
HAL Id: hal-02101839
https://hal-lara.archives-ouvertes.fr/hal-02101839

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A method for static scheduling of dynamic control
programs (preliminary version).

Jean-Francois Collard, Paul Feautrier

To cite this version:
Jean-Francois Collard, Paul Feautrier. A method for static scheduling of dynamic control programs
(preliminary version).. [Research Report] LIP RR-1994-34, Laboratoire de l’informatique du paral-
lélisme. 1994, 2+28p. �hal-02101839�

https://hal-lara.archives-ouvertes.fr/hal-02101839
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A Method for Static Scheduling of

Dynamic Control Programs

Preliminary Version

Jean�Fran�cois Collard

Paul Feautrier
December ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A Method for Static Scheduling of Dynamic Control Programs

Preliminary Version

Jean�Fran�cois Collard

Paul Feautrier

December ����

Abstract

Static scheduling consists in compile�time mapping of operations onto logical execution dates�
However� scheduling so far only applies to static control programs� i�e� roughly to nests of do
�or for� loops� To extend scheduling to dynamic control programs� one needs a method that
�� is consistent with unpredictable control �ows �and thus unpredictable iteration domains� ��
is consistent with unpredictable data �ows� and �� permits speculative execution� This report
describes a means to achieve these goals�

Keywords� Automatic parallelization� dynamic control program� while loop� scheduling� speculative exe�
cution

R�esum�e

L	ordonnancement statique consiste
a attribuer lors de la compilation des dates logiques d	ex�ecution
aux op�erations du programme� Cependant� les techniques d	ordonnancement ne s	appliquent
jusqu	
a pr�esent qu	aux programmes
a contr�ole statique� c	est�
a�dire typiquement aux imbrications
de boucles do �ou for�� Pour �etendre ces techniques aux programmes
a contr�ole dynamique� il
est n�ecessaire de trouver une m�ethode qui �� soit compatible avec des �ots de contr�ole impr�evis�
ibles �et donc avec des domaines d	it�erations impr�evisibles� �� soit compatible avec des �ots de
donn�ees impr�evisibles� et �� autorise �eventuellement l	ex�ecution sp�eculative� Ce rapport propose
une telle m�ethode�

Mots�cl�es� Parall�elisation automatique� programme
a contr�ole dynamique� boucle while� ordonnancement�
ex�ecution sp�eculative

Contents

� Introduction �

� De�nitions �
��� Iteration domains �

��� Approximate iteration domains �

��� Scanning iteration domains �
��
 Memory� and value�based dependences �
��� Control dependences �

����� De�nition �
����� Description of control dependences �

��� Internal data structures �
����� Detailed dependence graph �
����� Generalized dependence graph ��

� Scheduling ��
��� Scheduling static control programs ��
��� Scheduling dynamic control programs ��
��� The need for multi�dimensional scheduling functions ��
��
 Existence of multi�dimensional schedules ��

� Speculative execution ��

�� Legality of Speculative execution ��

�� Restoring the �ow of control �

�� Restoring the �ow of data� compensation dependences ��

�
 Parallelization modes ��

�� Examples ��

���� First example ��

���� A second example� without speculation ��

���� An example with speculation ��

	 An algorithm for automatic static scheduling ��
��� Driving algorithm ��
��� Core algorithm ��
��� Program WW revisited �

 Related work and conclusion �

� Introduction

Static Control Programs �SCPs� have always been a central paradigm in compilers� Such programs have
a structure that can be known at compile time� More precisely� one may statically enumerate all the
operations spawned when executing an SCP� This enumeration may be parametrized w�r�t� symbolic �size�
or �structure� parameters� To decide whether a program is an SCP� one must �nd syntactical criteria�
SCPs in imperative languages are made of for �or do� loops and sequencing� while loops and gotos are
forbidden� Moreover� for loop bounds must be tractable� and are usually restricted to a�ne forms� �SCPs
in applicative languages are �rst order expressions ������ SCPs generally have the additional constraint that
array subscripts are a�ne functions of surrounding loop counters and size parameters�

In the case of SCPs� each execution spawns the same operations in the same order� Notice that this order
may be partial ���� ��� This is the very aim of automatic parallelization� �nd a partial order on operations
respecting either all data dependences or just data�ow dependences ���� The more partial the order� the
higher the parallelism� Obviously� this partial order cannot be expressed as the list of relation pairs� One
needs an expression of the partial order that does not grow with problem size� Such an expression may be

�

a closed form� thus restricting the class of orders we can handle� Additional constraints on the choice of a
partial order expression are� have a high expressive power� be easily found and manipulated� allow optimized
code generation�

Well�known closed form expressions are schedules� i�e� mappings from operations onto logical execution

dates ����� These mappings are often functions from loop counters to integers� Two operations are not
comparable i� they are scheduled to the same logical execution date� i�e�� they may simultaneously execute
on two distinct �virtual� processors�

So it seems that we have a sound and comprehensive framework for automatic parallelization� However�
little work has been done so far on DynamicControl Programs �DCPs�� Such programs are just any programs�
and include SCPs� Section �� however� will give a more constrained de�nition of DCPs� The aim of this
paper is to schedule DCPs� and the two contributions of this paper are� �� to provide a single method to
handle control dependences or not � depending on whether speculative execution is desired� and �� to derive
schedules that respect parameterized sets of data dependences� since no more precise information can be
obtained in general�

Section � also gives necessary de�nitions and a brief review of dependence and array data�ow analyses
for DCPs� Section � then describes how parallelism can be expressed thanks to �possibly multi�dimensional�
schedules� Section
 introduces speculative execution� an optional optimization� Section � details the algo�
rithm which mechanically constructs the �possibly speculative� schedules� Section � concludes and discusses
related works�

� De�nitions

The k�th entry of vector �x is denoted by �x�k�� The dimension of a given vector �x is denoted by j�xj� The
subvector built from components k to l is written as� �x�k��l�� If k � l� then this vector is by convention the
vector of dimension �� Furthermore� � and � denotes the non�strict and strict lexicographical order on
such vectors� respectively� � is de�ned by�

�x� �y � �k� � � k � min�j�xj� j�yj�� s�t�
��k�� � � k� � k� �x�k�� � �y�k���

� ���x�k� � �y�k�� � ��x�k� � �y�k�� j�xj � k � j�yj�� �
���

In this paper� �max� always denotes the maximum operator according to the � order� The integer division
operator and the modulo operator are denoted by � and �� respectively� The true and false boolean values
are denoted by tt and ff � respectively�

We �rst have to stress the di�erence between a statement� which is a syntactical object� and an operation�
which is a dynamic instance of a statement� If a statement is included in a loop� then the execution yields
as many instances of the statement as loop iterations� When only do loops appear in a program� giving
names to statement instances is easy� one just has to label the operation by the statements	 name and the
corresponding loop counters	 values�

Take for instance the following program�

program A

do i � � � n

do j � �� n

S � a�i�j� � a�i�j���

end do

end do

The iteration vector for this nest is �i� j�� The iteration domain of S is D�S� � f�i� j�j � � i �
n� � � j � ng� So� S spawns n� operations� An operation is denoted by hS� i� ji�

�

However� we can easily add an arti�cial counter to any while�loop� whose initial value is also arbitrary�
whose step is �� and for which no upper bound is known� Note that detecting inductive variables may exhibit
natural counters to while�loops� Hereafter� we will mimic the PL�� syntax� i�e� use the construct below�

while�loop Equivalent loop with explicit counter
do while � P � S do w � � by � while� P � S

The program model we will restrict ourselves to is as follows�

� The only data structures are integers� reals� and arrays thereof�

� Expressions do not include any pointer or pointer�based mechanism such as aliasing� EQUIVALENCE�
etc�

� Basic statements are assignments to scalars or array elements�

� The only control structures are the sequence� the do loop� the while� or repeat�loop� and the condi�
tional construct if��then��else� without restriction on stopping conditions of while loops� nor on
predicates in if	s� gotos are thus prohibited� together with procedure calls�

� Array subscripts must be a�ne functions of the counters of surrounding do� while or repeat loops
and of structure parameters� The input program is supposed to be correct� thus subscripts must stay
within array bounds�

The fact that array subscripts stay within array bounds cannot be checked at compile�time when
subscripts are expressions involving while�loop counters� On the other hand� one may do the
opposite deduction� since the program is assumed to be correct� and subscripts stay within
bounds� an a�ne subscript expression gives very informative a�ne constraints on while�loop
counters� For instance� if the program below is correct�

program lwn

integer a��	n�

do w � l by � while � ��� �

a�w� � ���

end do

then we can deduce that � � l � w � n� If the program is not correct� then so is this deduction�
and the parallelized program is as incorrect as the input one�

For instance� Program WW follows our program model�

program WW

G� � do w � � by � while � P��w� �
G� � do x � � by � while � P��w� x� �
S � a� w � x � � a� w � x	 � �

end do

end do

For now� we will suppose that predicates P� and P� in Program WW do not depend on array a� but only on
w and w and x� respectively�

We can now extend the de�nition of iteration vectors to while loops� the iteration vector of a statement
appearing in a nest of do and�or while loops is the vector built from the counters of the surrounding loops�
The dimension of iteration vector �x is equal to the number of surrounding loops� For example� the iteration
vector of statement S in Program WW is �w� x�� An instance of S for a given value �x of the iteration vector
is denoted by hS� �xi�

The true and false boolean values are denoted by tt and ff � respectively�

�

��� Iteration domains

The iteration domainD�S� of statement S is the set of values that the iteration vector takes in the course of
execution� Unfortunately� iteration domains for dynamic control programs cannot be predicted at compile�
time� In the particular case where there is only one outermost while�loop� we know at compile�time that the
iteration domain is built from the integral points inside a convex polyhedron� this polyhedron is bounded
if the loop terminates� but this bound cannot be known statically ���� In more general cases� the iteration
domain has no particular shape and looks like a �possibly multi�dimensional� �comb� �����

An additional di�culty of DCPs when compared to SCPs lies in the handling of while�loop predicates�
For instance� there is not a one�to�one correspondence between the evaluations of predicate P��w� x� in
program WW and the instances of S� Two frameworks have been proposed to describe such a phenomenon�

� Griebl and Lengauer ���� map to the same point of the iteration domain the evaluation of one or more
while�loop predicates plus possibly the execution of a statement S appearing in the loop nest� Then�
a single while�loop that does not iterate at all yields a one�element iteration domain�

� An alternative method is to consider the predicates of ifs and whiles as full��edged statements having
their own iteration domains� and to regard their instances as regular operations� We adopt this method
since it allows to disambiguate the meaning of iteration domain elements� and to clarify the study of
scheduling and speculative execution �to be discussed later��

Let us go back to Program WW� Throughout this report� we consider an arbitrary execution such
that the loop on w iterates � times �Predicate P��w� evaluates to ff when w � ��� and the loop
on x iterates
� �� �� � and � times� G� executes one time more than S� i�e� �� ��
� � and � times
respectively�

The method chosen by Griebl and Lengauer is illustrated for Program WW in Figure �� Iteration
domains of S� G� and G�� according to our method� are displayed in Figure ��

w

x

0 1 2 3 4
0

1

2

3

4

P (5)

P (4) & P (4,0) & S(4,0)

P (3,4) & S(3,4)

P (3,5)

5

1

1 2

2

2

Figure �� Instances of G�� G� and S� for the arbitrary execution we consider in this report� according to the
convention of Griebl and Lengauer�

��� Approximate iteration domains

De�nition � The approximate iteration domain bD�S� of a statement S is the set of all instances of S when
the predicates of all while loops and ifs surrounding S evaluate to true�

This unique approximate domain of S is a conservative superset of the �actual� iteration domain�

x

1

2

3

4

w

0 1 2 3 4
0

5

w

0 1 2 3 4 5

x

1

2

3

4

w

0 1 2 3 4
0

5

Figure �� Iteration domains of S� G� and G�� from left to right� for Program WW� Each dot represents an
instance of one of these statements�

For example� the approximate iteration domain of S in Program WW is�

bD�S� � f�w� x�jw
 �� x
 �g ���

The approximate domain of G� is�

bD�G�� � fwjw
 �g ���

The approximate iteration domain bD�G�� is equal to bD�S�� However� recall that for any given w�
G� executes one more time than S� In Figure �� black dots represent the corresponding instances
of the three statements�

A very important remark is that� in a static control program� the approximate domain of any statement S is
equal to the actual iteration domain� i�e� bD�S� � D�S� for any S� and there is no need for handling control
dependences since they are already taken into account in the expression of D�S��

��� Scanning iteration domains

Griebl and Lengauer have shown that the image of the iteration domain of a nest of do and while�loops
cannot always be scanned by another nest of do and while�loops� even when the mapping is a�ne and
unimodular� Su�cient conditions for mappings to yield scannable image domains have been given �����

When these conditions are not satis�ed� the method proposed by these authors to scan the image domain
consists in scanning a �nite subset of the approximate image domain and in checking on the �y whether the
current point is an element of the actual iteration domain�

D�S� � f �x j �x � bD�S� � executed��x�g�

This test is done thanks to a predicate called executed� expressed as a recurrence on loop predicates�

For a precise and general de�nition of this predicate� the reader is referred to ����� For our
running example� this predicate is�

executed�w� x� � executed��w� x�

executed��w� x� � x
 �� P��w� x� � executed��w� x	 ��

x � �� P��w� x� � executed��w�

executed��w� � w
 �� P��w� � executed��w 	 ��

w � �� P��w�

�

w

0 1 2 3 4 5

x

0

1

2

3

4

0

1

2

3

4

5

x

S

G2

G1

Figure �� Data�ow and control dependence graph for Program WW� Each black dot represents an instance of
G�� G� or S for the arbitrary execution we consider� Gray dots represent possible instances that have to be
considered� and thus both black and gray dots built the approximate iteration domains�

So we know now how to describe the operations spawned by a DCP� We now address the problem of
�nding the dependences among these operations�

��� Memory� and value�based dependences

Two operations can execute in parallel if they are independent� i�e� they do not interfere� Bernstein gave
three su�cient conditions on two operations o� and o� for the program	s semantics to be independent on the
order in which these operations execute�� Let R�o���M �o�� �R�o���M �o��� be the set of memory cells read
and modi�ed by o� �o��� respectively� Then� these operations are independent i� the three conditions below
hold�

� C�� M �o��
T
R�o�� �

� C�� M �o��
T
R�o�� �

� C�� M �o��
T
M �o�� �

A few comments are in order here�

� If the �rst condition is not satis�ed� then there is a true dependence or producer�consumer dependence�
denoted by o��

to��

�These conditions are not necessary� for instance� executing x��x�� and x��x�� in any order does not change the semantics�

�

� If Condition C� is false� then o� has read its input data in some memory cells and o� then reuses these
cells to store its result� This is an anti�dependence or consumer�producer dependence� denoted by
o� �o�� There is an anti dependence on S in Program WW� corresponding to Edge e� in Figure
�

� If Condition C� is not satis�ed� then there is an output dependence or producer�producer dependence
denoted by o��

�o�� In Program WW� the output dependence between two instances hS� �� �i and hS�w� xi
of S is described by Edge e� in Figure
�

If any condition C�� C� or C� is not satis�ed� then o� and o� are said to be data dependent� denoted by
o��o�� Two operations o� and o� can execute in parallel if o� is not dependent on o� by transitive closure
of �� We say that a dependence from o� to o� is satis�ed if o� executes before o�� All dependences should
be satis�ed� thus limiting parallelism� Note that� should predicates P� and�or P� depend on array a� similar
edges from S to G� and�or G� would just have to be added in Figure
��

Edges Description Conditions

e� hG�� w 	 �i�chG�� wi w
 �
e� hG�� wi�chG�� w� �i
e� hG�� w� x	 �i�chG�� w� xi x
 �
e� hG�� w� xi�chS�w� xi
e� hS�w� x	 �i�thS�w� xi x
 �
e� fhS� �� �ij�� � � w � x	 �� �
 �� �
 �� � � wg�thS�w� �i w
 �� x � �
e� fhS� �� �ij�� � � w � x� �
 �� �
 �� � � wg��hS�w� xi w
 �
e� fhS� �� �ij�� � 	 � � w � x� �
 �� �
 �� � � wg �hS�w� xi w
 �

Figure
� Dependences in Program WW�

These dependences� however� arememory�based dependences� They are language� and program�dependent�
and are not semantically related to the algorithm� On the contrary� value�based dependences or data �ows

capture the production and uses of computed values ���� For instance� hS� �� �i in Program A is PC�dependent
on both hS� �� �i and hS� �� �i� but the only �ow of data to hS� �� �i comes from hS� �� �i� In the sequel� such
a data�ow is denoted by !� e�g� hS� �� �i!hS� �� �i� Data�ow analysis for SCPs in the presence of arrays is
now well understood ��� ��� ��� �
�� In the case of DCPs� a fuzzy array data �ow analysis �FADA� has been
proposed in ����� The result of fuzzy array data�ow analysis is a multi�level conditional called quast � Each
leaf is a set of potential data�ow sources� Notice that these sets may possibly be in�nite� Each quast leaf is
submitted to a context given by the conjunction of predicates appearing on the unique path from the quast	s
root to the leaf�

In Program WW� the source ��hS�w� xi� of hS� w�xi given by FADA is�

��hS�w� xi� �

���������

if x � �
then fhS� w�x� �ig

else

�����
if w � �
then fhS� ���ij�� � � w� x� �� � � �� � � �� � � wg � f�g
else f�g

���

where � means that the source operation does not exist� or more precisely� that any possible source
operation lies outside the program segment	 For instance� the context of the second leaf is x � ��w � �	
The
rst two leaves give edges e� and e�� displayed in Figure ��a� and tabulated in Figure �	 In
Figure ��a�� notice that some points have many incoming arrows� meaning that the real �ow of value
may be carried by any of them	 These arrows correspond to the second leaf	

If there is no anti or output dependence� then the program has the single�assignment property � More
memory is necessary� but since there are less constraints� the potential parallelism is greater� There exist

�Control dependences ��c type� are introduced in Section ��

�

formalmethods to convert SCPs into single�assignment form ���� However� the case of DCPs is more intricate�
Take for instance Program I��

Program I�

if P then

x � rt
else

x � re
end if

l � x

Program I

tmp � P

if tmp then

x� � rt
else

x
 � re
end if

S � l � if tmp then x� else x

The single�assignment version I
 of Program I� cannot be obtained without a dynamical mechanism to
restore the �ow of values in Statement S� Thus� even though converting a program into single�assignment
form �SAF� generally exhibits more parallelism� restoring the �ow of values may yield an intricate generated
code� The pros and cons of SAF for DCPs are not well understood yet and more experiments are needed
here� The method presented is this paper can handle both SA and non�SA programs�

��� Control dependences

��	�� De�nition

There is a control dependence from operation o� to operation o� if the very execution of o� depends on the
result of o�� o� is called the governing operation� Such a dependence is denoted by o��co�� In particular� the
very evaluation of a while�loop predicate �for instance� hG�� wi in Program WW� is dependent on the outcome
of the previous evaluation �e�g�� on hG�� w 	 �i�� The four control dependences of Program WW� call them
e���e�� appear in Fig�
�

Notice that the outcome of a while predicate is given by anding the outcomes of all previous predicate
instances plus the outcome of the current instance� For example� the outcome of hG�� wi in Program WW is��

��w��w

P��w
���

Thus� a while predicate instance is both control and data�ow dependent on the previous predicate instances�
This mixed dependence justi�es the term index dependence coined by Griebl and Lengauer ��
��

��	�� Description of control dependences

The case of the if construct Let us consider the following program piece�

G if � ��� �

S ���
end if

where S is some statement in the then or else arm� perhaps surrounded by loops� Let c be the depth of
the if construct� i�e� the number of loops surrounding G� Let �x �resp� �y� be the iteration vector of G �resp�
S�� Then� there is a control dependence from hG��xi to hS� �yi i�

�y����c� � �x� ���

�if c � �� then �x and �y����c� are equal to the vector of dimension � and equality ��� is true��

�

The case of while loops Let us consider the following program piece�

G while � ��� �

S ���
end while

where S is some statement in the while�loop body� perhaps surrounded by loops within the body� Let c be
the depth of the while construct� i�e� the number of loops surrounding G� Let �x �resp� �y� be the iteration
vector of G �resp� S�� Then� there is a control dependence from hG��xi to hS� �yi i�

�x����c� � �y����c� � �x�c� �� � �y�c� �� ���

We have now de�ned the various dependences that may appear in a program� The following section
de�nes a suitable internal data structure for a parallelizing compiler to handle these dependences�

��� Internal data structures

��
�� Detailed dependence graph

The most intuitive structure is the detailed dependence graph� The vertices of this graph are program
operations and the edges are dependences between these operations� When all data dependences are taken
into account� the dependence graph for S in Program WW is depicted in Fig� ��b�� �There is no self control
dependence on S�� When only data�ow dependences are taken into account� the dependence graph is shown
in Figure ��a�� The leaves in �
� give the graph edges� In Figure ��a�� notice that some points have many
incoming edges� meaning that the real �ow of value may be carried by any of them� These edges correspond
to the second leaf of �
��

w

x

0 1 2 3 4
0

1

2

3

4

w

x

0 1 2 3 4
0

1

2

3

4

(a) (b)

Figure �� Dependence graphs for S in Program WW� Each dot represent a possible instance of S� but only dark
dots denote real operations for the arbitrary execution we consider� Arrows represent data dependences� �ow
dependences in �a�� and �ow� output and anti dependences in �b�� Dark lines represent possible wavefronts�

The detailed dependence graph has one vertex per operation� and thus is too big a data structure " it
may even need an in�nite number of vertices# We have to guarantee that sizes of internal data structures
do not depend on sizes of program data structures nor on the number of spawned operations� i�e� we must
be able to compile without knowledge of structure parameters values� We are thus looking for a linearly
described graph� and the generalized dependence graph ful�lls this requirement�

�

��
�� Generalized dependence graph

We augment the Generalized Dependence Graph �GDG� ��� to handle approximate iteration domains and
possibly to include anti� output and control dependences� The latter are seen as regular data dependences
and treated as such� The GDG is a directed multi�graph de�ned by�

A set V of vertices� Each vertex correspond to a statement in the program� More precisely� each vertex
represents the set of operations the statement spawns� Note that the predicate expression of a while

or an if is considered as a statement�

A set E of edges� There is an edge e from a source statement t�e� �the edge	s tail� to a sink statement h�e�
�the edge	s head� if there is a dependence from t�e� to h�e�� All data�ows �value�based dependences�
incur an edge in the GDG� however� we will see in Section
�
 that other types of dependences �e�g�
control and memory�based� may or may not be taken into account� �Hence� corresponding edges may
or may not be inserted in the GDG�� In any case� to each edge e is associated a set of constraints on
the iteration vectors of t�e� and h�e��

A function bD giving� for any statement S in V� the conservative approximation bD�S� of the iteration
domain of S�

A function R giving� for each edge e � E � a relation on couples ��x� �y� described by a system of a�ne
inequalities�

� If the edge corresponds to a data�ow� then this relation is given by the context of the corresponding
quast leaf and the inequalities in the leaf	s expression� By construction� R�e� is de�ned by a�ne
inequalities� and thus is a polyhedron� Moreover� FADA guarantees that this polyhedron is not
empty� a very useful property in the sequel� Notice �x may take several values in a �polyhedral�
set parametrized by �y� so the methods of ��� �� can be applied�

� If the edge corresponds to a control dependence� then the relation captures equation ��� or ����

� Scheduling

��� Scheduling static control programs

Let $ be the set of all operations� and o�� o� � $ be two operations� Scheduling consists in choosing a set
�generally� N� and a strict order on this set �generally� ��� and in �nding a function from $ to N such that
either o�!o� � ��o�� � ��o�� or o��o� � ��o�� � ��o��� If ��o�� � ��o��� then o� and o� are scheduled to
execute in parallel� This function is called the scheduling function� or� more simply� the schedule�

In Program A� hS� i� j � �i
hS� i� ji if j � �	 On the other hand� hS� i� ji �
hS� i�� ji�� for any i�	 Thus� a
possible scheduling function for the operations spawned by Program A is ��hS� i� ji� � j� �	 For a given
j� all hS� i� ji� � � i � n� are scheduled to execute in parallel	

Unfortunately� all programs do not have so simple schedules� Take for example Program B�

program B

do i � � � n

do j � �� n

S � s � s� a�i�j�

end do

end do

Suppose we cannot take bene�t of algebraic properties of addition� Then� this program cannot be par�
allelized� Moreover� this program does not have a one�dimensional a�ne schedule ���� However� a valid
multi�dimensional component�wise a�ne schedule is� for instance�

��hS� i� ji� �

�
i

j

�
�

��

In this case� the codomain of the scheduling function is N�� and the associated order is the strict lexicograph�
ical order� denoted by �� Hence� a more general de�nition of scheduling is either o�!o� � ��o�� � ��o���
or o��o� � ��o��� ��o���

The latency of a schedule is� by de�nition L � Card ��$�� For a one�dimensional schedule �whose period
is ��� L � max��$� 	min��$� � �� Finally� notice that many di�erent de�nitions appear in the literature�
for some authors� schedules may have rational coe�cients� Programs may have a single schedule for all
statements or� on the contrary� one schedule for each statement� We will stick to the latter kind� and try to
derive �a�ne�by�statement� schedules� In the sequel� for a statement S and an iteration vector �x� we denote
�S ��x� the logical execution date of hS� �xi instead of ��hS� �xi��

��� Scheduling dynamic control programs

On the contrary to SCPs� scheduling DCPs does not have an obvious meaning� since the scheduled operations
may not execute at all� Scheduling an operation o� in a DCP means that� if this operation executes� then
all preceding operations have been computed at previous scheduled dates� These preceding operations will
be de�ned in Section
�
�

If no if statement is allowed in DCPs and the only while�loop is the outermost loop� array data�ow
analysis is exact and does not need tailored analyzes such as in ����� An algorithm to schedule this restricted
type of DCPs was previously proposed ��� ��� This algorithm is extended in this paper to handle DCPs�

��� The need for multi�dimensional scheduling functions

This section answers the following question� Why should the scheduling function have possibly more than
one dimension%

The main reason is that the class of DCPs includes all SCPs� and SCPs themselves require multi�
dimensional schedules in the general case �see Program B�� Moreover� they allow to easily express the behavior
of programs built from while loops� Take for instance Program W �slightly modi�ed from Program simple

page ����

program W

do w�� by � while � P �

S � x � ��� x ���

end do

R � y � x

Since we cannot tell when predicate P evaluates to false� we have to consider a possibly non�terminating
execution of the while loop� Valid schedules for S and R are

�S �w� �

�
�
w

�
� �R�� � ��� � ���

respectively� Since one cannot know at compile�time when Predicate P evaluates to false� one has to consider
a possible non terminating while�loop� We also have to specify that hRi should execute after the last instance
of S� which is unknown� A solution to this problem ���� is to use a placeholder denoted by �� which essentially
is a new variable equal to the execution date of the last instance of S� This placeholder is thus updated
during execution� and the execution date of hRi is � � ��

However� this method has two drawbacks according to us�

� Using placeholders is in a sense a dynamic scheduling� This is an acceptable choice� but the bene�ts
of static scheduling are lost�

� Composition of schedules is not clear� For instance� let us consider the following program�

program W

do w�� by � while � P �

S� � x � ��� x ���

��

end do

do w�� by � while � P �

S� � z � ��� z ���

end do

R � y � x�z

Should the schedule of R be the maximum of the values of two placeholders� or an additional place�
holder%

However� placeholders are necessary to code generation in the general case �����

��� Existence of multi�dimensional schedules

Before proceeding on the scheduling problem� another question naturally arises� Do all DCPs have a multi�
dimensional scheduling function%

To answer this question� we prove the following�

Proposition � All DCPs respecting the restrictions of Section � have a multi�dimensional a�ne schedule�

Proof �A constructive proof by induction on the structure of DCP 	��

	 �do w � � by � while Q end do� Q is a SCP� Let � be the schedule of a statement in Q�

would the while loop be discarded� Then�

�
w

�

�
is a valid schedule for the selected

statement of Q�

	 �if p then Q end if� Q is a SCP� Let � be the schedule of a statement in Q� would the

conditional be discarded� Then ��� and

�
�
�

�
are valid schedules for p and the selected

statement of Q� respectively�

	 � 	�� 	�� 	� and 	� are DCPs� Let �� ���� be the schedule of a statement in 	� �	��� Then�
�
��

�
�

�
�
��

�
�

are valid schedules for the selected statements of 	� and 	�� respectively�

	 �if p then Q� else Q� end if� Q� and Q� are SCPs� Let �� ���� be the schedule of a state�
ment in Q� �resp� Q��� would the conditional be discarded� Then�

����

�
�
��

�
�

�
�
��

�
�

are valid schedules for the evaluation of p and for the selected statements of Q� and Q��
respectively� �Notice that since instances of both Q� and Q� will not execute for a given
value of the iteration vector� the �rst components of their schedules can be equal��

�

Note that the proof did not try to minimize schedule dimension� Obviously� we should try to take bene�t
of special cases� such as the possible knowledge of an upper bound u on a while loop counter w�

� Speculative execution

Intuitively� one gets speculative executions by ignoring or �cutting� control dependences� More formally�

De�nition � The execution of operation o is said to be speculative if there exists oc such that oc�co and oc
executes after or simultaneously with o�

��

For a detailed discussion of speculative execution� see ���� ��� Notice that control dependences between
instances of the same while predicate can be cut� but the corresponding data�ow cannot� This boils down
to saying that index dependences cannot be cut�

However� thanks to scheduling functions� we can give a more precise de�nition of speculative execution
which will allow to derive useful properties�

De�nition � The execution of operation o is speculative if at least one control dependence on o is not
satis�ed� i�e� there exists an operation oc governing o whose execution date is later than the execution date
of o�

�oc � $ j oc�
co � ��oc�
 ��o��

��� Legality of Speculative execution

Obviously� speculative execution is legal if and only if the semantics of the input program is preserved� Three
necessary conditions can then be stated�

The control
ow must be restored� Speculative operations are committed or not depending on the out�
comes of governing operations� These governing operations must thus execute in �nite time� Once a
speculative operation is executed� the corresponding governing operation must executes in �nite time�
That is� the number of operations executed after or simultaneously with the speculative operation and
before or simultaneously with the governing operation has to be �nite�

As a consequence� notice that parallel fronts should be �nite� When speculative operation is not
brought into play� the only executed operations are those belonging to some �actual� iteration domain�
On the contrary� speculative execution executes points from approximate iteration domains� Thus� we
must take care that speculative fronts are �nite or limited ��
�� An easy way to guarantee �niteness of
fronts is to enforce that fronts are not parallel to a nonnegative a�ne combination of the approximate
domain	s rays ���� However� �nite fronts do not imply that delays between speculative operations and
their governing operations are �nite �there may be an in�nite number of �nite fronts�� but the converse
is true�

The
ow of data must be restored� When potential sources come from speculative operations� one has
to take care that these operations were executed and committed before reading the datum�

Side�e�ects from speculative operations must be masked� These side�e�ects are writes to memory
and exceptions �I�O operations are not considered�� For a discussion of these issues� please read ���
���� In this paper� we will assume that no exception occurs and that each operation writes into its
own private memory cell �i�e�� the program has the single�assignment property�� Then� speculative
operations do not overwrite non�speculative results� and the initial memory state can be restored ����

To illustrate the second and third dangers of speculative execution� and to show the limits of our method�
let us study the following program�

Program simple

G � do w � � by � while � P �x� �
S � x � ���

end do

R � ��� � x

If this program is converted into single assignment form� there are no more output dependences on S	
Remaining dependences are�

Edges Dependences Conditions
e� hG�wi�chS� wi
e� hG�w� �i�chG�wi w � �
e� hS� wi�thRi w � �
e� hS� w � �i�thG�wi w � �

��

S

S

S

GG

G

G

G

S

SA−C dependence graph

SA−S graph

SA−S dependence graph
with delay dependences

Quotient graph

Tile

Figure �� Dependence graphs for statements G and S of Program simple� From top to bottom� regular
��SA�C�� dependence graph� dependence graph without edge e� " a topological sort yielding an in�nite
front� dependence graph where delay control dependences replace e�� corresponding quotient graph� where
supernodes appear in an acyclic graph�

The corresponding dependence graph appear in top of Figure �	 If control dependence e� is �cut��
then the dependence graph is still consistent	 However� a topological sort would execute all the possible
instances of S simultaneously �see second graph in Figure ���

� This topological sort yields an in
nite front�

fhS�wijw � �g� ���

Equivalently� the schedule for S is ��hS�wi� � �	

� The read in hRi requires that the �ow of data is re�constructed� and thus that the last instance of
S is known	 To know this instance� we have to know the outcome of all instances of G	

��� Restoring the �ow of control

As we said� speculative execution should be used carefully� Intuitively� not taking a control dependence into
account may unleash a nonterminating behavior� In the case of DCPs where the only while loop is the
outermost loop� a necessary and su�cient condition to restore the �ow of control is that fronts must be
�nite ���� The proposition below is more general and subsumes the �niteness of fronts�

Proposition � An operation o can be speculatively executed in a safe way i� the set &�oc� o� of operations
scheduled between o and oc is �nite� i�e� i�

&�oc� o� � fuj ��o����u����oc�g ���

is �nite�

�

Proof Let L be the date of the last scheduled operation� and W be the work performed by the
program�

W �
LX
t	�

s�t�� ����

where s�t� is the cardinal of the front at time t�

s�t� � Card�fuj��u� � tg��

A program can be executed in �nite time on a �nite number of processors i� W is �nite� In
particular� for a given operation oc governing a speculative operation o� ���� implies that�

�
oc�X
t	�
o�

s�t� ���

which is equivalent to saying that &�oc� o� is �nite� hence the proposition� �

Testing this condition in a naive way would require to enumerate all possible statements �of whom u is
an instance�� and split the inequalities according to ���� Notice that enforcing this condition bound both the
resources and the time required by speculation�

Front ��� given by topological sort has a ray along the w�axis	 As said in section �	�� our method forbids
such an in
nite front because this front is parallel to the ray	 However� a more general condition is given
by Proposition �� ��hG� �i� � � and ��hS�wi� � �� hence�

��hG� �i� hS� �i� � fhS� wi j w � �g�

which is not
nite	 �Thus� our method is not able to parallelize Program simple	�

Comments on this method Proposition � gives an a posteriori test on the given schedules �to be con�
structed in Section ��� However� one may try to take bene�t of speculative execution using pseudo�a�ne
schedules� Future work will tackle this issue� but this paragraph just presents the main idea� Roughly speak�
ing� executing all possible instances of S� i�e� executing all elements of ��� in parallel� is �too speculative��

The mistake in the above example was to cancel all instances of dependence e� in the dependence graph�
Instead of canceling all instances of a control dependence� a method is to replace them with delay dependences
so as to bound speculative execution� For instance� control dependence e�

hG�wi�chS�wi�

could be replaced by
hG�wi�RhS�w � r�w�i�

where r�w� is a nonnegative integer delay� Such dependences allow to tile the iteration domain� and to
schedule each tile independently in a speculative way �see Figure ���

However� constructing these delay dependences is still an open problem� Moreover�� schedules are in
general not a�ne any more� In the case of Figure �� valid pseudo�a�ne schedules for G and S would be�

�G�w� �

�
w � �
w � �

�
� �S �w� �

�
w � �
�

�
�

Such schedules are beyond the scope of this report�

��

��� Restoring the �ow of data	 compensation dependences

Problem description If the source of a read is a singleton �as given by the fuzzy array data�ow analysis��
then the identity of the source does not depend on the �ow of control� In other words� if the read executes�
the the source executes too�

However� if the source is not a singleton� then we cannot decide at compile�time which operation among
the source set is the last executed one� Existence of a possible source depends on the outcome of all governing
predicates from whiles and ifs� which is formalized by control dependences� Hence� care must be taken when
cutting control dependences� since selecting the actual data�ow source depends on them� As a consequence�
we must ensure that� given operations u� v� w such that u�cv and v �
�w�� if dependence u�cv is cut� then
u still executes before w� To enforce this property� we insert a dependence from u to w� Intuitively� this
dependence compensates for the cut control dependence� and is denoted by u�compw�

We saw that� in Program simple� executing operation hRi requires the knowledge of the outcomes of all
instances of G	 So� we insert compensation dependence hG�wi�comphRi� for all w � �	

Here is another example�

S� � x � ���

G � if � ��� � then

S� � x � ���

end do

R � ��� � x

Speculative execution of S� can be scheduled before the execution of G	 However� R needs to know who
produced datum x among S� and S�	 Notice that this problems only appear because the �ow of data
is fuzzy� the source of x in R is fS�� S�g� the source for R in Program simple is fhS� wijw � �g	 We
compensate edge G�cS� by a compensation dependence hGi�comphRi	

Construction of compensation dependences Let us consider a control dependence edge e� in the
GDG� from some instances of statement G to some instance of statement S� which we intend to cut�

hG��xi �c hS� �yi s�t� Re���x� �y�� ����

where Re���x� �y� is a system on a�ne constraints on �x� �y� labelling edge e� in the GDG�
The problem is as follows� For any statement R� whose iteration vector is �z� such that there is a data�ow

edge e� from hS� �yi to hR��zi if Re���y� �z� holds� construct the set�

C�hR��zi� � fhG��xi j Re� ��x� �y� � Re���y� �z�g

Since Re���x� �y� and Re���y� �z� are given by systems of a�ne constraints� computing C�hR��zi� can easily be
done� make the conjunction of both systems and eliminate variables �y� Hence� this boils down to projecting
variables �y out�

At �rst sight� this method has two drawbacks� �rst� it may be costly� Second� the resulting set cannot
always be described as the integral points in a convex polyhedron� to be consistent� we may in the general
case have to approximate the resulting set by its hull� However� the second problem seldom occurs due to
the form of Re� given by ��� or ����

Let us consider the program below�

G� � do w� � � by � while � ��� �

G� � do w� � � by � while � ��� �

S � a�w� � w�� � ���

end do

R � ��� � a�k�
end do

��

Control dependences on S are�

hG�� w
��

� i�
chS� w�

�� w
�

�i s�t� w
��

� � w
�

� ����

and
hG�� w

��

� � w
��

� i�
chS� w�

�� w
�

�i s�t� w
�

� � w
��

� � w
�

� � w
��

� �

Assume dependence ���� is cut	 Then� since the source of hR�w�i is

��hR�w�i� � fhS�w�

�� w
�

�i j w
�

� � �� w�

� � �� w�

� � w�� k � w
�

� �w
�

�g�

C�hR�w�i� is�

C�hR�w�i� � fhG�� w
��

� i j w
��

� � w
�

�� w
�

� � �� w�

� � �� w�

� � w�� k � w
�

� �w
�

�g�

that is�
C�hR�w�i� � fhG�� w

��

� i j w
��

� � w�� w
��

� � kg�

As a conclusion� cutting dependence ���� implies inserting a compensation dependence edge e� in the
GDG such that t�e�� � G� and h�e�� � R� labeled with Re��e� � fw��

� � w�� w
��

� � kg	

��� Parallelization modes

Depending on whether speculative execution is brought into play �S� or not �conservative� C�� and whether
the program is converted into single assignment form �SA� or not �NSA�� four parallelization modes exist�
Each mode yields� for a given operation o�� a set of preceding operations�

NSA�C The set of preceding operations is

fo�j o��
co� � o��o�g�

This is the mode of classical compilers�

SA�C The set of preceding operations is
fo�j o��

co� � o�!o�g�

SA�S The set of preceding operations is

fo�j o�!o� � o��
compo�g� ����

This mode speculates on operation executions but is able to give back the original semantics�

NSA�S The set of preceding operations is

fo�j o��o� � o��
compo�g� ��
�

This mode executes as many speculative operations as possible but is not able to �rollback� and restore
the original semantics when these speculative executions happen to be mispredicted� This mode would
require that the compiler knows very special properties on the algorithm� such a property was �rst
described in ���� for �convergent while loops�� when the stopping condition evaluates to tt� then all
following iterations evaluate the condition to tt too� According to us� this is a dangerous property that
a compiler should not assume�

We will thus restrict ourselves to the �rst three parallelization modes� and� in all cases� automatically derive
a scheduling function to all program statements� Notice that all four sets of preceding operations may be
in�nite�

��

��� Examples

We illustrate the de�nitions above on three examples� The �rst example program cannot be parallelized
without using speculative execution� On the contrary� the second example does not need speculation to
be parallelized� The third program is slightly di�erent from the second example� however� it cannot be
parallelized without speculation� and moreover there exist no safe �a�ne� speculative schedules for this
program� �Notice that in all three programs� scheduling functions are supposed given� Constructing them
in an automatic way is the subject of Section ���

��	�� First example

Program Iteratif

T � x � a�n� � � �' � � � '�
G � do w � � by � while � j x	 a�n� j
 � �

x � a�n�
do i � � � n

S � a� i � � a� i � � a� i 	 � �

end do

end do

Let s be the iteration count of the while loop during the sequential execution� Then� this program executes
in s� n tops� Moreover� this program cannot be parallelized� even if converted into single�assignment form�
However� one may �bet� that the current iteration will not be the last one� and speculate� Formally� this
boils down to canceling control dependences from hG�wi to all hS�w� ii� for all i� � � i � n� Only then
can the program be parallelized� Figure � displays the corresponding parallel fronts �dark lines�� assuming
that the input program was �rst converted into single�assignment form �SA�S mode�� This parallel program

w

w (n=4)

t=0 t=1 t=2 t=3

S G

Figure �� Approximate iteration domains for Statements G and S of Program Iteratif� Data�ows are
displayed by thin arrows� Discarded control dependences are displayed in dashed lines� Bold lines correspond
to parallel fronts for schedule w � i	 � of S�

executes in s� n tops on n processors� Possible schedules are�

��hS�w� ii� � w � i 	 ��

and
��hG�wi� � w � n	 ��

��

Let us check that Proposition � is satis�ed�

�i� i � i � n� &�hG�wi� hS�w� ii� � fhS�w�� i�ij ��hS�w� ii���hS�w�� i�i����hG�wi�g�

that is�

�i� � � i � n� Card�&�hG�wi� hS�w� ii�� � Card�f�w�� i��jw�i	� � w��i�	� � w�n	�� w�
 �� � � i� � ng�

The cardinal above is �nite because the coe�cient of w in ��hS�w� ii� is nonzero� Intuitively� a scheduling
function whose w coe�cient is zero yields in�nite fronts along the w axis ���� w coe�cients cannot be negative
�since that would correspond to executing the while loop in the order opposite to the sequential order�� so
w � N�� Notice that the smaller the value of the coe�cient of w� the faster the execution �since the latency�
for a given �nite $� is minimized with respect to w when this coe�cient is equal to ��� Hence� a schedule
with w coe�cient equal to � is in a sense the �optimal� speculative schedule�

��	�� A second example� without speculation

Let us go back to Program WW� The corresponding dependences are summed up in Figure
 and depicted in
Figure �� Parallelization mode SA�C keeps all edges except for e� and e�� On this example� some parallelism
can be extracted without resorting to speculative execution� A topological sort shows that possible valid
schedules are�

��hG�� wi� � w�

��hG�� w� xi� � w � x� ��

��hS�w� xi� � w � x� ��

�Notice that we do not need to check Proposition � since these schedules are not speculative�� If conversion
into single�assignment were not applied �i�e� mode NSA�C is chosen�� all edges e� though e� would have to
be considered� and the fastest schedule would be ��hS�w� xi� � �w� x� � as can be checked by hand using
topological sort�

��	�� An example with speculation

We now tackle a slightly di�erent example� where a while�loop predicate� say P�� depends on side�e�ects
from the nest body� Suppose P� is a function of w and of a scalar variable s� To avoid adding a statement�
we use a notation �
a la C� where assignments are expressions�

program WWb

G� � do w � � by � while � P��w� s� �
G� � do x � � by � while � P��w� x� �
S � s � a� w � x � � a� w � x	 � �

end do

end do

A new data�ow dependence is thus added to dependences of Figure
 �

Edge Description Conditions

e� fhS�w 	 �� xijx
 �g�thG�� wi w
 �

Notice that the approximate source of hG�� wi is an in�nite set�
If the program is put into single assignment form �SA� mode�� dependences e� to e� and e� are taken into

account� The corresponding graph appears in Figure � �where only one instance of e�� from fhS� �� xijx
 �g
to hG�� �i is displayed to get a simpler �gure�� This program does not have any parallelism� A solution is to
cancel control dependence e�� Then� the parallel fronts we previously found for S and G� are valid again�

��

w

0 1 2 3 4 5

x

0

1

2

3

4

0

1

2

3

4

5

x

S

G2

G1

Figure �� Graph of control and �ow dependences for Program WW�

Unfortunately� scheduling G� now causes the following problem� hG�� wi must execute after all operations
hS�w 	 �� xi� i�e��

��hG�� wi� � max
x��

��hS�w 	 �� xi� � max
x��

w � x�

This inequality cannot be satis�ed if no upper bound on x is known� Using a second schedule dimension
yield schedules�

��hG�� wi� �

�
�
w

�
�

��hG�� w� xi� �

�
�

w � x

�
�

��hS�w� xi� �

�
�

w � x� �

�
�

However� we are then in an extreme case where speculative execution may not terminate� According to these
schedules� all evaluations of predicate P� are done before completion of all instances of S and G�� However�
we have no guarantee that all instances of the loop on x terminate� i�e� that for any w� there is an x� such
that P��w� x�� � ff � Just imagine that P��w� s� � ff and P��w� x� � tt# This fact can be checked thanks to
����

&�hG�� wi� hS�w
�� x�i� �

�
hS�w��� x��i

����
�

�
w��x���

�
�

�
�

w���x����

�
�

�
�
w

�
�w��
 � � x��
 �

�

�

�
hG�� w

��� x��i

����
�

�
w��x���

�
�

�
�

w���x��

�
�

�
�
w

�
�w��
 � � x��
 �

�

��

w

0 1 2 3 4 5

x

0

1

2

3

4

0

1

2

3

4

5

x

S

G2

G1

Figure �� Control and �ow dependences in Program WWb� Each dot denotes an instance of G�� G� or S
�respective iteration domains appear in this order from top to bottom��

Obviously�
&�hG�� wi� hS�w

�� x�i� � fhS�w��� x��ijw��
 w� � x��
 �g� ����

Hence &�hG�� wi� hS�w�� x�i� is in�nite� Our method for speculative scheduling thus fails� and Program WWb

is executed sequentially�

� An algorithm for automatic static scheduling

Let us go back to Program WW� We can simultaneously execute all the operations belonging to a given
wavefront depicted in Fig��� Cases �a� and �b� correspond to single�assignment form SA�S and regular form
NSA�S� respectively� Parallelism in the both cases can be expressed by wavefront equations� w�x � K and
�w� x � K� respectively� where K is a parameter� As expected� the amount of parallelism is smaller in the
latter case� and the corresponding program latency is higher� �Latencies are equal to � and �
� resp�� Since
approximate domains are in�nite� one cannot know latencies at compile�time� However� a rule of thumb is
to consider that the smaller the coe�cients� the faster the execution so the better the schedule� The purpose
of the algorithm below is to �nd the equations of these wavefronts�

��� Driving algorithm

The core of the method is an algorithm whose input is a GDG and whose output is a multidimensional
a�ne�by�statement schedule �Section ����� However� from a given GDG� many sub�graphs can be derived
by canceling some control dependences� This core algorithm has thus to be driven by an algorithm whose
task is to try and �nd a sub�graph of the initial GDG whose schedule is in a sense optimal�

��

The driving algorithm is described in Figure ��� It takes as input a GDG G and a function scheduling

�the core algorithm�� and returns a valid� possibly speculative schedule for G� This driving algorithm �rst
�nds a non�speculative schedule� It then cancels one control �non �index�� dependence at a time� and calls
the core algorithm to obtain the corresponding schedule� As explained before� a good metric for schedules
is latency� but the latter cannot be de�ned for DCPs� Thus� a rule of thumb is to pick the schedules whose
coe�cients are the smallest� Note that changing the metric �for instance� schedule delays� would not change
the driving algorithm� Nevertheless� this algorithm can trivially be improved� for instance by considering all
possible combinations of control dependences� The aim of the next section is to propose an algorithm for
scheduling�

�c 	� scheduling� G �

for all non�index control dependences d

let G� 	� G minus d plus compensation dependences

� 	� scheduling� G� �
if � � better than �c � then �c 	� � end if

end for

return � �c �

Figure ��� Driving algorithm looking for a speculative schedule�

��� Core algorithm

The aim of this part is to �nd� for a given GDG and for each statement S in V� an integer dS and a multi�
dimensional component�wise�a�ne function �S fromD�S� to NdS such that� for any edge e from t�e� to h�e�
in E � the delay (e

(e��x� �y� � �t
e���x�	 �h
e���y� ����

satis�es�
(e��x� �y�� �� ����

For any statement S� the codomain of �S is NdS� However� we cannot describe the domainD�S� at compile�
time� So� we over�constrain �S and require that it is nonnegative on the approximate domain�

��x � bD�S�� �S ��x�
 ��� ����

Then� we use the fact that bD�S� is a polyhedron de�ned by p a�ne inequalities�

bD�S� � f�xjA�x	�b
 ��g� ����

The problem is as follows� for any statement S� construct a function �S satisfying ���� and ����� and de�ned
on ����� To do this� we apply the following lemma�

Lemma � �A�ne Form of Farkas� Lemma� An a�ne function �S ��x��d� is non�negative on a polyhedron
de�ned by �	
� if there exists a set of non�negative integers ��� � � � � �p �the Farkas coe�cients� such that��

�S��x��d� � �� �)p
k	��k�Ak��x	�b�k��� ����

The delay being the di�erence of two schedules� each delay can thus be expressed as a function of the �	s�

�The kth component of a vector �x is denoted by �x�k� and the kth row of a matrix A by Ak��

��

Let us go back to Program WW	 Eq	 ��� implies that there exist two integers �� and �� such that� for any
d�

�G�
�w��d� � �� � ��w� ����

The conservative iteration domain bD�S� of statement S is ���	 Thus� there exist integer coe�cients
	�� 	�� 	� and
��
��
� such that

�G�
�w�x��d� � 	� � 	�w� 	�x ����

and�
�S�w�x��d� �
� �
�w�
�x� ����

Basically� the algorithm is identical to the one in ���� Intuitively� we would like to �nd� for all statements�
non�negative one�dimensional schedules satisfying ���� for any edge e� In this case� d � � and ���� is
equivalent to�

�x � bD�t�e��� �y � bD�h�e��� ��x� �y� � R�e��

(e��x� �y��d� � �t
e���x��d�	 �h
e���y��d� � �� ��
�

Initially� d is equal to �� Then� the algorithm satis�es in a greedy way as many edges as possible until all of
them can be canceled�

� If ��
� can be satis�ed for all statements and all edges for the current value of d� then the algorithm
terminates�

� If no instance of ��
� can be satis�ed� then the greedy algorithm fails�

� Otherwise� we have to add a dimension to all schedules involved in unsatis�ed constraints ��
�� and
we increment d� We then go back to Step � to handle remaining schedules and edges�

The algorithm will thus iteratively try to satisfy all such constraints� adding one dimension to some schedules
at each iteration�

Let U
�� be the set of edges such that ��
� is satis�ed for d � �� Its complement in E is such that�

e �� U
�� � ��x �D�t�e��� ��y �D�h�e��� ��x� �y� � R�e��

s�t� (e��x� �y���� � �t
e���x����	 �h
e���y���� � ��

How can we tell the elements of U
�� from the others% If R�e� is a singleton and the dependence is
uniform� then we can directly solve ��
� for the Farkas coe�cients� Otherwise� as remarked in ����� (e��x� �y�
is de�ned on the set�

f��x� �y� j �y �D�t�e��� �x �D�h�e��� ��x� �y� � R�e�g� ����

which is a non�empty convex polyhedron� The inequalities de�ning this set are just the conjunction of the
inequalities de�ning D�t�e���D�h�e��� and R�e�� Let ne be the number of resulting inequalities� These
inequalities can collectively be written as�

�k� � � k � ne� *e�k��x� �y�
 ��

Let �e be an auxiliary integer variable encoding the fact that e belongs to U
�� or not� Then� if

(e��x� �y�	 �e

is a non�negative form for �e � �� then the one�dimensional causality constraint ��
� is satis�ed� Otherwise�
�e � �� Since the domain of (e is not empty� we can apply the A�ne Form of Farkas	 Lemma again� there
is a set of non�negative integers
�� � � � �
ne such that�

(e��x� �y� 	 �e �
� �)ne
k	�
k*e�k��x� �y�� ����

This yields a system of linear equations� If this system can be solved with �e � �� then ��
� is satis�ed�

��

We did not precise� however� which solution should be picked among possibly many solutions� In SCPs�
one may try to minimize schedule latencies� However� schedules for DCPs may be de�ned on non bounded
domains� For instance� Statement S in Program W has schedule

�S �w� �

�
�
w

�
�

whose latency is unde�ned� In such cases� an intuitive rule of thumb is to chose the �	s and
	s to be as
small as possible� since this tends to reduce the latency� More formal criteria are given in ����

Let us apply the above algorithm to Statements S and R in Program W	 Prototype schedules are �S�w� �
	��	�w and �R�� �
�� respectively	 If we just take data�ow dependences into account� then the source
of right�hand�side x in S is�

��hS�wi� � if w � � then fhS� w� �igelse f�g�

The source of x in R can be just any instance of S� if any� and FADA yields�

��hRi� � f�g � fhS� wijw � �g�

The
rst dependence is uniform� giving the inequality below �d � ���

����� �e��w��d� � �S�w��d�� �S�w� ���d� � �� 	 	� � ���

The second edge is a parametrized set of dependences� and the method in ��� cannot be applied	 Instead�
we have to consider the delay�

�e��w��d� � �R�d�� �S�w��d�� ��

�
� � 	� � 	�w� �� ����

On the other hand�

�e��w��d� � �� � ��w ����

Equaling the members of ���� and ���� gives�

Constants �
� � 	� � �� � �� ����

w � �	� � �� ����

Since all Farkas coe�cients are non�negative� the only solution to the last equation is 	� � �� � �	 This
implies that �� � �� i	e	 the
rst edge is not satis
ed	 Now� a possible solution to the entire system is
�� �
� � �� 	� � �� � �	 Thus� the
rst schedule components are �S�w���� � � � �w � � and �R��� � �	

During the second iteration of the algorithm� d � � and the only edge still to be satis
ed is the
rst one�
i	e	 	� � �� for �� � �	 The smallest solution is 	� � �	 Since there is no condition on 	�� it is set to �	
Thus� �S�w���� � w� and we have automatically found the schedules in ���	

��� Program WW revisited

We now apply the algorithm of the previous section to automatically derive the nonspeculative scheduling
function on Program WW �SA�C mode��

We handle one by one all the dependences of Figure
� Dependence e� is uniform� and since the schedule
prototype for G� is ����� this dependence yields�

�� � ��w 	 ��� � ���w 	 ���
 ���

that is�
��
 �� ����

Then� since ����� dependence e� yields�

�� � ��w � ��x	 ��� � ��w�
 ��� ����

�

Edge e� is uniform� The delay is�

�� � ��w � ��x	 ��� � ��w � ���x	 ���
 �� �� ��
 ��� ����

Edge e� yields the following constraint�

�� � ��w � ��x	 ��� � ��w � ��x�
 �� ��
�

Edge e� is uniform too� hence�

�� � ��w � ��x	 ��� � ��w � ���x	 ���
 �� �� ��
 ��� ����

Edge e� subsumes a parametrized set of non�uniform dependences� The delay (e���� �� w� is de�ned on a
set described by the following * inequalities�

w 	 �
 �� �
 �� �
 �� w	 �	 �
 �� �� � 	 w � �
 �� w	 �	 � 	 �
 ��

Thus� there exists a set of integer coe�cients
����
� such that�

(e���� �� w� � �� � ��w 	 ��� � ���� ���� 	 ��

�
� �
�w �
���
�� �
��w 	 �	 �� ����

�
��� � � 	w � �� �
��w 	 �	 � 	 ��

Equaling the coe�cients of the same variables gives�

Constants �
� 	
� �
� 	
� � 	�� ����

w �
� �
� 	
� �
� � �� ����

� �
� 	
� �
� 	
� � 	�� ����

� �
� �
� 	
� � 	�� �
��

Since our aim is to have as small schedule latencies as possible� we have to look for small solution values�
Eq����� is satis�ed when �� � �� � �� Equations ���� and ���� are satis�ed when �� � �� � �� � �� � ��
Eq����� yields no constraint on ��� so �� � � � and we can set �� � �� � �� Eq� �
�� is satis�ed when

� � ��
� �
� � �� Then� Eq� ���� implies that ��
 �� and is satis�ed when �� � ��
� �
� � �� Now
Eq� ��
� is satis�ed for �� when �� � �� We have thus automatically found the expected schedules�

�G�
�w� � w�

�G�
�w� x� � w � x� ��

�S�w� x� � w � x� ��

Suppose now that we map operations hS�w� xi on processor p � w� If t is the current value of the logical
clock� then the corresponding space�time mapping ���� can be inverted� and w � p� x � t 	 p 	 �� If we
associate a memory cell S� w� x � to each operation hS�w� xi �since we assume conversion to SAF�� then the
skeleton of the generated code looks like�

program W

do t � � by � while � not terminated�� �
forall p � � to t��

if executed�p� t	 p 	 �� then
S� p� t	 p	 � � �

if t	 p 	 �
 �
then S� p� t	 p	 � �

else if p
 �
then last�p� t	 p�
else a� t	 � �

end forall

end do

��

Predicates terminated and executed are mandatory to restore the �ow of control and have been de�ned by
Griebl and Lengauer ���� �
�� The former detects termination and the latter checks whether the current couple
�t� p� corresponds to an actual operation� Both predicates have been implemented by Griebl and Lengauer
by signals between asynchronous processes� However� their implementation in a synchronous model through
boolean arrays is feasible� and is the subject of in�progress joint work with Martin Griebl �����

On the other hand� function last dynamically restore the �ow of data� and returns the value produced
by the last �according to order �� executed operation among the set passed as an argument� The overhead
due to this function may reduce the bene�ts of parallelism� however� its implementation is quite obvious�
the argument set is a Z�polyhedron that last has to scan in the opposite lexicographical order� A slight
modi�cation of the algorithm in �
� would generate the following code for last�

function last � w � x �

do � � w 	 � � � � 	�
� � w 	 �	 �
if executed��� �� then

return S� �� � �

end do

return a� w � x	 � �

This function does implement the result of a fuzzy array data�ow analysis since the returned value is the one
produced by the last executed possible source� or the initial element of array a if no possible source executed�
Obviously� many optimized implementation schemes for last can be crafted� but discussing this issue would
take us too far a�eld and is left for future work�

� Related work and conclusion

When the �ow of control cannot be predicted at compile time� data dependence analysis can only be imprecise�
For instance� one cannot solve the array data�ow problem ���� �� ���� which gives for every consumed value the
identity of the producer operation� This lack of precision translates into sets of possible producer operations�
Note that this phenomenon may occur in two other situations� �� in the presence of intricate or dynamic
��subscripted�� array subscripts� and �� when the compiler writer believes that current precise dependence
analyzes are too expensive� and that approximate tests are su�cient ���� In all three cases� a new scheduling
algorithm has to be designed� The algorithm proposed in this paper is based on ��� �� ����

Future work should address the tiling of iteration domains� possibly though construction of delay de�
pendences� With such dependences� the sets of preceding operations ���� and ��
� become fo�j o�!o� �
o��

Ro� � o��
compo�g and fo�j o��o� � o��

Ro� � o��
compo�g� respectively� However� the problem is then

to automatically derive pseudo�a�ne schedules and generate code for them ���� ����
One should also try and answer the following questions� Is it worthwhile to convert DCPs into single�

assignment form% �Obviously� extensive experiments are needed here�� When should speculative execution be
brought into play ���� % How can we reduce the number of equations and unknowns in our method% �Solving
such problems thanks to softwares such as Maple or Pip is costly�� Could our compile�time scheduling
ease the work of the inspector in the method proposed in ����% Indeed� the e�cient compilation of DCPs
probably needs a tight integration of compile�time and run�time techniques �����

Acknowledgments

We would like to thank L� Boug�e� M� Griebl� C� Lengauer� B� Lisper� X� Redon and F� Vivien for many
vivid� brain�storming discussions�

References

��� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers� Principles� Techniques and Tools� Addison�Wesley�
Reading� Mass� �����

��

��� J��F� Collard� Space�time transformation of while�loops using speculative execution� In Proc� of the
	

� Scalable High Performance Computing Conf�� pages
��"
��� Knoxville� TN� May ���
� IEEE�

��� J��F� Collard� Automatic parallelization of while�loops using speculative execution� Int� J� of Parallel
Programming� ���������"���� April �����

�
� J��F� Collard� P� Feautrier� and T� Risset� Construction of DO loops from systems of a�ne constraints�
Parallel Processing Letters� ����� �����

��� A� Darte and F� Vivien� Automatic parallelization based on multi�dimensional scheduling� Technical
report� LIP� ENS Lyon� France� ���
� To appear�

��� P� Feautrier� Array expansion� In ACM Int� Conf� on Supercomputing� St Malo� pages
��"

�� �����

��� P� Feautrier� Data�ow analysis of scalar and array references� Int� Journal of Parallel Programming�
��������"��� February �����

��� P� Feautrier� Some e�cient solutions to the a�ne scheduling problem� part I� one dimensional time�
Int� J� of Parallel Programming� ���������"�
�� October �����

��� P� Feautrier� Some e�cient solution to the a�ne scheduling problem� part II� multidimensional time�
Int� J� of Parallel Programming� ���������"
��� December �����

���� P� Feautrier and J��F� Collard� Fuzzy array data�ow analysis� Technical Report RR �
��
� LIP� ENS
Lyon� France� July ���
� ftp� lip�ens�lyon�fr�

���� M� Griebl and J��F� Collard� Generation of synchronous code for automatic parallelization of while
loops� In Euro�Par

� Stockholm� Sweden� ����� To appear�

���� M� Griebl and C� Lengauer� On scanning space�time mapped while loops� In B� Buchberger� editor�
Parallel Processing� CONPAR
� � VAPP VI� Lecture Notes in Computer Science ��
� pages ���"����
Linz� Austria� ���
� Springer�Verlag�

���� M� Griebl and C� Lengauer� On the space�time mapping of while�loops� Parallel Processing Letters� ���
�
To appear� Also available as Report MIP����
� Fakult+at f+ur Mathematik und Informatik� Universit+at
Passau� Germany�

��
� M� Griebl and C� Lengauer� On the parallelization of loop nests containing while loops� In N� Mirenkov�
editor� Proc� Aizu Int� Symp� on Parallel Algorithm�Architecture Synthesis �pAs�

�� Aizu�Wakamatsu�
Japan� March ����� IEEE� To appear�

���� W� Kelly and W� Pugh� Finding legal reordering transformations using mappings� Technical Report
CS�TR������ Dept� of CS� U� of Maryland� June ���
�

���� W� Kelly� W� Pugh� and E� Rosser� Code generation for multiple mappings� Technical Report CS�TR�
����� Dept� of CS� U� of Maryland� July ���
�

���� M� S� Lam and R� P� Wilson� Limits of control �ow on parallelism� In Proceedings of the 	
th Annual
International Symposium on Computer Architecture� pages
�"��� Gold Coast� Australia� May �����

���� C� Lengauer� Loop parallelization in the polytope model� In E� Best� editor� CONCUR �
�� LNCS ����
pages ���"
��� Springer�Verlag� �����

���� B� Lisper� Detecting static algorithms by partial evaluation� In Proc� ACM SIGPLAN Symposium on
Partial Evaluation and Semantics Based Program Manipulation� pages ��"
�� June �����

���� M� Martel� Etude et impl�ementation de m�ethodes num�eriques it�eratives bas�ees sur l	ex�ecution sp�ecula�
tive� Master	s thesis� Ecole Normale Sup�erieure de Lyon� ���
�

���� V� Maslov� Lazy array data��ow dependence analysis� In Proc� �	st Annual ACM SIGPLAN�SIGACT
Symp� POPL� pages ���"���� January ���
�

��

���� D� E� Maydan� S� P� Amarasinghe� and M� S� Lam� Array data�ow analysis and its use in array
privatization� In Proc� of ACM Conf� on Principles of Programming Languages� pages �"��� January
�����

���� W� Pugh and D� Wonnacott� Eliminating false data dependences using the omega test� In ACM
SIGPLAN PLDI� �����

��
� W� Pugh and D� Wonnacott� An exact method for analysis of value�based data dependences� Technical
Report CS�TR������ U� of Maryland� December �����

���� L� Rauchwerger and D� Padua� Speculative run�time parallelization of loops� Technical Report �����
CSRD � U� of Illinois at Urbana�Champaign� March ���
�

���� X� Redon and P� Feautrier� Scheduling reductions� In Supercomputing �
�� Manchester� England� July
���
� ACM�

���� J� Saltz� H� Berryman� and J� Wu� Multiprocessors and runtime compilation� Concurrency� Practice
and Experience� ��������"���� December �����

���� M� J� Wolfe� Optimizing Supercompilers for Supercomputers� Pitman and The MIT Press� �����

��

