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Abstract

Static scheduling consists in compile�time mapping of operations onto logical execution dates�
However� scheduling so far only applies to static control programs� i�e� roughly to nests of do
�or for� loops� To extend scheduling to dynamic control programs� one needs a method that
�� is consistent with unpredictable control �ows �and thus unpredictable iteration domains� ��
is consistent with unpredictable data �ows� and �� permits speculative execution� This report
describes a means to achieve these goals�

Keywords� Automatic parallelization� dynamic control program� while loop� scheduling� speculative exe�
cution

R�esum�e

L	ordonnancement statique consiste 
a attribuer lors de la compilation des dates logiques d	ex�ecution
aux op�erations du programme� Cependant� les techniques d	ordonnancement ne s	appliquent
jusqu	
a pr�esent qu	aux programmes 
a contr�ole statique� c	est�
a�dire typiquement aux imbrications
de boucles do �ou for�� Pour �etendre ces techniques aux programmes 
a contr�ole dynamique� il
est n�ecessaire de trouver une m�ethode qui �� soit compatible avec des �ots de contr�ole impr�evis�
ibles �et donc avec des domaines d	it�erations impr�evisibles� �� soit compatible avec des �ots de
donn�ees impr�evisibles� et �� autorise �eventuellement l	ex�ecution sp�eculative� Ce rapport propose
une telle m�ethode�

Mots�cl�es� Parall�elisation automatique� programme 
a contr�ole dynamique� boucle while� ordonnancement�
ex�ecution sp�eculative
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� Introduction

Static Control Programs �SCPs� have always been a central paradigm in compilers� Such programs have
a structure that can be known at compile time� More precisely� one may statically enumerate all the
operations spawned when executing an SCP� This enumeration may be parametrized w�r�t� symbolic �size�
or �structure� parameters� To decide whether a program is an SCP� one must �nd syntactical criteria�
SCPs in imperative languages are made of for �or do� loops and sequencing� while loops and gotos are
forbidden� Moreover� for loop bounds must be tractable� and are usually restricted to a�ne forms� �SCPs
in applicative languages are �rst order expressions ������ SCPs generally have the additional constraint that
array subscripts are a�ne functions of surrounding loop counters and size parameters�

In the case of SCPs� each execution spawns the same operations in the same order� Notice that this order
may be partial ���� ��� This is the very aim of automatic parallelization� �nd a partial order on operations
respecting either all data dependences or just data�ow dependences ���� The more partial the order� the
higher the parallelism� Obviously� this partial order cannot be expressed as the list of relation pairs� One
needs an expression of the partial order that does not grow with problem size� Such an expression may be
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a closed form� thus restricting the class of orders we can handle� Additional constraints on the choice of a
partial order expression are� have a high expressive power� be easily found and manipulated� allow optimized
code generation�

Well�known closed form expressions are schedules� i�e� mappings from operations onto logical execution

dates ����� These mappings are often functions from loop counters to integers� Two operations are not
comparable i� they are scheduled to the same logical execution date� i�e�� they may simultaneously execute
on two distinct �virtual� processors�

So it seems that we have a sound and comprehensive framework for automatic parallelization� However�
little work has been done so far on DynamicControl Programs �DCPs�� Such programs are just any programs�
and include SCPs� Section �� however� will give a more constrained de�nition of DCPs� The aim of this
paper is to schedule DCPs� and the two contributions of this paper are� �� to provide a single method to
handle control dependences or not � depending on whether speculative execution is desired� and �� to derive
schedules that respect parameterized sets of data dependences� since no more precise information can be
obtained in general�

Section � also gives necessary de�nitions and a brief review of dependence and array data�ow analyses
for DCPs� Section � then describes how parallelism can be expressed thanks to �possibly multi�dimensional�
schedules� Section 
 introduces speculative execution� an optional optimization� Section � details the algo�
rithm which mechanically constructs the �possibly speculative� schedules� Section � concludes and discusses
related works�

� De�nitions

The k�th entry of vector �x is denoted by �x�k�� The dimension of a given vector �x is denoted by j�xj� The
subvector built from components k to l is written as� �x�k��l�� If k � l� then this vector is by convention the
vector of dimension �� Furthermore� � and � denotes the non�strict and strict lexicographical order on
such vectors� respectively� � is de�ned by�

�x� �y � �k� � � k � min�j�xj� j�yj�� s�t�
��k�� � � k� � k� �x�k�� � �y�k���

� ���x�k� � �y�k�� � ��x�k� � �y�k�� j�xj � k � j�yj�� �
���

In this paper� �max� always denotes the maximum operator according to the � order� The integer division
operator and the modulo operator are denoted by � and �� respectively� The true and false boolean values
are denoted by tt and ff � respectively�

We �rst have to stress the di�erence between a statement� which is a syntactical object� and an operation�
which is a dynamic instance of a statement� If a statement is included in a loop� then the execution yields
as many instances of the statement as loop iterations� When only do loops appear in a program� giving
names to statement instances is easy� one just has to label the operation by the statements	 name and the
corresponding loop counters	 values�

Take for instance the following program�

program A

do i � � � n

do j � �� n

S � a�i�j� � a�i�j���

end do

end do

The iteration vector for this nest is �i� j�� The iteration domain of S is D�S� � f�i� j�j � � i �
n� � � j � ng� So� S spawns n� operations� An operation is denoted by hS� i� ji�
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However� we can easily add an arti�cial counter to any while�loop� whose initial value is also arbitrary�
whose step is �� and for which no upper bound is known� Note that detecting inductive variables may exhibit
natural counters to while�loops� Hereafter� we will mimic the PL�� syntax� i�e� use the construct below�

while�loop Equivalent loop with explicit counter
do while � P � S do w � � by � while� P � S

The program model we will restrict ourselves to is as follows�

� The only data structures are integers� reals� and arrays thereof�

� Expressions do not include any pointer or pointer�based mechanism such as aliasing� EQUIVALENCE�
etc�

� Basic statements are assignments to scalars or array elements�

� The only control structures are the sequence� the do loop� the while� or repeat�loop� and the condi�
tional construct if��then��else� without restriction on stopping conditions of while loops� nor on
predicates in if	s� gotos are thus prohibited� together with procedure calls�

� Array subscripts must be a�ne functions of the counters of surrounding do� while or repeat loops
and of structure parameters� The input program is supposed to be correct� thus subscripts must stay
within array bounds�

The fact that array subscripts stay within array bounds cannot be checked at compile�time when
subscripts are expressions involving while�loop counters� On the other hand� one may do the
opposite deduction� since the program is assumed to be correct� and subscripts stay within
bounds� an a�ne subscript expression gives very informative a�ne constraints on while�loop
counters� For instance� if the program below is correct�

program lwn

integer a��	n�

do w � l by � while � ��� �

a�w� � ���

end do

then we can deduce that � � l � w � n� If the program is not correct� then so is this deduction�
and the parallelized program is as incorrect as the input one�

For instance� Program WW follows our program model�

program WW

G� � do w � � by � while � P��w� �
G� � do x � � by � while � P��w� x� �
S � a� w � x � � a� w � x	 � �

end do

end do

For now� we will suppose that predicates P� and P� in Program WW do not depend on array a� but only on
w and w and x� respectively�

We can now extend the de�nition of iteration vectors to while loops� the iteration vector of a statement
appearing in a nest of do and�or while loops is the vector built from the counters of the surrounding loops�
The dimension of iteration vector �x is equal to the number of surrounding loops� For example� the iteration
vector of statement S in Program WW is �w� x�� An instance of S for a given value �x of the iteration vector
is denoted by hS� �xi�

The true and false boolean values are denoted by tt and ff � respectively�
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��� Iteration domains

The iteration domainD�S� of statement S is the set of values that the iteration vector takes in the course of
execution� Unfortunately� iteration domains for dynamic control programs cannot be predicted at compile�
time� In the particular case where there is only one outermost while�loop� we know at compile�time that the
iteration domain is built from the integral points inside a convex polyhedron� this polyhedron is bounded
if the loop terminates� but this bound cannot be known statically ���� In more general cases� the iteration
domain has no particular shape and looks like a �possibly multi�dimensional� �comb� �����

An additional di�culty of DCPs when compared to SCPs lies in the handling of while�loop predicates�
For instance� there is not a one�to�one correspondence between the evaluations of predicate P��w� x� in
program WW and the instances of S� Two frameworks have been proposed to describe such a phenomenon�

� Griebl and Lengauer ���� map to the same point of the iteration domain the evaluation of one or more
while�loop predicates plus possibly the execution of a statement S appearing in the loop nest� Then�
a single while�loop that does not iterate at all yields a one�element iteration domain�

� An alternative method is to consider the predicates of ifs and whiles as full��edged statements having
their own iteration domains� and to regard their instances as regular operations� We adopt this method
since it allows to disambiguate the meaning of iteration domain elements� and to clarify the study of
scheduling and speculative execution �to be discussed later��

Let us go back to Program WW� Throughout this report� we consider an arbitrary execution such
that the loop on w iterates � times �Predicate P��w� evaluates to ff when w � ��� and the loop
on x iterates 
� �� �� � and � times� G� executes one time more than S� i�e� �� �� 
� � and � times
respectively�

The method chosen by Griebl and Lengauer is illustrated for Program WW in Figure �� Iteration
domains of S� G� and G�� according to our method� are displayed in Figure ��
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Figure �� Instances of G�� G� and S� for the arbitrary execution we consider in this report� according to the
convention of Griebl and Lengauer�

��� Approximate iteration domains

De�nition � The approximate iteration domain bD�S� of a statement S is the set of all instances of S when
the predicates of all while loops and ifs surrounding S evaluate to true�

This unique approximate domain of S is a conservative superset of the �actual� iteration domain�
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Figure �� Iteration domains of S� G� and G�� from left to right� for Program WW� Each dot represents an
instance of one of these statements�

For example� the approximate iteration domain of S in Program WW is�

bD�S� � f�w� x�jw 
 �� x 
 �g ���

The approximate domain of G� is�

bD�G�� � fwjw 
 �g ���

The approximate iteration domain bD�G�� is equal to bD�S�� However� recall that for any given w�
G� executes one more time than S� In Figure �� black dots represent the corresponding instances
of the three statements�

A very important remark is that� in a static control program� the approximate domain of any statement S is
equal to the actual iteration domain� i�e� bD�S� � D�S� for any S� and there is no need for handling control
dependences since they are already taken into account in the expression of D�S��

��� Scanning iteration domains

Griebl and Lengauer have shown that the image of the iteration domain of a nest of do and while�loops
cannot always be scanned by another nest of do and while�loops� even when the mapping is a�ne and
unimodular� Su�cient conditions for mappings to yield scannable image domains have been given �����

When these conditions are not satis�ed� the method proposed by these authors to scan the image domain
consists in scanning a �nite subset of the approximate image domain and in checking on the �y whether the
current point is an element of the actual iteration domain�

D�S� � f �x j �x � bD�S� � executed��x�g�

This test is done thanks to a predicate called executed� expressed as a recurrence on loop predicates�

For a precise and general de�nition of this predicate� the reader is referred to ����� For our
running example� this predicate is�

executed�w� x� � executed��w� x�

executed��w� x� � x 
 �� P��w� x� � executed��w� x	 ��

x � �� P��w� x� � executed��w�

executed��w� � w 
 �� P��w� � executed��w 	 ��

w � �� P��w�
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So we know now how to describe the operations spawned by a DCP� We now address the problem of
�nding the dependences among these operations�

��� Memory� and value�based dependences

Two operations can execute in parallel if they are independent� i�e� they do not interfere� Bernstein gave
three su�cient conditions on two operations o� and o� for the program	s semantics to be independent on the
order in which these operations execute�� Let R�o���M �o�� �R�o���M �o��� be the set of memory cells read
and modi�ed by o� �o��� respectively� Then� these operations are independent i� the three conditions below
hold�

� C�� M �o��
T
R�o�� � 


� C�� M �o��
T
R�o�� � 


� C�� M �o��
T
M �o�� � 


A few comments are in order here�

� If the �rst condition is not satis�ed� then there is a true dependence or producer�consumer dependence�
denoted by o��

to��

�These conditions are not necessary� for instance� executing x��x�� and x��x�� in any order does not change the semantics�
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� If Condition C� is false� then o� has read its input data in some memory cells and o� then reuses these
cells to store its result� This is an anti�dependence or consumer�producer dependence� denoted by
o� �o�� There is an anti dependence on S in Program WW� corresponding to Edge e� in Figure 
�

� If Condition C� is not satis�ed� then there is an output dependence or producer�producer dependence
denoted by o��

�o�� In Program WW� the output dependence between two instances hS� �� �i and hS�w� xi
of S is described by Edge e� in Figure 
�

If any condition C�� C� or C� is not satis�ed� then o� and o� are said to be data dependent� denoted by
o��o�� Two operations o� and o� can execute in parallel if o� is not dependent on o� by transitive closure
of �� We say that a dependence from o� to o� is satis�ed if o� executes before o�� All dependences should
be satis�ed� thus limiting parallelism� Note that� should predicates P� and�or P� depend on array a� similar
edges from S to G� and�or G� would just have to be added in Figure 
��

Edges Description Conditions

e� hG�� w 	 �i�chG�� wi w 
 �
e� hG�� wi�chG�� w� �i
e� hG�� w� x	 �i�chG�� w� xi x 
 �
e� hG�� w� xi�chS�w� xi
e� hS�w� x	 �i�thS�w� xi x 
 �
e� fhS� �� �ij�� � � w � x	 �� � 
 �� � 
 �� � � wg�thS�w� �i w 
 �� x � �
e� fhS� �� �ij�� � � w � x� � 
 �� � 
 �� � � wg��hS�w� xi w 
 �
e� fhS� �� �ij�� � 	 � � w � x� � 
 �� � 
 �� � � wg �hS�w� xi w 
 �

Figure 
� Dependences in Program WW�

These dependences� however� arememory�based dependences� They are language� and program�dependent�
and are not semantically related to the algorithm� On the contrary� value�based dependences or data �ows

capture the production and uses of computed values ���� For instance� hS� �� �i in Program A is PC�dependent
on both hS� �� �i and hS� �� �i� but the only �ow of data to hS� �� �i comes from hS� �� �i� In the sequel� such
a data�ow is denoted by !� e�g� hS� �� �i!hS� �� �i� Data�ow analysis for SCPs in the presence of arrays is
now well understood ��� ��� ��� �
�� In the case of DCPs� a fuzzy array data �ow analysis �FADA� has been
proposed in ����� The result of fuzzy array data�ow analysis is a multi�level conditional called quast � Each
leaf is a set of potential data�ow sources� Notice that these sets may possibly be in�nite� Each quast leaf is
submitted to a context given by the conjunction of predicates appearing on the unique path from the quast	s
root to the leaf�

In Program WW� the source ��hS�w� xi� of hS� w�xi given by FADA is�

��hS�w� xi� �

���������

if x � �
then fhS� w�x� �ig

else

�����
if w � �
then fhS� ���ij�� � � w� x� �� � � �� � � �� � � wg � f�g
else f�g

���

where � means that the source operation does not exist� or more precisely� that any possible source
operation lies outside the program segment	 For instance� the context of the second leaf is x � ��w � �	
The 
rst two leaves give edges e� and e�� displayed in Figure ��a� and tabulated in Figure �	 In
Figure ��a�� notice that some points have many incoming arrows� meaning that the real �ow of value
may be carried by any of them	 These arrows correspond to the second leaf	

If there is no anti or output dependence� then the program has the single�assignment property � More
memory is necessary� but since there are less constraints� the potential parallelism is greater� There exist

�Control dependences ��c type� are introduced in Section ��

�



formalmethods to convert SCPs into single�assignment form ���� However� the case of DCPs is more intricate�
Take for instance Program I��

Program I�

if P then

x � rt
else

x � re
end if

l � x

Program I


tmp � P

if tmp then

x� � rt
else

x
 � re
end if

S � l � if tmp then x� else x


The single�assignment version I
 of Program I� cannot be obtained without a dynamical mechanism to
restore the �ow of values in Statement S� Thus� even though converting a program into single�assignment
form �SAF� generally exhibits more parallelism� restoring the �ow of values may yield an intricate generated
code� The pros and cons of SAF for DCPs are not well understood yet and more experiments are needed
here� The method presented is this paper can handle both SA and non�SA programs�

��� Control dependences

��	�� De�nition

There is a control dependence from operation o� to operation o� if the very execution of o� depends on the
result of o�� o� is called the governing operation� Such a dependence is denoted by o��co�� In particular� the
very evaluation of a while�loop predicate �for instance� hG�� wi in Program WW� is dependent on the outcome
of the previous evaluation �e�g�� on hG�� w 	 �i�� The four control dependences of Program WW� call them
e���e�� appear in Fig� 
�

Notice that the outcome of a while predicate is given by anding the outcomes of all previous predicate
instances plus the outcome of the current instance� For example� the outcome of hG�� wi in Program WW is��

��w��w

P��w
���

Thus� a while predicate instance is both control and data�ow dependent on the previous predicate instances�
This mixed dependence justi�es the term index dependence coined by Griebl and Lengauer ��
��

��	�� Description of control dependences

The case of the if construct Let us consider the following program piece�

G if � ��� �

S ���
end if

where S is some statement in the then or else arm� perhaps surrounded by loops� Let c be the depth of
the if construct� i�e� the number of loops surrounding G� Let �x �resp� �y� be the iteration vector of G �resp�
S�� Then� there is a control dependence from hG��xi to hS� �yi i�

�y����c� � �x� ���

�if c � �� then �x and �y����c� are equal to the vector of dimension � and equality ��� is true��

�



The case of while loops Let us consider the following program piece�

G while � ��� �

S ���
end while

where S is some statement in the while�loop body� perhaps surrounded by loops within the body� Let c be
the depth of the while construct� i�e� the number of loops surrounding G� Let �x �resp� �y� be the iteration
vector of G �resp� S�� Then� there is a control dependence from hG��xi to hS� �yi i�

�x����c� � �y����c� � �x�c� �� � �y�c� �� ���

We have now de�ned the various dependences that may appear in a program� The following section
de�nes a suitable internal data structure for a parallelizing compiler to handle these dependences�

��� Internal data structures

��
�� Detailed dependence graph

The most intuitive structure is the detailed dependence graph� The vertices of this graph are program
operations and the edges are dependences between these operations� When all data dependences are taken
into account� the dependence graph for S in Program WW is depicted in Fig� ��b�� �There is no self control
dependence on S�� When only data�ow dependences are taken into account� the dependence graph is shown
in Figure ��a�� The leaves in �
� give the graph edges� In Figure ��a�� notice that some points have many
incoming edges� meaning that the real �ow of value may be carried by any of them� These edges correspond
to the second leaf of �
��
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Figure �� Dependence graphs for S in Program WW� Each dot represent a possible instance of S� but only dark
dots denote real operations for the arbitrary execution we consider� Arrows represent data dependences� �ow
dependences in �a�� and �ow� output and anti dependences in �b�� Dark lines represent possible wavefronts�

The detailed dependence graph has one vertex per operation� and thus is too big a data structure " it
may even need an in�nite number of vertices# We have to guarantee that sizes of internal data structures
do not depend on sizes of program data structures nor on the number of spawned operations� i�e� we must
be able to compile without knowledge of structure parameters values� We are thus looking for a linearly
described graph� and the generalized dependence graph ful�lls this requirement�
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��
�� Generalized dependence graph

We augment the Generalized Dependence Graph �GDG� ��� to handle approximate iteration domains and
possibly to include anti� output and control dependences� The latter are seen as regular data dependences
and treated as such� The GDG is a directed multi�graph de�ned by�

A set V of vertices� Each vertex correspond to a statement in the program� More precisely� each vertex
represents the set of operations the statement spawns� Note that the predicate expression of a while

or an if is considered as a statement�

A set E of edges� There is an edge e from a source statement t�e� �the edge	s tail� to a sink statement h�e�
�the edge	s head� if there is a dependence from t�e� to h�e�� All data�ows �value�based dependences�
incur an edge in the GDG� however� we will see in Section 
�
 that other types of dependences �e�g�
control and memory�based� may or may not be taken into account� �Hence� corresponding edges may
or may not be inserted in the GDG�� In any case� to each edge e is associated a set of constraints on
the iteration vectors of t�e� and h�e��

A function bD giving� for any statement S in V� the conservative approximation bD�S� of the iteration
domain of S�

A function R giving� for each edge e � E � a relation on couples ��x� �y� described by a system of a�ne
inequalities�

� If the edge corresponds to a data�ow� then this relation is given by the context of the corresponding
quast leaf and the inequalities in the leaf	s expression� By construction� R�e� is de�ned by a�ne
inequalities� and thus is a polyhedron� Moreover� FADA guarantees that this polyhedron is not
empty� a very useful property in the sequel� Notice �x may take several values in a �polyhedral�
set parametrized by �y� so the methods of ��� �� can be applied�

� If the edge corresponds to a control dependence� then the relation captures equation ��� or ����

� Scheduling

��� Scheduling static control programs

Let $ be the set of all operations� and o�� o� � $ be two operations� Scheduling consists in choosing a set
�generally� N� and a strict order on this set �generally� ��� and in �nding a function from $ to N such that
either o�!o� � ��o�� � ��o�� or o��o� � ��o�� � ��o��� If ��o�� � ��o��� then o� and o� are scheduled to
execute in parallel� This function is called the scheduling function� or� more simply� the schedule�

In Program A� hS� i� j � �i
hS� i� ji if j � �	 On the other hand� hS� i� ji � 
hS� i�� ji�� for any i�	 Thus� a
possible scheduling function for the operations spawned by Program A is ��hS� i� ji� � j� �	 For a given
j� all hS� i� ji� � � i � n� are scheduled to execute in parallel	

Unfortunately� all programs do not have so simple schedules� Take for example Program B�

program B

do i � � � n

do j � �� n

S � s � s� a�i�j�

end do

end do

Suppose we cannot take bene�t of algebraic properties of addition� Then� this program cannot be par�
allelized� Moreover� this program does not have a one�dimensional a�ne schedule ���� However� a valid
multi�dimensional component�wise a�ne schedule is� for instance�

��hS� i� ji� �

�
i

j

�
�

��



In this case� the codomain of the scheduling function is N�� and the associated order is the strict lexicograph�
ical order� denoted by �� Hence� a more general de�nition of scheduling is either o�!o� � ��o�� � ��o���
or o��o� � ��o��� ��o���

The latency of a schedule is� by de�nition L � Card ��$�� For a one�dimensional schedule �whose period
is ��� L � max��$� 	min��$� � �� Finally� notice that many di�erent de�nitions appear in the literature�
for some authors� schedules may have rational coe�cients� Programs may have a single schedule for all
statements or� on the contrary� one schedule for each statement� We will stick to the latter kind� and try to
derive �a�ne�by�statement� schedules� In the sequel� for a statement S and an iteration vector �x� we denote
�S ��x� the logical execution date of hS� �xi instead of ��hS� �xi��

��� Scheduling dynamic control programs

On the contrary to SCPs� scheduling DCPs does not have an obvious meaning� since the scheduled operations
may not execute at all� Scheduling an operation o� in a DCP means that� if this operation executes� then
all preceding operations have been computed at previous scheduled dates� These preceding operations will
be de�ned in Section 
�
�

If no if statement is allowed in DCPs and the only while�loop is the outermost loop� array data�ow
analysis is exact and does not need tailored analyzes such as in ����� An algorithm to schedule this restricted
type of DCPs was previously proposed ��� ��� This algorithm is extended in this paper to handle DCPs�

��� The need for multi�dimensional scheduling functions

This section answers the following question� Why should the scheduling function have possibly more than
one dimension%

The main reason is that the class of DCPs includes all SCPs� and SCPs themselves require multi�
dimensional schedules in the general case �see Program B�� Moreover� they allow to easily express the behavior
of programs built from while loops� Take for instance Program W �slightly modi�ed from Program simple

page ����

program W

do w�� by � while � P �

S � x � ��� x ���

end do

R � y � x

Since we cannot tell when predicate P evaluates to false� we have to consider a possibly non�terminating
execution of the while loop� Valid schedules for S and R are

�S �w� �

�
�
w

�
� �R�� � ��� � ���

respectively� Since one cannot know at compile�time when Predicate P evaluates to false� one has to consider
a possible non terminating while�loop� We also have to specify that hRi should execute after the last instance
of S� which is unknown� A solution to this problem ���� is to use a placeholder denoted by �� which essentially
is a new variable equal to the execution date of the last instance of S� This placeholder is thus updated
during execution� and the execution date of hRi is � � ��

However� this method has two drawbacks according to us�

� Using placeholders is in a sense a dynamic scheduling� This is an acceptable choice� but the bene�ts
of static scheduling are lost�

� Composition of schedules is not clear� For instance� let us consider the following program�

program W

do w�� by � while � P �

S� � x � ��� x ���

��



end do

do w�� by � while � P �

S� � z � ��� z ���

end do

R � y � x�z

Should the schedule of R be the maximum of the values of two placeholders� or an additional place�
holder%

However� placeholders are necessary to code generation in the general case �����

��� Existence of multi�dimensional schedules

Before proceeding on the scheduling problem� another question naturally arises� Do all DCPs have a multi�
dimensional scheduling function%

To answer this question� we prove the following�

Proposition � All DCPs respecting the restrictions of Section � have a multi�dimensional a�ne schedule�

Proof �A constructive proof by induction on the structure of DCP 	��

	 �do w � � by � while Q end do� Q is a SCP� Let � be the schedule of a statement in Q�

would the while loop be discarded� Then�

�
w

�

�
is a valid schedule for the selected

statement of Q�

	 �if p then Q end if� Q is a SCP� Let � be the schedule of a statement in Q� would the

conditional be discarded� Then ��� and

�
�
�

�
are valid schedules for p and the selected

statement of Q� respectively�

	 � 	�� 	�� 	� and 	� are DCPs� Let �� ���� be the schedule of a statement in 	� �	��� Then�
�
��

�
�

�
�
��

�
�

are valid schedules for the selected statements of 	� and 	�� respectively�

	 �if p then Q� else Q� end if� Q� and Q� are SCPs� Let �� ���� be the schedule of a state�
ment in Q� �resp� Q��� would the conditional be discarded� Then�

����

�
�
��

�
�

�
�
��

�
�

are valid schedules for the evaluation of p and for the selected statements of Q� and Q��
respectively� �Notice that since instances of both Q� and Q� will not execute for a given
value of the iteration vector� the �rst components of their schedules can be equal��

�

Note that the proof did not try to minimize schedule dimension� Obviously� we should try to take bene�t
of special cases� such as the possible knowledge of an upper bound u on a while loop counter w�

� Speculative execution

Intuitively� one gets speculative executions by ignoring or �cutting� control dependences� More formally�

De�nition � The execution of operation o is said to be speculative if there exists oc such that oc�co and oc
executes after or simultaneously with o�

��



For a detailed discussion of speculative execution� see ���� ��� Notice that control dependences between
instances of the same while predicate can be cut� but the corresponding data�ow cannot� This boils down
to saying that index dependences cannot be cut�

However� thanks to scheduling functions� we can give a more precise de�nition of speculative execution
which will allow to derive useful properties�

De�nition � The execution of operation o is speculative if at least one control dependence on o is not
satis�ed� i�e� there exists an operation oc governing o whose execution date is later than the execution date
of o�

�oc � $ j oc�
co � ��oc� 
 ��o��

��� Legality of Speculative execution

Obviously� speculative execution is legal if and only if the semantics of the input program is preserved� Three
necessary conditions can then be stated�

The control 
ow must be restored� Speculative operations are committed or not depending on the out�
comes of governing operations� These governing operations must thus execute in �nite time� Once a
speculative operation is executed� the corresponding governing operation must executes in �nite time�
That is� the number of operations executed after or simultaneously with the speculative operation and
before or simultaneously with the governing operation has to be �nite�

As a consequence� notice that parallel fronts should be �nite� When speculative operation is not
brought into play� the only executed operations are those belonging to some �actual� iteration domain�
On the contrary� speculative execution executes points from approximate iteration domains� Thus� we
must take care that speculative fronts are �nite or limited ��
�� An easy way to guarantee �niteness of
fronts is to enforce that fronts are not parallel to a nonnegative a�ne combination of the approximate
domain	s rays ���� However� �nite fronts do not imply that delays between speculative operations and
their governing operations are �nite �there may be an in�nite number of �nite fronts�� but the converse
is true�

The 
ow of data must be restored� When potential sources come from speculative operations� one has
to take care that these operations were executed and committed before reading the datum�

Side�e�ects from speculative operations must be masked� These side�e�ects are writes to memory
and exceptions �I�O operations are not considered�� For a discussion of these issues� please read ���
���� In this paper� we will assume that no exception occurs and that each operation writes into its
own private memory cell �i�e�� the program has the single�assignment property�� Then� speculative
operations do not overwrite non�speculative results� and the initial memory state can be restored ����

To illustrate the second and third dangers of speculative execution� and to show the limits of our method�
let us study the following program�

Program simple

G � do w � � by � while � P �x� �
S � x � ���

end do

R � ��� � x

If this program is converted into single assignment form� there are no more output dependences on S	
Remaining dependences are�

Edges Dependences Conditions
e� hG�wi�chS� wi
e� hG�w� �i�chG�wi w � �
e� hS� wi�thRi w � �
e� hS� w � �i�thG�wi w � �

��
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Figure �� Dependence graphs for statements G and S of Program simple� From top to bottom� regular
��SA�C�� dependence graph� dependence graph without edge e� " a topological sort yielding an in�nite
front� dependence graph where delay control dependences replace e�� corresponding quotient graph� where
supernodes appear in an acyclic graph�

The corresponding dependence graph appear in top of Figure �	 If control dependence e� is �cut��
then the dependence graph is still consistent	 However� a topological sort would execute all the possible
instances of S simultaneously �see second graph in Figure ���

� This topological sort yields an in
nite front�

fhS�wijw � �g� ���

Equivalently� the schedule for S is ��hS�wi� � �	

� The read in hRi requires that the �ow of data is re�constructed� and thus that the last instance of
S is known	 To know this instance� we have to know the outcome of all instances of G	

��� Restoring the �ow of control

As we said� speculative execution should be used carefully� Intuitively� not taking a control dependence into
account may unleash a nonterminating behavior� In the case of DCPs where the only while loop is the
outermost loop� a necessary and su�cient condition to restore the �ow of control is that fronts must be
�nite ���� The proposition below is more general and subsumes the �niteness of fronts�

Proposition � An operation o can be speculatively executed in a safe way i� the set &�oc� o� of operations
scheduled between o and oc is �nite� i�e� i�

&�oc� o� � fuj ��o����u����oc�g ���

is �nite�

�




Proof Let L be the date of the last scheduled operation� and W be the work performed by the
program�

W �
LX
t	�

s�t�� ����

where s�t� is the cardinal of the front at time t�

s�t� � Card�fuj��u� � tg��

A program can be executed in �nite time on a �nite number of processors i� W is �nite� In
particular� for a given operation oc governing a speculative operation o� ���� implies that�

�
oc�X
t	�
o�

s�t� ���

which is equivalent to saying that &�oc� o� is �nite� hence the proposition� �

Testing this condition in a naive way would require to enumerate all possible statements �of whom u is
an instance�� and split the inequalities according to ���� Notice that enforcing this condition bound both the
resources and the time required by speculation�

Front ��� given by topological sort has a ray along the w�axis	 As said in section �	�� our method forbids
such an in
nite front because this front is parallel to the ray	 However� a more general condition is given
by Proposition �� ��hG� �i� � � and ��hS�wi� � �� hence�

��hG� �i� hS� �i� � fhS� wi j w � �g�

which is not 
nite	 �Thus� our method is not able to parallelize Program simple	�

Comments on this method Proposition � gives an a posteriori test on the given schedules �to be con�
structed in Section ��� However� one may try to take bene�t of speculative execution using pseudo�a�ne
schedules� Future work will tackle this issue� but this paragraph just presents the main idea� Roughly speak�
ing� executing all possible instances of S� i�e� executing all elements of ��� in parallel� is �too speculative��

The mistake in the above example was to cancel all instances of dependence e� in the dependence graph�
Instead of canceling all instances of a control dependence� a method is to replace them with delay dependences
so as to bound speculative execution� For instance� control dependence e�

hG�wi�chS�wi�

could be replaced by
hG�wi�RhS�w � r�w�i�

where r�w� is a nonnegative integer delay� Such dependences allow to tile the iteration domain� and to
schedule each tile independently in a speculative way �see Figure ���

However� constructing these delay dependences is still an open problem� Moreover�� schedules are in
general not a�ne any more� In the case of Figure �� valid pseudo�a�ne schedules for G and S would be�

�G�w� �

�
w � �
w � �

�
� �S �w� �

�
w � �
�

�
�

Such schedules are beyond the scope of this report�
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��� Restoring the �ow of data	 compensation dependences

Problem description If the source of a read is a singleton �as given by the fuzzy array data�ow analysis��
then the identity of the source does not depend on the �ow of control� In other words� if the read executes�
the the source executes too�

However� if the source is not a singleton� then we cannot decide at compile�time which operation among
the source set is the last executed one� Existence of a possible source depends on the outcome of all governing
predicates from whiles and ifs� which is formalized by control dependences� Hence� care must be taken when
cutting control dependences� since selecting the actual data�ow source depends on them� As a consequence�
we must ensure that� given operations u� v� w such that u�cv and v � 
�w�� if dependence u�cv is cut� then
u still executes before w� To enforce this property� we insert a dependence from u to w� Intuitively� this
dependence compensates for the cut control dependence� and is denoted by u�compw�

We saw that� in Program simple� executing operation hRi requires the knowledge of the outcomes of all
instances of G	 So� we insert compensation dependence hG�wi�comphRi� for all w � �	

Here is another example�

S� � x � ���

G � if � ��� � then

S� � x � ���

end do

R � ��� � x

Speculative execution of S� can be scheduled before the execution of G	 However� R needs to know who
produced datum x among S� and S�	 Notice that this problems only appear because the �ow of data
is fuzzy� the source of x in R is fS�� S�g� the source for R in Program simple is fhS� wijw � �g	 We
compensate edge G�cS� by a compensation dependence hGi�comphRi	

Construction of compensation dependences Let us consider a control dependence edge e� in the
GDG� from some instances of statement G to some instance of statement S� which we intend to cut�

hG��xi �c hS� �yi s�t� Re���x� �y�� ����

where Re���x� �y� is a system on a�ne constraints on �x� �y� labelling edge e� in the GDG�
The problem is as follows� For any statement R� whose iteration vector is �z� such that there is a data�ow

edge e� from hS� �yi to hR��zi if Re���y� �z� holds� construct the set�

C�hR��zi� � fhG��xi j Re� ��x� �y� � Re���y� �z�g

Since Re���x� �y� and Re���y� �z� are given by systems of a�ne constraints� computing C�hR��zi� can easily be
done� make the conjunction of both systems and eliminate variables �y� Hence� this boils down to projecting
variables �y out�

At �rst sight� this method has two drawbacks� �rst� it may be costly� Second� the resulting set cannot
always be described as the integral points in a convex polyhedron� to be consistent� we may in the general
case have to approximate the resulting set by its hull� However� the second problem seldom occurs due to
the form of Re� given by ��� or ����

Let us consider the program below�

G� � do w� � � by � while � ��� �

G� � do w� � � by � while � ��� �

S � a�w� � w�� � ���

end do

R � ��� � a�k�
end do

��



Control dependences on S are�

hG�� w
��

� i�
chS� w�

�� w
�

�i s�t� w
��

� � w
�

� ����

and
hG�� w

��

� � w
��

� i�
chS� w�

�� w
�

�i s�t� w
�

� � w
��

� � w
�

� � w
��

� �

Assume dependence ���� is cut	 Then� since the source of hR�w�i is

��hR�w�i� � fhS�w�

�� w
�

�i j w
�

� � �� w�

� � �� w�

� � w�� k � w
�

� �w
�

�g�

C�hR�w�i� is�

C�hR�w�i� � fhG�� w
��

� i j w
��

� � w
�

�� w
�

� � �� w�

� � �� w�

� � w�� k � w
�

� �w
�

�g�

that is�
C�hR�w�i� � fhG�� w

��

� i j w
��

� � w�� w
��

� � kg�

As a conclusion� cutting dependence ���� implies inserting a compensation dependence edge e� in the
GDG such that t�e�� � G� and h�e�� � R� labeled with Re��e� � fw��

� � w�� w
��

� � kg	

��� Parallelization modes

Depending on whether speculative execution is brought into play �S� or not �conservative� C�� and whether
the program is converted into single assignment form �SA� or not �NSA�� four parallelization modes exist�
Each mode yields� for a given operation o�� a set of preceding operations�

NSA�C The set of preceding operations is

fo�j o��
co� � o��o�g�

This is the mode of classical compilers�

SA�C The set of preceding operations is
fo�j o��

co� � o�!o�g�

SA�S The set of preceding operations is

fo�j o�!o� � o��
compo�g� ����

This mode speculates on operation executions but is able to give back the original semantics�

NSA�S The set of preceding operations is

fo�j o��o� � o��
compo�g� ��
�

This mode executes as many speculative operations as possible but is not able to �rollback� and restore
the original semantics when these speculative executions happen to be mispredicted� This mode would
require that the compiler knows very special properties on the algorithm� such a property was �rst
described in ���� for �convergent while loops�� when the stopping condition evaluates to tt� then all
following iterations evaluate the condition to tt too� According to us� this is a dangerous property that
a compiler should not assume�

We will thus restrict ourselves to the �rst three parallelization modes� and� in all cases� automatically derive
a scheduling function to all program statements� Notice that all four sets of preceding operations may be
in�nite�
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��� Examples

We illustrate the de�nitions above on three examples� The �rst example program cannot be parallelized
without using speculative execution� On the contrary� the second example does not need speculation to
be parallelized� The third program is slightly di�erent from the second example� however� it cannot be
parallelized without speculation� and moreover there exist no safe �a�ne� speculative schedules for this
program� �Notice that in all three programs� scheduling functions are supposed given� Constructing them
in an automatic way is the subject of Section ���

��	�� First example

Program Iteratif

T � x � a�n� � � �' � � � '�
G � do w � � by � while � j x	 a�n� j 
 � �

x � a�n�
do i � � � n

S � a� i � � a� i � � a� i 	 � �

end do

end do

Let s be the iteration count of the while loop during the sequential execution� Then� this program executes
in s� n tops� Moreover� this program cannot be parallelized� even if converted into single�assignment form�
However� one may �bet� that the current iteration will not be the last one� and speculate� Formally� this
boils down to canceling control dependences from hG�wi to all hS�w� ii� for all i� � � i � n� Only then
can the program be parallelized� Figure � displays the corresponding parallel fronts �dark lines�� assuming
that the input program was �rst converted into single�assignment form �SA�S mode�� This parallel program

w

w (n=4)

t=0 t=1 t=2 t=3

S G

Figure �� Approximate iteration domains for Statements G and S of Program Iteratif� Data�ows are
displayed by thin arrows� Discarded control dependences are displayed in dashed lines� Bold lines correspond
to parallel fronts for schedule w � i	 � of S�

executes in s� n tops on n processors� Possible schedules are�

��hS�w� ii� � w � i 	 ��

and
��hG�wi� � w � n	 ��

��



Let us check that Proposition � is satis�ed�

�i� i � i � n� &�hG�wi� hS�w� ii� � fhS�w�� i�ij ��hS�w� ii���hS�w�� i�i����hG�wi�g�

that is�

�i� � � i � n� Card�&�hG�wi� hS�w� ii�� � Card�f�w�� i��jw�i	� � w��i�	� � w�n	�� w� 
 �� � � i� � ng�

The cardinal above is �nite because the coe�cient of w in ��hS�w� ii� is nonzero� Intuitively� a scheduling
function whose w coe�cient is zero yields in�nite fronts along the w axis ���� w coe�cients cannot be negative
�since that would correspond to executing the while loop in the order opposite to the sequential order�� so
w � N�� Notice that the smaller the value of the coe�cient of w� the faster the execution �since the latency�
for a given �nite $� is minimized with respect to w when this coe�cient is equal to ��� Hence� a schedule
with w coe�cient equal to � is in a sense the �optimal� speculative schedule�

��	�� A second example� without speculation

Let us go back to Program WW� The corresponding dependences are summed up in Figure 
 and depicted in
Figure �� Parallelization mode SA�C keeps all edges except for e� and e�� On this example� some parallelism
can be extracted without resorting to speculative execution� A topological sort shows that possible valid
schedules are�

��hG�� wi� � w�

��hG�� w� xi� � w � x� ��

��hS�w� xi� � w � x� ��

�Notice that we do not need to check Proposition � since these schedules are not speculative�� If conversion
into single�assignment were not applied �i�e� mode NSA�C is chosen�� all edges e� though e� would have to
be considered� and the fastest schedule would be ��hS�w� xi� � �w� x� � as can be checked by hand using
topological sort�

��	�� An example with speculation

We now tackle a slightly di�erent example� where a while�loop predicate� say P�� depends on side�e�ects
from the nest body� Suppose P� is a function of w and of a scalar variable s� To avoid adding a statement�
we use a notation �
a la C� where assignments are expressions�

program WWb

G� � do w � � by � while � P��w� s� �
G� � do x � � by � while � P��w� x� �
S � s � a� w � x � � a� w � x	 � �

end do

end do

A new data�ow dependence is thus added to dependences of Figure 
 �

Edge Description Conditions

e� fhS�w 	 �� xijx 
 �g�thG�� wi w 
 �

Notice that the approximate source of hG�� wi is an in�nite set�
If the program is put into single assignment form �SA� mode�� dependences e� to e� and e� are taken into

account� The corresponding graph appears in Figure � �where only one instance of e�� from fhS� �� xijx 
 �g
to hG�� �i is displayed to get a simpler �gure�� This program does not have any parallelism� A solution is to
cancel control dependence e�� Then� the parallel fronts we previously found for S and G� are valid again�

��
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Figure �� Graph of control and �ow dependences for Program WW�

Unfortunately� scheduling G� now causes the following problem� hG�� wi must execute after all operations
hS�w 	 �� xi� i�e��

��hG�� wi� � max
x��

��hS�w 	 �� xi� � max
x��

w � x�

This inequality cannot be satis�ed if no upper bound on x is known� Using a second schedule dimension
yield schedules�

��hG�� wi� �

�
�
w

�
�

��hG�� w� xi� �

�
�

w � x

�
�

��hS�w� xi� �

�
�

w � x� �

�
�

However� we are then in an extreme case where speculative execution may not terminate� According to these
schedules� all evaluations of predicate P� are done before completion of all instances of S and G�� However�
we have no guarantee that all instances of the loop on x terminate� i�e� that for any w� there is an x� such
that P��w� x�� � ff � Just imagine that P��w� s� � ff and P��w� x� � tt# This fact can be checked thanks to
����

&�hG�� wi� hS�w
�� x�i� �

�
hS�w��� x��i

����
�

�
w��x���

�
�

�
�

w���x����

�
�

�
�
w

�
�w�� 
 � � x�� 
 �

�

�

�
hG�� w

��� x��i

����
�

�
w��x���

�
�

�
�

w���x��

�
�

�
�
w

�
�w�� 
 � � x�� 
 �

�
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Figure �� Control and �ow dependences in Program WWb� Each dot denotes an instance of G�� G� or S
�respective iteration domains appear in this order from top to bottom��

Obviously�
&�hG�� wi� hS�w

�� x�i� � fhS�w��� x��ijw�� 
 w� � x�� 
 �g� ����

Hence &�hG�� wi� hS�w�� x�i� is in�nite� Our method for speculative scheduling thus fails� and Program WWb

is executed sequentially�

� An algorithm for automatic static scheduling

Let us go back to Program WW� We can simultaneously execute all the operations belonging to a given
wavefront depicted in Fig��� Cases �a� and �b� correspond to single�assignment form SA�S and regular form
NSA�S� respectively� Parallelism in the both cases can be expressed by wavefront equations� w�x � K and
�w� x � K� respectively� where K is a parameter� As expected� the amount of parallelism is smaller in the
latter case� and the corresponding program latency is higher� �Latencies are equal to � and �
� resp�� Since
approximate domains are in�nite� one cannot know latencies at compile�time� However� a rule of thumb is
to consider that the smaller the coe�cients� the faster the execution so the better the schedule� The purpose
of the algorithm below is to �nd the equations of these wavefronts�

��� Driving algorithm

The core of the method is an algorithm whose input is a GDG and whose output is a multidimensional
a�ne�by�statement schedule �Section ����� However� from a given GDG� many sub�graphs can be derived
by canceling some control dependences� This core algorithm has thus to be driven by an algorithm whose
task is to try and �nd a sub�graph of the initial GDG whose schedule is in a sense optimal�

��



The driving algorithm is described in Figure ��� It takes as input a GDG G and a function scheduling

�the core algorithm�� and returns a valid� possibly speculative schedule for G� This driving algorithm �rst
�nds a non�speculative schedule� It then cancels one control �non �index�� dependence at a time� and calls
the core algorithm to obtain the corresponding schedule� As explained before� a good metric for schedules
is latency� but the latter cannot be de�ned for DCPs� Thus� a rule of thumb is to pick the schedules whose
coe�cients are the smallest� Note that changing the metric �for instance� schedule delays� would not change
the driving algorithm� Nevertheless� this algorithm can trivially be improved� for instance by considering all
possible combinations of control dependences� The aim of the next section is to propose an algorithm for
scheduling�

�c 	� scheduling� G �

for all non�index control dependences d

let G� 	� G minus d plus compensation dependences

� 	� scheduling� G� �
if � � better than �c � then �c 	� � end if

end for

return � �c �

Figure ��� Driving algorithm looking for a speculative schedule�

��� Core algorithm

The aim of this part is to �nd� for a given GDG and for each statement S in V� an integer dS and a multi�
dimensional component�wise�a�ne function �S fromD�S� to NdS such that� for any edge e from t�e� to h�e�
in E � the delay (e

(e��x� �y� � �t
e���x�	 �h
e���y� ����

satis�es�
(e��x� �y�� �� ����

For any statement S� the codomain of �S is NdS� However� we cannot describe the domainD�S� at compile�
time� So� we over�constrain �S and require that it is nonnegative on the approximate domain�

��x � bD�S�� �S ��x� 
 ��� ����

Then� we use the fact that bD�S� is a polyhedron de�ned by p a�ne inequalities�

bD�S� � f�xjA�x	�b 
 ��g� ����

The problem is as follows� for any statement S� construct a function �S satisfying ���� and ����� and de�ned
on ����� To do this� we apply the following lemma�

Lemma � �A�ne Form of Farkas� Lemma� An a�ne function �S ��x��d� is non�negative on a polyhedron
de�ned by �	
� if there exists a set of non�negative integers ��� � � � � �p �the Farkas coe�cients� such that��

�S��x��d� � �� � )p
k	��k�Ak��x	�b�k��� ����

The delay being the di�erence of two schedules� each delay can thus be expressed as a function of the �	s�

�The kth component of a vector �x is denoted by �x�k� and the kth row of a matrix A by Ak��

��



Let us go back to Program WW	 Eq	 ��� implies that there exist two integers �� and �� such that� for any
d�

�G�
�w��d� � �� � ��w� ����

The conservative iteration domain bD�S� of statement S is ���	 Thus� there exist integer coe�cients
	�� 	�� 	� and 
�� 
�� 
� such that

�G�
�w�x��d� � 	� � 	�w� 	�x ����

and�
�S�w�x��d� � 
� � 
�w� 
�x� ����

Basically� the algorithm is identical to the one in ���� Intuitively� we would like to �nd� for all statements�
non�negative one�dimensional schedules satisfying ���� for any edge e� In this case� d � � and ���� is
equivalent to�

�x � bD�t�e��� �y � bD�h�e��� ��x� �y� � R�e��

(e��x� �y��d� � �t
e���x��d�	 �h
e���y��d� � �� ��
�

Initially� d is equal to �� Then� the algorithm satis�es in a greedy way as many edges as possible until all of
them can be canceled�

� If ��
� can be satis�ed for all statements and all edges for the current value of d� then the algorithm
terminates�

� If no instance of ��
� can be satis�ed� then the greedy algorithm fails�

� Otherwise� we have to add a dimension to all schedules involved in unsatis�ed constraints ��
�� and
we increment d� We then go back to Step � to handle remaining schedules and edges�

The algorithm will thus iteratively try to satisfy all such constraints� adding one dimension to some schedules
at each iteration�

Let U 
�� be the set of edges such that ��
� is satis�ed for d � �� Its complement in E is such that�

e �� U 
�� � ��x �D�t�e��� ��y �D�h�e��� ��x� �y� � R�e��

s�t� (e��x� �y���� � �t
e���x����	 �h
e���y���� � ��

How can we tell the elements of U 
�� from the others% If R�e� is a singleton and the dependence is
uniform� then we can directly solve ��
� for the Farkas coe�cients� Otherwise� as remarked in ����� (e��x� �y�
is de�ned on the set�

f��x� �y� j �y �D�t�e��� �x �D�h�e��� ��x� �y� � R�e�g� ����

which is a non�empty convex polyhedron� The inequalities de�ning this set are just the conjunction of the
inequalities de�ning D�t�e���D�h�e��� and R�e�� Let ne be the number of resulting inequalities� These
inequalities can collectively be written as�

�k� � � k � ne� *e�k��x� �y� 
 ��

Let �e be an auxiliary integer variable encoding the fact that e belongs to U 
�� or not� Then� if

(e��x� �y�	 �e

is a non�negative form for �e � �� then the one�dimensional causality constraint ��
� is satis�ed� Otherwise�
�e � �� Since the domain of (e is not empty� we can apply the A�ne Form of Farkas	 Lemma again� there
is a set of non�negative integers 
�� � � � � 
ne such that�

(e��x� �y� 	 �e � 
� � )ne
k	�
k*e�k��x� �y�� ����

This yields a system of linear equations� If this system can be solved with �e � �� then ��
� is satis�ed�

��



We did not precise� however� which solution should be picked among possibly many solutions� In SCPs�
one may try to minimize schedule latencies� However� schedules for DCPs may be de�ned on non bounded
domains� For instance� Statement S in Program W has schedule

�S �w� �

�
�
w

�
�

whose latency is unde�ned� In such cases� an intuitive rule of thumb is to chose the �	s and 
	s to be as
small as possible� since this tends to reduce the latency� More formal criteria are given in ����

Let us apply the above algorithm to Statements S and R in Program W	 Prototype schedules are �S�w� �
	��	�w and �R�� � 
�� respectively	 If we just take data�ow dependences into account� then the source
of right�hand�side x in S is�

��hS�wi� � if w � � then fhS� w� �igelse f�g�

The source of x in R can be just any instance of S� if any� and FADA yields�

��hRi� � f�g � fhS� wijw � �g�

The 
rst dependence is uniform� giving the inequality below �d � ���

����� �e��w��d� � �S�w��d�� �S�w� ���d� � �� 	 	� � ���

The second edge is a parametrized set of dependences� and the method in ��� cannot be applied	 Instead�
we have to consider the delay�

�e��w��d� � �R�d�� �S�w��d�� ��

� 
� � 	� � 	�w� �� ����

On the other hand�

�e��w��d� � �� � ��w ����

Equaling the members of ���� and ���� gives�

Constants � 
� � 	� � �� � �� ����

w � �	� � �� ����

Since all Farkas coe�cients are non�negative� the only solution to the last equation is 	� � �� � �	 This
implies that �� � �� i	e	 the 
rst edge is not satis
ed	 Now� a possible solution to the entire system is
�� � 
� � �� 	� � �� � �	 Thus� the 
rst schedule components are �S�w���� � � � �w � � and �R��� � �	

During the second iteration of the algorithm� d � � and the only edge still to be satis
ed is the 
rst one�
i	e	 	� � �� for �� � �	 The smallest solution is 	� � �	 Since there is no condition on 	�� it is set to �	
Thus� �S�w���� � w� and we have automatically found the schedules in ���	

��� Program WW revisited

We now apply the algorithm of the previous section to automatically derive the nonspeculative scheduling
function on Program WW �SA�C mode��

We handle one by one all the dependences of Figure 
� Dependence e� is uniform� and since the schedule
prototype for G� is ����� this dependence yields�

�� � ��w 	 ��� � ���w 	 ��� 
 ���

that is�
�� 
 �� ����

Then� since ����� dependence e� yields�

�� � ��w � ��x	 ��� � ��w� 
 ��� ����

�




Edge e� is uniform� The delay is�

�� � ��w � ��x	 ��� � ��w � ���x	 ��� 
 �� �� �� 
 ��� ����

Edge e� yields the following constraint�

�� � ��w � ��x	 ��� � ��w � ��x� 
 �� ��
�

Edge e� is uniform too� hence�

�� � ��w � ��x	 ��� � ��w � ���x	 ��� 
 �� �� �� 
 ��� ����

Edge e� subsumes a parametrized set of non�uniform dependences� The delay (e���� �� w� is de�ned on a
set described by the following * inequalities�

w 	 � 
 �� � 
 �� � 
 �� w	 �	 � 
 �� �� � 	 w � � 
 �� w	 �	 � 	 � 
 ��

Thus� there exists a set of integer coe�cients 
����
� such that�

(e���� �� w� � �� � ��w 	 ��� � ���� ���� 	 ��

� 
� � 
�w � 
��� 
�� � 
��w 	 �	 �� ����

�
��� � � 	w � �� � 
��w 	 �	 � 	 ��

Equaling the coe�cients of the same variables gives�

Constants � 
� 	 
� � 
� 	 
� � 	�� ����

w � 
� � 
� 	 
� � 
� � �� ����

� � 
� 	 
� � 
� 	 
� � 	�� ����

� � 
� � 
� 	 
� � 	�� �
��

Since our aim is to have as small schedule latencies as possible� we have to look for small solution values�
Eq����� is satis�ed when �� � �� � �� Equations ���� and ���� are satis�ed when �� � �� � �� � �� � ��
Eq����� yields no constraint on ��� so �� � � � and we can set �� � �� � �� Eq� �
�� is satis�ed when

� � �� 
� � 
� � �� Then� Eq� ���� implies that �� 
 �� and is satis�ed when �� � �� 
� � 
� � �� Now
Eq� ��
� is satis�ed for �� when �� � �� We have thus automatically found the expected schedules�

�G�
�w� � w�

�G�
�w� x� � w � x� ��

�S�w� x� � w � x� ��

Suppose now that we map operations hS�w� xi on processor p � w� If t is the current value of the logical
clock� then the corresponding space�time mapping ���� can be inverted� and w � p� x � t 	 p 	 �� If we
associate a memory cell S� w� x � to each operation hS�w� xi �since we assume conversion to SAF�� then the
skeleton of the generated code looks like�

program W

do t � � by � while � not terminated�� �
forall p � � to t��

if executed�p� t	 p 	 �� then
S� p� t	 p	 � � �

if t	 p 	 � 
 �
then S� p� t	 p	 � �

else if p 
 �
then last�p� t	 p�
else a� t	 � �

end forall

end do

��



Predicates terminated and executed are mandatory to restore the �ow of control and have been de�ned by
Griebl and Lengauer ���� �
�� The former detects termination and the latter checks whether the current couple
�t� p� corresponds to an actual operation� Both predicates have been implemented by Griebl and Lengauer
by signals between asynchronous processes� However� their implementation in a synchronous model through
boolean arrays is feasible� and is the subject of in�progress joint work with Martin Griebl �����

On the other hand� function last dynamically restore the �ow of data� and returns the value produced
by the last �according to order �� executed operation among the set passed as an argument� The overhead
due to this function may reduce the bene�ts of parallelism� however� its implementation is quite obvious�
the argument set is a Z�polyhedron that last has to scan in the opposite lexicographical order� A slight
modi�cation of the algorithm in �
� would generate the following code for last�

function last � w � x �

do � � w 	 � � � � 	�
� � w 	 �	 �
if executed��� �� then

return S� �� � �

end do

return a� w � x	 � �

This function does implement the result of a fuzzy array data�ow analysis since the returned value is the one
produced by the last executed possible source� or the initial element of array a if no possible source executed�
Obviously� many optimized implementation schemes for last can be crafted� but discussing this issue would
take us too far a�eld and is left for future work�

� Related work and conclusion

When the �ow of control cannot be predicted at compile time� data dependence analysis can only be imprecise�
For instance� one cannot solve the array data�ow problem ���� �� ���� which gives for every consumed value the
identity of the producer operation� This lack of precision translates into sets of possible producer operations�
Note that this phenomenon may occur in two other situations� �� in the presence of intricate or dynamic
��subscripted�� array subscripts� and �� when the compiler writer believes that current precise dependence
analyzes are too expensive� and that approximate tests are su�cient ���� In all three cases� a new scheduling
algorithm has to be designed� The algorithm proposed in this paper is based on ��� �� ����

Future work should address the tiling of iteration domains� possibly though construction of delay de�
pendences� With such dependences� the sets of preceding operations ���� and ��
� become fo�j o�!o� �
o��

Ro� � o��
compo�g and fo�j o��o� � o��

Ro� � o��
compo�g� respectively� However� the problem is then

to automatically derive pseudo�a�ne schedules and generate code for them ���� ����
One should also try and answer the following questions� Is it worthwhile to convert DCPs into single�

assignment form% �Obviously� extensive experiments are needed here�� When should speculative execution be
brought into play ���� % How can we reduce the number of equations and unknowns in our method% �Solving
such problems thanks to softwares such as Maple or Pip is costly�� Could our compile�time scheduling
ease the work of the inspector in the method proposed in ����% Indeed� the e�cient compilation of DCPs
probably needs a tight integration of compile�time and run�time techniques �����
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