conservative iteration domain b D(S) of statement S is (2). Thus, there exist integer coe cients 0 1 2 and 0 1 2 such that G 2 (w x) d] = 0 + 1 w + 2 x [START_REF] Maslov | Lazy array data-ow dependence analysis[END_REF] and:

S(w x) d] = 0 + 1 w + 2 x: [START_REF] Maydan | Array data ow analysis and its use in array privatization[END_REF] Basically, the algorithm is identical to the one in 9]. Intuitively, w e w ould like to nd, for all statements, non-negative one-dimensional schedules satisfying [START_REF] Kelly | Code generation for multiple mappings[END_REF] for any e d g e e. In this case, d = 1 and (17) is equivalent t o :

x 2 b D(t(e)) ỹ 2 b D(h(e)) (x ỹ) 2 R (e) e (x ỹ) d] = t(e) (x) d] ; h(e) (ỹ) d] > 0: [START_REF] Pugh | Eliminating false data dependences using the omega test[END_REF] Initially, d is equal to 1. Then, the algorithm satis es in a greedy way a s m a n y edges as possible until all of them can be canceled:

If [START_REF] Pugh | Eliminating false data dependences using the omega test[END_REF] can be satis ed for all statements and all edges for the current v alue of d, then the algorithm terminates.

If no instance of (24) can be satis ed, then the greedy algorithm fails. Otherwise, we h a ve to add a dimension to all schedules involved in unsatis ed constraints [START_REF] Pugh | Eliminating false data dependences using the omega test[END_REF], and we increment d. W e then go back to Step 1 to handle remaining schedules and edges. The algorithm will thus iteratively try to satisfy all such constraints, adding one dimension to some schedules at each iteration.

Let U (1) be the set of edges such that (24) is satis ed for d = 1. Its complement i n E is such t h a t : e 6 2 U (1)) 9x 2 D(t(e)) 9ỹ 2 D(h(e)) (x ỹ) 2 R (e) s:t: e (x ỹ) 1] = t(e) (x) 1] ; h(e) (ỹ) 1] = 0: How can we tell the elements of U (1) from the others? If R(e) is a singleton and the dependence is uniform, then we can directly solve [START_REF] Pugh | Eliminating false data dependences using the omega test[END_REF] for the Farkas coe cients. Otherwise, as remarked in 26], e (x ỹ) is de ned on the set: f(x ỹ) j ỹ 2 D(t(e)) x 2 D(h(e)) (x ỹ) 2 R (e)g [START_REF] Pugh | An exact method for analysis of value-based data dependences[END_REF] which is a non-empty c o n vex polyhedron. The inequalities de ning this set are just the conjunction of the inequalities de ning D(t(e)) D(h(e)) and R(e). Let n e be the number of resulting inequalities. These inequalities can collectively be written as: 8k 1 k n e e k (x ỹ) 0: Let e be an auxiliary integer variable encoding the fact that e belongs to U (1) or not. Then, if e (x ỹ) ; e is a non-negative f o r m f o r e = 1, then the one-dimensional causality constraint (24) is satis ed. Otherwise, e = 0. Since the domain of e is not empty, w e can apply the A ne Form of Farkas' Lemma again: there is a set of non-negative i n tegers 0 : : : ne such that: e (x ỹ) ; e = 0 + ne k=1 k e k (x ỹ): [START_REF] Rauchwerger | Speculative run-time parallelization of loops[END_REF] This yields a system of linear equations. If this system can be solved with e = 1, then (24) is satis ed.

We did not precise, however, which solution should be picked among possibly many solutions. In SCPs, one may try to minimize schedule latencies. However, schedules for DCPs may be de ned on non bounded domains. For instance, Statement S in Program W has schedule S (w) = 0 w whose latency is unde ned. In such cases, an intuitive r u l e o f t h umb i s t o c hose the 's and 's to be as small as possible, since this tends to reduce the latency. More formal criteria are given in 8].

Let us apply the above algorithm to Statements S and R in Program W. Prototype schedules are S(w) = 0 + 1w and R() = 0 , respectively. I f w e just take data ow dependences into account, then the source of right-hand-side x in S is:

(hS wi) = if w 1 then fhS w ; 1ig else f?g:

The source of x in R can be just any instance of S, i f a n y, a n d F ADA y i e l d s :

(hRi) = f?g fhS wij w 0g:

The rst dependence is uniform, giving the inequality b e l o w (d = 1) : (24)) e 1 (w

The second edge is a parametrized set of dependences, and the method in 8] cannot be applied. Instead, we h a ve to consider the delay: e 2 (w) d] = R d] ; S(w) d] ; 2 = 0 ; 0 ; 1w ; 2 (27) On the other hand: e 2 (w) d] = 0 + 1w (28) Equaling the members of (27) and [START_REF] Saltz | Multiprocessors and runtime compilation[END_REF] gives: Constants : 0 ; 0 ; 2 = 0 (29) w :

; 1 = 1 (30) Since all Farkas coe cients are non-negative, the only solution to the last equation is 1 = 1 = 0. This implies that 1 = 0, i.e. the rst edge is not satis ed. Now, a possible solution to the entire system is 2 = 0 = 1 0 = 0 = 0 . T h us, the rst schedule components are S(w) 1] = 0 + 0w = 0 and R 1] = 1.

During the second iteration of the algorithm, d = 2 and the only edge still to be satis ed is the rst one, i.e. 1 1 for 1 = 1. The smallest solution is 1 = 1. Since there is no condition on 0, i t i s s e t t o 0 . Thus, S(w) 2] = w, and we h a ve automatically found the schedules in (7).

Program WW revisited

We n o w apply the algorithm of the previous section to automatically derive the nonspeculative s c heduling function on Program WW (SA-C mode).

We handle one by one all the dependences of Figure 4. Dependence e 1 is uniform, and since the schedule prototype for G 1 is [START_REF] Martel | Etude et impl ementation de m ethodes num eriques it eratives bas ees sur l'ex ecution sp eculative[END_REF], this dependence yields: 0 + 1 w ; (0 + 1 (w ; 1)) 1 that is:

1 1 (31) Then, since [START_REF] Maslov | Lazy array data-ow dependence analysis[END_REF], dependence e 2 yields:

24 Edge e 3 is uniform. The delay i s : 0 + 1 w + 2 x ; (0 + 1 w + 2 (x ; 1)) 3 () 2 3 :

(33) Edge e 4 yields the following constraint: 0 + 1 w + 2 x ; (0 + 1 w + 2 x) 4 (34) Edge e 5 is uniform too, hence: 0 + 1 w + 2 x ; (0 + 1 w + 2 (x ; 1)) 5 () 2 5 :

(35) Edge e 6 subsumes a parametrized set of non-uniform dependences. The delay e6 (w) is de ned on a set described by the following inequalities: w ; 1 0 0 0 w ; ; 1 0 + ; w + 1 0 w ; ; ; 1 0: Thus, there exists a set of integer coe cients 0 ::: 7 such that: e6 (w) = 0 + 1 w ; (0 + 1 + 2) ; 6 = 0 + 1 w + 2 + 3 + 4 (w ; ; 1) (40) Since our aim is to have as small schedule latencies as possible, we h a ve to look for small solution values. Eq.(31) is satis ed when 1 = 1 = 1. Equations (33) and (35) are satis ed when 2 = 2 = 3 = 5 = 1 . Eq.(32) yields no constraint o n 0 , s o 0 = 0 and we c a n s e t 0 = 1 = 1. Eq. (40) is satis ed when 6 = 1 3 = 5 = 0. Then, Eq. (38) implies that 1 1, and is satis ed when 1 = 1 1 = 4 = 0 . N o w Eq. (34) is satis ed for 4 when 0 = 2 . W e h a ve t h us automatically found the expected schedules: G1 (w) = w G2 (w x) = w + x + 1 S (w x) = w + x + 2 : Suppose now that we map operations hS w xi on processor p = w. I f t is the current v alue of the logical clock, then the corresponding space-time mapping 18] can be inverted, and w = p x = t ; p ; 1. If we associate a memory cell S(w x) to each operation hS w xi (since we a s s u m e c o n version to SAF), then the skeleton of the generated code looks like: Predicates terminated and executed are mandatory to restore the ow o f c o n trol and have been de ned by Griebl and Lengauer 12,1 4]. The former detects termination and the latter checks whether the current c o u p l e (t p) corresponds to an actual operation. Both predicates have been implemented by Griebl and Lengauer by signals between asynchronous processes. However, their implementation in a synchronous model through boolean arrays is feasible, and is the subject of in-progress joint w ork with Martin Griebl 11].

On the other hand, function last dynamically restore the ow of data, and returns the value produced by the last (according to order) executed operation among the set passed as an argument. The overhead due to this function may reduce the bene ts of parallelism however, its implementation is quite obvious: the argument set is a Z-polyhedron that last has to scan in the opposite lexicographical order. A slight modi cation of the algorithm in 4] w ould generate the following code for last: function last (w , x) do = w ; 1 , 0 , ;1 = w ; ; 1 if executed() then return S() end do return a(w + x ; 1) This function does implement the result of a fuzzy array data ow analysis since the returned value is the one produced by the last executed possible source, or the initial element of array a if no possible source executed. Obviously, m a n y optimized implementation schemes for last can be crafted, but discussing this issue would take us too far a eld and is left for future work.

Related work and conclusion

When the ow o f c o n trol cannot be predicted at compile time, data dependence analysis can only be imprecise. For instance, one cannot solve the array d a t a o w problem 23, 7 , 2 2], which gives for every consumed value the identity of the producer operation. This lack of precision translates into sets of possible producer operations. Note that this phenomenon may occur in two other situations: 1) in the presence of intricate or dynamic (\subscripted") array subscripts, and 2) when the compiler writer believes that current precise dependence analyzes are too expensive, and that approximate tests are su cient 5]. In all three cases, a new scheduling algorithm has to be designed. One should also try and answer the following questions: Is it worthwhile to convert DCPs into singleassignment form? (Obviously, extensive experiments are needed here.) When should speculative execution be brought i n to play 25] ? H o w c a n w e reduce the number of equations and unknowns in our method? (Solving such problems thanks to softwares such a s Maple or Pip is costly.) Could our compile-time s c heduling ease the work of the inspector in the method proposed in 27]? Indeed, the e cient compilation of DCPs probably needs a tight i n tegration of compile-time and run-time techniques 25].