Jean Duprat Mars

Proof of correctness of the Mazoyer's solution of the firing squad problem in Coq

Keywords: Cellular automata, proof assistant, firing squad, Coq Automate cellulaire, assistant de preuve, ligne des fusiliers, Coq

The firing squad synchronization is a cellular automata problem introduced by Moore, in 1987, J.Mazoyer gave a six state solution to this problem. The proof of correctness of this solution uses discrete geometrical considerations, but is quite hard to verify due to the multiplication of cases and indexes. To be more confident in the proof, a proof assistant developed by the Inria, Coq, has been used. This report exposes the development in Coq of the proof. A large use of inductive structures, a natural way in Coq, offers a clearer vision of the Mazoyer's solution. The full development of the proof is available in the contributions of the Coq software.

Introduction.

Nous assistons depuis quelques années à l'apparition de plusieurs "theorems prover". En dehors des cas d'école que l'on trouve dans les "tutoriaux" de ces logiciels, la question de l'usage de ces logiciels par la communauté scientifique se pose.

Nous allons utiliser l'assistant de preuve Coq pour réécrire la preuve de correction d'une solution du problème du "firing squad". Cette preuve, qui avait été entièrement écrite "à la main" et qui était reconnue comme assez complexe, a été choisie parce qu'elle est entièrement constructive.

Les conclusions tirées sont de deux ordres :

• quelles pistes suggérer aux concepteurs du logiciel pour en rendre l'usage plus courant ?

• quel intérêt l'utilisateur peut-il avoir à écrire sa preuve avec Coq plutôt que manuellement ?

Le problème.

Il s'agit d'un problème d'automate cellulaire posé par Moore en 1962 [MOO]. On considère une ligne de N automates évoluant dans un temps discret. Chaque automate calcule son état suivant à partir de son état courant et de l'état courant de ses deux voisins, les mêmes règles (particularisées toutefois pour les deux extrémités) étant utilisées par tous les automates. On suppose que l'état initial est un état dit quiescent (blanc sur la figure) pour tous les automates sauf une extrémité qui se trouve dans un état différent dit général (rouge). Le but est que tous les automates de la ligne passent au même instant et pour la première fois dans un état feu (noir).

Le temps minimum est 2N-1. Plusieurs solutions ont été proposées et nous nous intéresserons à celle de Jacques Mazoyer qui réussit à résoudre ce problème avec six états seulement [MAZ]. C'est la preuve de correction de la solution décrite dans cette publication qui a été reprise en Coq. Les systèmes d'indices ont été modifiés pour favoriser l'addition par rapport à la soustraction et pour commencer les énumérations à zéro. Par contre les différents objets définis dans la preuve de J.Mazoyer se retrouvent ci-dessous avec le même nom pour faciliter une lecture en regard de la preuve manuscrite et de la preuve Coq.

La figure ci-contre représente l'évolution dans le temps d'une ligne de 29 cellules. L'assistant de preuves Coq.

Basé sur le calcul des constructions de T.Coquand, l'assistant de preuves Coq est le fruit du travail d'une équipe de l'INRIA autour de T.Coquand, G.Huet et C.Paulin [CO&]. Il est disponible gratuitement et évolue régulièrement. La version utilisée ici était la version 5.10 pour MacIntosh. La preuve est disponible dans les contributions.

Coq permet de définir des objets à partir des constructeurs de base et des définitions précédentes. Il permet d'établir des lemmes et des théorèmes en construisant l'arbre de preuves à partir de tactiques. En ce sens, il s'agit bien d'un assistant de preuves, car l'utilisateur guide le logiciel. Un démonstrateur ferait la recherche automatiquement. Ce point est l'objet d'un commentaire en conclusion 2.

Outre son moteur, Coq offre des bibliothèques évitant d'avoir à reconstruire les bases des mathématiques : arithmétique, logique, théorie des ensembles, … La seule bibliothèque utilisée pour cette preuve est la bibliothèque "arith" qui contient les définitions et propriétés usuelles des opérations sur les naturels.

Enfin une preuve se structure en sections, permettant à la fois une structuration logique et une meilleure efficacité. Il est possible d'avoir des variables et des lemmes locaux aux sections qui ne sont pas visibles de l'extérieur. De plus, sauf directive contraire, les théorèmes seront perçus de l'extérieur uniquement par leur énoncé sans leur terme de preuve, ce qui allège l'environnement.

La preuve.

Cette preuve est bâtie sur les figures géométriques planes obtenues par le développement de l'automate dans l'espace (une dimension) et le temps (la seconde dimension).

Elle est structurée en 12 sections; le graphe des dépendances de ces sections, les unes par rapport aux autres, est dessiné ci-contre. Ces sections traduisent une conception descendante de construction de la preuve, des structures les plus élémentaires aux structures les plus complexes et des théorèmes les plus généraux aux théorèmes les plus spécifiques au problème.

La bibliothèque.

Cette section contient tout ce qui peut être considéré comme n'étant pas spécifique au problème mais comme faisant partie du bagage mathématique de base.

Ces propriétés peuvent devenir inutiles dans les versions suivantes du logiciel. (Il arrive même que ces propriétés soient déjà présentes dans d'autres contributions mais elles ont alors été rangées ici sous un nom cohérent avec l'ensemble des noms choisis par l'auteur. Le problème du nom des propriétés est d'ailleurs très lié à ce que l'auteur considère comme mnémotechnique ce qui n'est pas uniforme).

Je conseillerai volontiers à celui qui débute un travail important en Coq de se faire sa bibliothèque, cela permet d'alléger les démonstrations, d'éviter que des petits lemmes triviaux encombrent les sections et se dupliquent dans plusieurs sections, enfin cela facilite le travail de développement.

Dans cette bibliothèque, on trouvera successivement : • des règles de démonstration de propriétés dépendant les unes des autres. Par exemple :

Theorem Rec4 : (A,B,C,D,E:Prop) (A->B->C->D->E)->(A->B->(B->C)->(C->D)->E).
Intuition.

Save.

• l es entiers naturels de un à neuf, leur ajout ou retranchement. Par exemple :

Definition trois := (S (S (S O))).

Lemma plus_trois :

(n:nat) (plus n trois)=(S (S (S n))).

Intros; Unfold trois; Repeat Rewrite <-plus_n_Sm; Auto.

Save.

• l a multiplication par deux (double) et trois (triple) avec quelques propriétés telles que :

Definition double := [p:nat] (plus p p).

Definition triple := [p:nat] (plus (plus p p) p).

Lemma le_double_triple :

(n:nat) (le (double n) (triple n)).

(Intro; Unfold double triple; Apply le_plus_l).

Save.

• l a division par deux et la parité.

Mutual Inductive even : nat -> Prop := even_O : (even O) | even_S : (n:nat) (odd n) -> (even (S n)) with odd : nat -> Prop := odd_S : (n : nat) (even n) -> (odd (S n)).

• la division par trois et les restes modulo 3 avec plusieurs propriétés relatives à la division entière par trois.

Inductive div3 [a:nat] : Set := reste_0 : (q:nat) (a=(triple q))->(div3 a) | reste_1 : (q:nat) (a=(S (triple q)))->(div3 a) | reste_2 : (q:nat) (a=(S (S (triple q))))->(div3 a).

Theorem quotient3 : (n:nat) (div3 n).

Induction n. (Apply reste_0 with q:=O; Auto). (Clear n; Intros; Elim H; Intros). (Apply reste_1 with q:=q; Auto). (Apply reste_2 with q:=q; Auto). (Apply reste_0 with q:=(S q); Auto). (Rewrite -> triple_S; Rewrite -> e; Auto).

Defined.

Lemma plus_deuxtiers_untiers :

(n:nat) (Omod3 n) -> (plus (double (tiers n)) (tiers n))=n.
(Intros; Unfold double ; Apply triple_tiers; Auto).

Save.

• quelques bricoles inclassables (pourquoi y en a-t-il toujours ?).

Remarque :

Dans Coq, les naturels sont bâtis à l'aide des deux constructeurs O (zéro) et S (successeur). Les opérations "plus, minus, le, lt, ge et gt" sont définies dans la bibliothèque, ces opérations utilisant une notation préfixe. Dans la suite, pour faciliter le travail de lecteurs pour lesquels ces notations sont peu familières, toutes les expressions entières seront écrites entre parenthèses avec la notation infixe usuelle et les constantes sous leur écriture chiffrée.

Géométrie.

Comme le montre la figure de l'évolution temporelle, on peut ramener le problème à un problème de géométrie discrète à deux dimensions l'espace et le temps. On repère donc chaque case par son couple de coordonnées entières (t,x) le temps et l'abscisse.

On va étudier les propriétés vérifiées sur toutes les cases de figures géométriques.

Definition Local_Prop := nat->nat->Prop.

Ainsi, on définit une ligne horizontale (temps constant) par :

Inductive Horizontale [t, x, long :nat; P : Local_Prop] : Prop := make_horizontale :

((dx :nat) (dx≤long) -> (P t (x+dx))) -> (Horizontale t x long P).

(les paramètres définissent une ligne de (long+1) cases des coordonnées (t,x) aux coordonnées (t,x+long)).

On a besoin de savoir construire une horizontale en mettant bout à bout deux horizontales :

Lemma hh_hor : (t,x,cote,cote':nat) (P:Local_Prop) (Horizontale t x cote P) -> (Horizontale t (x+cote+1) cote' P) -> (Horizontale t x (cote+cote'+1) P).

ce qui se démontre en utilisant le fait que x≤cote+1+cote' se décompose en deux cas :

• x≤cote • cote+1≤x≤cote+1+cote'.
Il est pratique de disposer de la démonstration directe pour des petites horizontales de taille 1, 2, 3 ou 4, par exemple :

Lemma hor_trois : (t, x :nat) (P : Local_Prop) (P t x) -> (P t (x+1)) -> (P t (x+2)) -> (P t (x+3)) -> (Horizontale t x (3) P).
Des lignes horizontales dont la, respectivement les deux, première(s) case(s) vérifie une propriété différente seront également utilisées.

Inductive Horizontale_t0 [t, x, long :nat; P0, P :

Local_Prop] : Prop := make_horizontale_t0 : (P0 t x) -> (Horizontale t (x+1) long P) -> (Horizontale_t0 t x long P0 P). Inductive Horizontale_t1 [t, x, long :nat; P0,P1, P : Local_Prop] : Prop := make_horizontale_t1 : (P0 t x) -> (P1 t (x+1)) -> (Horizontale t (x+2) long P) -> (Horizontale_t1 t x long P0 P1 P).

De même, on définit une ligne verticale :

Inductive Verticale [t, x, haut :nat; P : Local_Prop] : Prop := make_verticale : ((dt :nat) (dt≤haut) -> (P (t+dt) x)) -> (Verticale t x haut P).

Il est utile de montrer qu'un segment inclu dans une verticale de propriété P est une verticale de propriété P :

Lemma inclus_vert :

(t, t', x, haut, haut' :nat) (P : Local_Prop) (t≤t') -> ((t'+haut')≤(t+haut)) -> (Verticale t x haut P) -> (Verticale t' x haut' P).

On construira une verticale par aboutement de deux verticales :

Lemma vv_vert :

(t, x, haut, haut' :nat) (P : Local_Prop) (Verticale t x haut P) -> (Verticale (t+haut+1) x haut' P) -> (Verticale t x (haut+haut'+1) P). mais il arrivera également que l'on construise une verticale de 2p cases par aboutement de p verticales de 2 cases :

Lemma rec_vert : (t, x, haut :nat) (P : Local_Prop) ((dt :nat) (dt≤haut) -> (P (t+2.dt) x) /\ (P (t+2.dt+1) x)) -> (Verticale t x (2.haut+1) P).

Enfin les petites verticales de hauteur 1, 2 ou 3 auront une définition directe telle que :

Lemma vert_deux : (t, x :nat) (P : Local_Prop) (P t x) -> (P (t+1) x) -> (P (t+2) x) -> (Verticale t x (2) P).

On définit le triangle rectangle isocèle : ainsi que la méthode permettant de l'obtenir par sa base et la règle de construction qui rajoute une case de propriété P au-dessus de 2 cases de propriété P.

Lemma rec_triangle_inf : (t, x, cote :nat) (P : Local_Prop) (Horizontale t x cote P)-> ((t',x':nat) (P t' x')->(P t' (x'+1))-> (P (t'+1) (x'+1)))-> (Triangle_inf t x cote P).

Enfin on se servira de diagonales caractérisées par leurs extrémités :

Inductive Diag [t, x, cote :nat; P, Q, R : Local_Prop] : Prop := make_diag : (1<cote) -> (P t (x+cote)) -> ((dt,dx:nat) (O<dt) -> (O<dx) -> ((dt+dx)=cote)-> (Q (t+dt) (x+dx))) -> (R (t+cote) x) -> (Diag t x cote P Q R). Inductive Diag' [t, x, cote :nat; P, Q', Q, R : Local_Prop] : Prop := make_diag' : (2<cote) -> (P t (x+cote)) -> ((dx:nat) ((dx+1)=cote)-> (Q' (t+1) (x+dx)))-> ((dt,dx:nat) (1<dt) -> (0<dx) -> ((dt+dx)=cote)-> (Q (t+dt) (x+dx))) -> (R (t+cote) x) -> (Diag' t x cote P Q' Q R). Inductive Semi_Diag [t, x, cote :nat; P, Q : Local_Prop] : Prop := make_semidiag : (0<cote) -> (P t (x+cote)) -> ((dt,dx:nat) (0<dt) -> ((dt+dx)=cote)-> (Q (t+dt) (x+dx)
)) -> (Semi_Diag t x cote P Q).

P Q Q Q Q Q Q R Figure 9 : Diag. P Q' Q Q Q Q Q R Figure 10 : Diag'.
Il est intéressant de se donner une méthode de preuve d'une diagonale (ou d'une diag' ou d'une semidiag) en procédant de bas en haut et de droite à gauche. La récurrence est particulière puisqu'elle concerne l'intérieur de la diagonale.

Lemma Rec_Diag :

(t, x, cote :nat) (P, Q, R : Local_Prop) (1<cote) -> (P t (x+cote))-> ((dx:nat) ((dx+2)=cote)->(P t (x+cote))-> (Q (t+1) (x+dx+1)))-> ((dt,dx:nat) (0<dt)-> (0<dx)->((dt+dx+2)=cote)-> (Q (t+dt) (x+dx+2))->(Q (t+dt+1) (x+dx+1)))-> ((dt:nat) ((dt+2)=cote)->(Q (t+dt) (x+2))-> (Q (t+dt+1) (x+1)))-> ((dt:nat) ((dt+1)=cote)->(Q (t+dt) (x+1))-> (R (t+cote) x))-> (Diag t x cote P Q R).
L'énoncé de ce lemme met en évidence l'intérêt du système de coordonnées adopté, avec les coordonnées absolues (t,x) de la case inférieure gauche du rectangle (origine) englobant la figure, et les coordonnées relatives (dt,dx) de chaque case de la figure par rapport à cette case origine. Ainsi, tout s'exprime en termes d'addition et d'inégalités.

Les constructions.

Du fait de la règle de calcul de l'état suivant d'une cellule à partir de l'état courant de la cellule et de ses deux voisines, le calcul des états d'une diagonale va se faire à partir des deux diagonales précédentes. Cette section traite toutes les variantes de ces constructions utiles par la suite (selon qu'il s'agit de "diag", de "diag' " ou de "semi-diag", que l'empilement a ou non un décalage dans l'espace).

Cette section commence par lister toutes les formes de calcul sur les coordonnées que peut prendre un pas élémentaire. En voici les deux premiers de la série de neuf existants dans cette section :

Lemma Pas_hh: (t,x,dt,dx:nat) (loi P Q R T)-> (P ((t+(dt+2)) (x+dx))-> (Q ((t+1)+(dt+1)) (x+(dx+1))-> (R ((t+2)+dt) (x+(dx+2)))-> (T ((t+2)+(dt+1)) (x+(dx+1))).
(Intros t x dt dx; Repeat Rewrite <-plus_n_Sm; Simpl; Intros; Auto).

Save. Lemma Pas_hd : (t,x,dt,dx:nat)

P Q Q Q Q Q Q P P' Q' Q' Q' Q' Q' Q' P' P'' Q'' Q'' Q'' Q'' Q'' Q'' P''
(loi P Q R T)-> (P (t+(dt+1)) (x+dx))-> (Q ((t+1) dt) (x+(dx+1)))-> (R ((t+1)+dt) ((x+1)+(dx+1)))-> (T ((t+1)+(dt+1)) ((x+1)+dx)).
(Intros t x dt dx; Repeat Rewrite <-plus_n_Sm; Simpl; Intros; Auto).

Save.

Le premier correspond en empilement vertical, les trois diagonales ont comme origine dans le temps t, t+1 et t+2. Le second correspond à la figure avec un décalage spatial de la troisième diagonale, les coordonnées des origines des diagonales sont successivement (t,x) (t+1,x) (t+1,x+1). Le but de tous ces lemmes, dont la preuve est très facile, est de simplifier les unifications dans la suite en faisant toujours le bon calcul sur les coordonnées.

La deuxième partie de cette section réalise les empilements. On a successivement

• 3 di agonales "diag" alignées verticalement, Lemma DDD : (Diag t x cote P Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+2) (x+cote))-> (Diag (t+2) x cote P'' Q'' P'').

• 1 di agonale "diag' " et 2 diagonales "diag" alignées verticalement, Lemma D'DD : (Diag' t x cote P R Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+2) (x+cote))-> (Diag (t+2) x cote P'' Q'' P'').

• 1 diagonale "diag' ", 1 diagonale "diag" et 1 diagonale "diag' " alignées verticalement, Lemma D'DD' : (Diag' t x cote P R Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+2) (x+cote))-> (Diag' (t+2) x cote P'' R'' Q'' P'').

• 1 diagonale "diag", 1 diagonale "diag' " et 1 diagonale "diag" alignées verticalement, Lemma DD'D : (Diag t x cote P Q P)-> (Diag' (t+1) x cote P' R' Q' P')-> (P'' (t+2) (x+cote))-> (Diag (t+2) x cote P'' Q'' P'').

P Q Q Q P P' Q' Q' Q' P' P'' Q'' Q'' Q'' P'' Figure 12 : DDD. P R Q Q P' Q' Q' Q' P'' Q'' Q'' P' Q'' P'' P Figure 13 : DD'D. P R Q Q P P' Q' Q' Q' P' P'' Q'' R'' Q'' P''
• 2 di agonales "diag" alignées verticalement et 1 diagonale "diag' " décalée, Lemma DD_D': (2<cote)-> (Diag t x cote P Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+1) ((x+1)+cote))-> (Diag' (t+1) (x+1) cote P'' R'' Q'' P'').

• 1 diagonale "diag" et, décalées, 1 diagonale "diag' " et 1 diagonale "diag" alignées verticalement, Lemma D_D'D :

(Diag t x cote P Q P)-> (Diag' t (x+1) cote P' R' Q' P')-> (P'' (t+1) ((x+1)+cote))-> (Diag (t+1) (x+1) cote P'' Q'' P'').
• 2 diagonales "diag" alignées verticalement et 1 diagonale "diag" décalée et allongée, Lemma DD_D$: (Diag t x cote P Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+1) (x+(cote+1)))-> (Diag (t+1) x (cote+1) P'' Q'' P'').

• 1 di agonale "diag" et, décalées, 2 diagonales "diag" alignées et allongées, Lemma D_DD$: (Diag t x cote P Q P)-> (Diag t x (cote+1) P' Q' P')-> (P'' (t+1) (x+(cote+1)))-> (Diag (t+1) x (cote+1) P'' Q'' P''). • 2 di agonales "diag" alignées verticalement et 1 diagonale "diag" décalée, Lemma DD_D : (2<cote)-> (Diag t x cote P Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+1) ((x+1)+cote))-> (Diag (t+1) (x+1) cote P'' Q'' P'').

P Q Q Q P P' R' Q' Q' P' P'' Q'' Q'' Q'' P'' Figure 15 : DD'D. P Q Q Q P P' Q' Q' Q' P' R'' P'' Q'' Q'' P'' Figure 16 : DD_D'. P Q Q Q P R' Q' Q' P' P' Q'' P'' Q'' Q'' P''
Q Q Q P P' Q' Q' Q' Q'' Q'' Q'' Q'' P'' P' P'' Figure 18 : DD_D$. P Q Q Q P Q' Q' Q' Q' Q'' Q'' Q'' Q'' P' P'' P' P''
• 1 diagonale "diag' " et 1 diagonale "diag" alignées verticalement, et 1 diagonale "diag" décalée, Lemma D'D_D : (Diag' t x cote P R Q P)-> (Diag (t+1) x cote P' Q' P')-> (P'' (t+1) ((x+1)+cote))-> (Diag (t+1) (x+1) cote P'' Q'' P'').

• 1 di agonale "diag" et, décalées, 2 diagonales "diag" alignées verticalement, Lemma D_DD :

(Diag t x cote P Q P)-> (Diag t (x+1) cote P' Q' P')-> (P'' (t+1) ((x+1)+cote))-> (Diag (t+1) (x+1) cote P'' Q'' P'').
• 2 diagonales "diag" alignées verticalement et 1 diagonale "diag" décalée et raccourcie, Lemma DD$_D : (1<cote)-> (Diag t x (cote+1) P Q P)-> (Diag (t+1) x (cote+1) P' Q' P')-> (P'' (t+2) (x+cote+))-> (Diag (t+1) (x+1) cote P'' Q'' R'').

• 2 diagonales "diag" alignées verticalement et 1 diagonale "semi-diag" décalée et raccourcie,

Lemma DD_d : (0<cote)-> (Diag t x (cote+2) P Q R)-> (Diag (t+1) (x+1) (cote+1) P' Q' R')-> (P'' (t+2) (x+cote+2))-> (Semi_Diag (t+2) (x+2) cote P'' Q'').
• 1 diagonale "diag" et 1 "semi-diag" alignées verticalement et 1 diagonale "semi-diag" décalée et raccourcie,

P Q Q Q P P' Q' Q' Q' Q'' P'' Q'' Q'' P'' P' Figure 20 : DD_D. P R Q Q P P' Q' Q' Q' Q'' P'' Q'' Q'' P'' P' Figure 21 : D'D_D. P Q Q Q P Q' Q' Q' P' Q'' P'' Q'' Q'' P'' P'
Figure 22 : D_DD. Lemma Dd_d :

P Q Q Q P' Q' Q' Q' P'' Q'' Q'' P' R'' P Figure 23 : DD$_D. P Q Q Q R P' Q' Q' R' P'' Q'' Q''
(0<cote)-> (Diag t x (cote+2) P Q R)-> (Semi_Diag (t+1) (x+1) (cote+1) P' Q')-> (P'' (t+2) (x+cote+2))-> (Semi_Diag (t+2) (x+2) cote P'' Q'').
• 3 di agonales "semi-diag" décalées et raccourcies

Lemma dd_d : (0<cote)-> (Semi_Diag t x (cote+2) P Q)-> (Semi_Diag (t+1) (x+1) (cote+1) P' Q')-> (P'' (t+2) (x+cote+2))-> (Semi_Diag (t+2) (x+2) cote P'' Q'').
Pour être démontrés, tous ces lemmes ont besoin d'hypothèses supplémentaires sur les lois régissant les transitions. Afin de simplifier l'écriture et la lisibilité, ces hypothèses ont été regroupées en tête de section (et non répétées dans l'énoncé de chaque théorème).

Variables

P, Q, R, P', Q', R', P'', Q'', R'' : Local_Prop.
Hypothesis PPQP : (loi P P' Q'' P'').

Hypothesis PQPQ : (loi P Q' P'' Q'').

Hypothesis PQQP : (loi P Q' Q'' P'').

Hypothesis PQQQ : (loi P Q' Q'' Q'').
Hypothesis PQRQ : (loi P Q' R'' Q'').

Hypothesis XPQP : (loi_droite P' Q'' P'').

Hypothesis QPPQ : (loi Q P' P'' Q'').

Hypothesis QPPR : (loi Q P' P'' R'').

Hypothesis QQPQ : (loi Q Q' P'' Q'').
Hypothesis QQPR : (loi Q Q' P'' R'').

Hypothesis QQQQ : (loi Q Q' Q'' Q''). Hypothesis QQRQ : (loi Q Q' R'' Q''). Hypothesis QRPQ : (loi Q R' P'' Q'').
Hypothesis RPPQ : (loi R P' P'' Q'').

Hypothesis PQQR : (loi P Q' Q'' R'').
Coq garantit, une fois la section fermée, l'énoncé minimal de chaque lemme n'ayant que les hypothèses nécessaires à sa propre preuve. La fonction de transition, d'un ensemble fini (Couleur X Couleur X Couleur) dans un ensemble fini (Couleur) est décrite en extension par des tables. La première caractérise l'état suivant en fonction de l'état courant :

P Q Q Q R P' Q' Q' Q' P'' Q'' Q'' Figure 25 : Dd_d. P Q Q Q Q P' Q' Q' Q' P'' Q'' Q''
Definition Transition := [c0, c1, c2 : Couleur] <Couleur> Case c1 of (*A*) (Transition_A c0 c2) (*B*) (Transition_B c0 c2) (*C*) (Transition_C c0 c2) (*L*) (Transition_L c0 c2) (*G*) (Transition_G c0 c2) (*F*) F end.
On note qu'à l'exception de l'état final (stable), les autres états dépendent tous des voisins, ce qui donne cinq nouvelles tables :

Definition Transition_A := [c0, c2 : Couleur] <Couleur> Case c0 of (*A*) (Transition_A_A c2) (*B*) (Transition_B_A c2) (*C*) A (*L*) (Transition_L_A c2) (*G*) C (*F*) F end. Definition Transition_B := [c0, c2 : Couleur] <Couleur> Case c0 of (*A*) (Transition_A_B c2) (*B*) (Transition_B_B c2) (*C*) (Transition_C_B c2) (*L*) (Transition_L_B c2) (*G*) (Transition_G_B c2) (*F*) F end. Definition Transition_C := [c0, c2 : Couleur] <Couleur> Case c0 of (*A*) B (*B*) (Transition_B_C c2) (*C*) (Transition_C_C c2) (*L*) (Transition_L_C c2) (*G*) B (*F*) F end.
prise. Toutefois, la preuve aurait été considérablement alourdie. De plus, l'intérêt d'une telle manipulation dans le cas présent était faible, ce que nous voulions montrer était la correction d'une solution. C'est la raison pour laquelle il a été choisi de remplir les cases indéfinies des tables de la solution de J.Mazoyer par les états qui rendaient l'écriture de la fonction de transition la plus facile. Les puristes ne pourront nier que la solution ainsi décrite est correcte mais ils pourront toujours objecter qu'en remplissant ainsi les vides, nous avons peut-être par un hasard aussi fortuit qu'heureux rempli une case utile avec la bonne valeur… La section contient également la fonction calculant toute transition.

Parameter N : nat. Le premier cas (t=0) correspond à l'état initial de l'automate et le second (t=t'+1) à l'état courant. Le constructeur Ifdec fonctionne à la manière d'un "si alors sinon" qui se détermine sur la valeur de décision de l'égalité des naturels "eq_nat_dec". Plusieurs choix ont été faits ici.

• Le premier est de ne borner ni le temps ni l'espace. Cela permet d'utiliser les naturels pour travailler et non les naturels d'un intervalle sur lesquels il aurait fallu montrer les propriétés usuelles. Les fonctions de Coq ne pouvant être partielles, il fallait donc définir un comportement pour toutes les cellules (fictives) au-delà de la nième (et dernière cellule de la ligne des fusiliers).

• Plutôt que d'avoir un état X (comme le propose J.Mazoyer) pour caractériser l'extérieur, on a cherché à faire en sorte que le cas N s'insère dans la récursivité. Les autres rectangles "similaires" (au sens de la récursivité) et plus petits apparaissant dans le rectangle sont caractérisés par des frontières verticales formées d'états différents de G à gauche et égaux à G à droite. Il a donc été décidé de faire comme si un état d'abscisse -1 était à L et de faire en sorte que les règles de calcul génèrent un état G pour l'automate d'abscisse N+1. C'est la raison d'être de l'état C en N+2 à l'origine (d'autres façons d'imposer cette verticale d'état G auraient pu être choisie).

• Enfin la condition N>2 s'est imposée pour être toujours dans le cas général. Les démonstrations pour les valeurs 0, 1 et 2 auraient pu être faites de manière à avoir une preuve pour tout N, elles auraient surchargé la preuve sans ajouter quoi que ce soit de vraiment intéressant. Lemma quatre_quatre : (t,x:nat)

(quatre_end t x)-> (L_Etat (t+2) (x+3))-> (L_Etat (t+3) (x+3))-> (quatre_end (t+2) x).
Lemma cinq_cinq : (t,x:nat)

(cinq_end t x)-> (L_Etat (t+2) (x+4))-> (L_Etat (t+3) (x+4))-> (cinq_end (t+2) x).
et deux cellules différentes s'empilent décalées si les deux cellules quiescentes sont décalées :

Lemma quatre_cinq : (t,x:nat) (quatre_end t x)-> (L_Etat (t+1) (x+4))-> (L_Etat (t+2) (x+4))-> (cinq_end (t+1) x). Lemma cinq_quatre : (t,x:nat) (cinq_end t x)-> (L_Etat (t+1) (x+5))-> (L_Etat (t+2) (x+5))-> ((C_basic (t+1) (x+3) 2) /\ (quatre_end (t+3) x)).
On notera que la dernière figure obtenue par décalage à partir d'un cinq_end est l'aboutement d'un quatre_end et d'un C_basic de longueur 2 sur la diagonale. Lemma A_Vg :

(A_basic t x cote)-> (G_Etat (t+1) (x+cote+1))-> (G_Etat (t+2) (x+cote+1))-> (Verticale (t+cote+1) (x+1) (1) G_Etat).
conséquence immédiate du lemme A_ZCB, Lemma B_Vg :

(B_basic t x cote)-> (G_Etat (t+1) (x+cote+1))-> (G_Etat (t+2) (x+cote+1))-> (G_Etat (t+3) (x+cote+1))-> (Verticale (t+cote+1) (x+1) (2) G_Etat). conséquence des lemmes B_ZCB et B_UA, Lemma C_Vg : (2<cote)-> (C_basic t x cote)-> (G_Etat (t+1) (x+cote+1))-> (G_Etat (t+2) (x+cote+1))-> (G_Etat (t+3) (x+cote+1))-> (G_Etat (t+4) (x+cote+1))-> (Verticale (t+cote+1) (x+1) (3) G_Etat).
conséquence des lemmes C_ZCB et C_UAB.

Les double-diagonales.

Après avoir construit des briques de base (en un certain sens des listes de cases), nous allons aborder la construction clef utilisant ces briques (en poursuivant l'analogie une liste de listes).

En simplifiant la figure obtenue en développant dans le temps l'évolution de la ligne d'automate, on obtient une figure rectangulaire (§ le problème). Ce rectangle peut être schématiquement divisé en trois triangles par la propagation du signal de gauche à droite et par son retour. Le triangle inférieur est quiescent, le triangle supérieur est essentiellement construit récursivement.

Le triangle central est formé des briques de bases que nous avons définies précédemment, les figures A_basic, B_basic, C_basic, quatre_end et cinq_end. Ces briques sont assemblées sur les diagonales en une structure unique appelée DD (pour doublediagonale).

La définition de DD utilise cinq constructeurs (on utilise les notations de congruence modulo 3 et (cote:3) désigne la division entière par 3); la figure placée en regard contient les dessins de DD pour les premières valeurs de côté (de 3 à 7) soit respectivement DD_4, DD_5, DD_C, DD_A et DD_B : Sa démonstration, bien que basée sur le même principe est un peu plus délicate. On distingue les cas selon (DD t x cote) :

• s'il s'agit d'un DD_4, le résultat est un DD_5 ce que le lemme quatre_cinq établit;

• s'il s'agit d'un DD_5, le résultat (DD_C 6) se montre en utilisant le lemme cinq_quatre qui donne à la fois le quatre_end final et la structure C_basic de longueur 2;

• s'il s'agit d'un DD_A, le résultat est un DD_B, il faut utiliser une récurrence et appliquer le théorème A_B;

• de même le DD_B donne DD_C par récurrence et application de B_C;

• par contre le cas DD_C qui donne DD_A rallonge la structure basic terminale d'une unité, il y a application du lemme C_A pour la partie terminale et du lemme précédent DD_hh pour la structure DD restante qui de ce fait se retrouve de même longueur que sa génératrice.

De plus cette démonstration fait appel à plusieurs lemmes d'arithmétique (placés en bibliothèque) pour gérer le reste modulo 3 de cote+1 en fonction du reste modulo 3 de cote ainsi que les différentes longueurs des diagonales.

Figure 1 :

 1 Figure 1 : solution du firing squad.

 Figure 2 : graphe de dépendances.

 Figure 3 : Horizontale.

 Figure 5 : Horizontale_t1.

 Figure 7 : triangle.

Figure 11 :

 11 Figure 11 : principe de construction.

Figure

 Figure 14 : D'DD'.

Figure 17 :

 17 Figure 17 : D_D'D.

P

Figure 19 :

 19 Figure 19 : D_DD$.

Figure

 Figure 24 : DD_d.

Figure

 Figure 26 : dd_d.

 La base (t=0) est donc une ligne infinie d'automates à l'état quiescent L à l'exception des cases d'abscisses 0, N+1 et N+2 respectivement à l'état G, G et C. Lemma G00 : (Etat O O)=G. Lemma G0N : (Etat O (N+1))=G. Lemma C0N1 : (Etat O (N+2))=C. Lemma base_L : (x:nat) (0<x) -> (x<(N+1)) -> (Etat O x)=L. Lemma base$_L : (x:nat) ((N+2)<x) -> (Etat O x)=L.

 Figure 27 : état initial.

Figure

 Figure 47 : quatre_quatre.

Figure

 Figure 48 : cinq_cinq.

Figure

 Figure 49 : quatre_cinq.

Figure

 Figure 50 : cinq_quatre.

Figure

 Figure 64 : A_Vg.

Figure

 Figure 65 : B_Vg.

Figure

 Figure 66 : C_Vg.

Figure 67

 67 Figure 67 : DD.

 peut s'illustrer par la figure suivante :

Figure

 Figure 69 : DD_hh.

Figure 70 :

 70 Figure 70 : DD_hd$.

On remarque également que la détermination se fait toujours en premier sur le voisin de gauche sauf pour l'état général qui privilégie l'état de droite. Ce choix a été fait au vu des tables de transitions pour alléger l'écriture des tables. Il a eu une conséquence bénéfique dans la suite car il s'est trouvé parfois d'avoir à démontrer qu'un état suivant était obtenu dans une configuration où l'état courant et l'état du seul voisin (de droite pour un état G, de gauche pour un état L) étaient connus. La preuve, quel que soit l'état de l'autre voisin était obtenue sans étude de cas et de ce fait plus rapidement.

Il faut noter ici une différence avec la preuve papier de J.Mazoyer. Sur le papier, la définition de la fonction de transition est partielle, de nombreuses configurations, réputées non accessibles, sont laissées indéfinies. Coq étant basé sur le calcul des constructions n'admet pas de fonctions partielles. Il aurait bien sûr été possible de simuler un état inaccessible par une septième valeur d'état et la preuve que cette valeur n'est jamais Les briques de base.

Cette section commence par définir comme propriété locale, le fait pour une case d'être dans un état donné. Ceci permet de définir les structures appelées A_basic, B_basic et C_basic dans l'article de J.Mazoyer.

Definition

Inductive A_basic [t,x,cote:nat] :

Inductive C_basic [t,x, cote:nat] : Prop := make_C_basic : (1<cote)-> (Diag t x cote L_Etat C_Etat L_Etat)-> (Diag (t+1) x cote L_Etat C_Etat L_Etat)-> (C_basic t x cote).

Les figures 28 et 30 représentant les structures A_basic et C_basic sont de longueur minimum, bien entendu, ces structures peuvent être beaucoup plus longues. Le fait de choisir les longueurs minimum différentes a permis de simplifier la démonstration en gérant ces longueurs au plus juste. Il faut noter le confort d'utilisation de Coq pour gérer ce genre de paramètres : lorsque la démonstration bute sur une condition de longueur indémontrable, cela signifie qu'il est nécessaire de rajouter une hypothèse dans le lemme en cours. Le propre de ces figures de bases est de s'empiler de façon régulière :

• soit 2 figures identiques alignées verticalement :

ce lemme se démontre en appliquant deux fois le lemme DDD;

Lemma B_B :

celui-ci se démontre en appliquant d'abord D'DD' puis DD'D;

Lemma C_C :

qui se démontre comme A_A;

• soit 2 figures différentes décalées de même longueur :

qui demande un appel à DD_D', puis un appel à D_D'D;

Lemma B_C :

alors que ce lemme demande un appel à D'D_D puis un à D_DD; • soit enfin 2 figures différentes décalées et de longueur différentes :

qui utilise successivement le lemme DD_D$ et le lemme D_DD$.

Toutes les démonstrations suivent le même schéma, en faisant appel aux lemmes de la section des constructions, puis en vérifiant que les hypothèses d'application de ces lemmes instanciés par les valeurs d'états correspondantes sont bien vérifiées par la fonction de transition décrite dans les tables de la section automate.

Cette section s'achève par une série de petits lemmes caractérisants des cas particuliers utilisés dans la suite.

Lemma GA_G : (t,x:nat) (G_Etat t x) -> (A_Etat t (x+1)) -> (G_Etat (t+1) x).

Lemma GB_G : (t,x:nat) (G_Etat t x) -> (B_Etat t (x+1)) -> (G_Etat (t+1) x).

Lemma GC_G : (t,x:nat) (G_Etat t x) -> (C_Etat t (x+1)) -> (G_Etat (t+1) x).

Lemma GA_$C : (t,x:nat)

Lemma GBG_$G : (t,x:nat) (G_Etat t x) -> (B_Etat t (x+1)) -> (G_Etat t (x+2)) -> (G_Etat (t+1) (x+1)).

Lemma GBC_$B : (t,x:nat) (G_Etat t x) -> (B_Etat t (x+1)) -> (C_Etat t (x+2)) -> (B_Etat (t+1) (x+1)).

Lemma GC_$B : (t,x:nat)

Le bord gauche.

Cette section s'occupe plus particulièrement du bord gauche de la figure. On observe la répétition de motifs se terminant par des états G, formant ainsi (à l'exception de la case t=2) une verticale d'états G (rouge). Ces figures ont des noms tirés du papier de J.Mazoyer d'où le décalage d'une unité entre le nom et la longueur. Inductive un_end [t,x:nat] :Prop := make_un_end :

Inductive deux_end [t,x:nat] :Prop := make_deux_end :

Inductive trois_end [t,x:nat] :Prop := make_trois_end :

Inductive cinq_end [t,x:nat] : Prop := make_cinq_end :

Remarque:

Grâce au fait que l'on a pu autoriser l'existence de figures C_basic de longueur 2, il n'est plus nécessaire de définir la figure six_end de J.Mazoyer; celle-ci est l'aboutement d'une figure quatre_end et d'une figure C_basic de longueur 2.

Par construction, toutes les figures n_end se terminent à gauche par deux cases dans l'état G. Cette propriété étant utilisée par la suite, elle fait l'objet de petits lemmes triviaux :

Lemma quatre_GG : (t,x:nat) (quatre_end t x)-> (G_Etat (t+3) x) /\ (G_Etat (t+4) x). Lemma cinq_GG : (t,x:nat) (cinq_end t x)-> (G_Etat (t+4) x) /\ (G_Etat (t+5) x).

Les lemmes suivants définissent l'empilement vertical des structures n_end :

Lemma trois_quatre : (t,x:nat)

Cela permet de constater que les structures n_end ont un fonctionnement semblable à celui des x_basic en ce sens que :

• deux structures identiques s'empilent alignées si deux cellules quiescentes sont présentes sur le bord droit :

La réflexion.

Il s'agit désormais de considérer le bord droit. Sur ce bord, le signal parvient au bout d'un temps N et se réfléchit. La réflexion doit fournir les informations relatives au reste modulo 3 de N de façon à gérer correctement le point d'appel de récurrence au deux tiers de N. On définit donc les signaux réfléchis suivants (les notations sont celles de J.Mazoyer) :

Inductive UA [t,x,cote:nat] : Prop := make_UA : (1<cote)-> (Diag t x cote G_Etat A_Etat G_Etat)-> (UA t x cote).

Inductive UAB [t,x,cote:nat] : Prop := make_UAB :

Inductive ZCB [t,x,cote:nat] : Prop := make_ZCB : (1<cote)-> (Diag t x cote G_Etat C_Etat G_Etat)-> (Diag (t+1) x cote G_Etat B_Etat G_Etat)-> (ZCB t x cote).

Selon la dernière diagonale produite lors de la propagation aller du signal, on a :

La démonstration utilise principalement le lemme D'D_D.

On applique successivement les lemmes DD_D' et D_D'D pour prouver les deux lignes. Lemma A_ZCB :

Ce sont les lemmes DD_D et D_DD qu'il faut appliquer cette fois.

Comme seules les diagonales de type B acceptent une diagonale de type quiescent au-dessus (c'est d'ailleurs la raison pour laquelle on a employé des Diag' et non des Diag dans les constructions précédentes) il faut fermer les deux premières figures :

Lemma B_ZCB :

On utilise successivement les lemmes B_UA, puis D_DD et DDD.

On utilise C_UAB, puis D'DD et DDD pour démontrer ce lemme.

On remarque que l'alternance des états pour cette terminaison est dans l'ordre ACB, soit l'ordre inverse de celui qui prévalait aux constructions précédentes (§ briques de base), ABC qui servait à compter modulo 3 en propageant le signal vers la droite.

Le but de ces dernières constructions est de pouvoir empiler un triangle d'état quiescent sur le retour du signal vers la gauche afin de retrouver une situation semblable à la situation initiale (appel récursif) de longueur 1/3. Pour cela, on montre successivement les lemmes suivants :

application du lemme DD$_D, Lemma ZCB_l :

application de DD_d au lemme précédent, Lemma ZCB_ll :

application de Dd_d au lemme précédent, et enfin le résultat général de ce triangle d'états quiescents :

qui se démontre par récurrence sur la variable dcote et en appliquant le lemme dd_d.

Une conséquence intéressante de ce lemme est :

La démonstration se fait par décomposition de la structure Horizon-tale_t1 et application des lemmes précédents.

Cette section s'achève par l'établissement de quelques lemmes relatifs au bord gauche de ces figures qui contient l'amorce d'une verticale d'états G. (2.(cote:3)+1))-> (DD t x cote).

On établit d'abord un petit lemme facile disant que le bord gauche d'une structure DD est formé de deux cases dans l'état G :

Lemma DD_GG : (t,x,cote:nat) (DD t x cote) -> (G_Etat (t+cote) x) /\ (G_Etat (t+cote+1) x).

On termine cette section en montrant deux lemmes importants relatifs à l'empilement des structures DD d'abord sans décalage horizontal puis avec un décalage.

Le lemme relatif à l'empilement sans décalage :

Les verticales.

Cette section contient un certain nombre de petits lemmes permettant d'avoir tous les outils pour mener à bien les récursivités du triangle supérieur.

On commence par gérer le triangle inférieur, non plus à partir de la situation initiale car elle ne se retrouve plus dans le triangle supérieur mais à partir de la troisième ligne qui est du type Horizontale_t1.

Lemma Ht1_End2 :

(t,x,long :nat) (Horizontale_t1 t x long G_Etat C_Etat L_Etat) -> (deux_end t x).

Lemma Ht1_End4 :

(t,x,long :nat) (0<long) -> (Horizontale_t1 t x long G_Etat C_Etat L_Etat) -> (quatre_end t x).

Lemma Hor_tr_inf :

(t,x,cote:nat) (Horizontale t x cote L_Etat) -> (Triangle_inf t x cote L_Etat).

On poursuit avec le rectangle médian dans lequel on montre que les structures DD et la verticale d'état G sur le bord gauche sont les conséquence d'une Horizontale_t1.

Lemma Ht1_bissect :

(t,x,cote:nat)

C'est une conséquence directe du lemme précédent.

Theorem Ht1_DD :

Ce théorème s'établit par récurrence avec le lemme DD_hd$.

Il admet le lemme suivant comme cas particulier, c'est la frontière supérieure du triangle médian.

Lemma Ht1_DDf : (t,x,haut:nat) (Horizontale_t1 t x (haut+1) G_Etat C_Etat L_Etat) -> (DD (t+haut) x (haut+3)).

Le lemme suivant régit le bord gauche du triangle médian qui est une verticale d'état G : Lemma Ht1_VV : (t,x,cote:nat) (Horizontale_t1 t x cote G_Etat C_Etat L_Etat) -> (Verticale (t+1) x (2.cote+1) G_Etat).

Pour établir ce lemme, on utilise le lemme rec_vert qui construit une verticale de longueur paire par aboutement de segments de longueur 2, obtenu par le lemme DD_GG.

Cette section se termine par des lemmes relatifs aux lignes t=0 et t=1 qui sont spécifiques et ne participent pas à la récurrence.

On a donc ces hypothèses locales à cette section :

Hypothesis Base : (Horizontale_t0 t O long G_Etat L_Etat).

On retrouve des versions particulières des lemmes précédents :

Lemma Ht0_End2 : (deux_end (t+1) (0)).

Lemma Ht0_End4: (quatre_end (t+1) (0)).

Theorem Ht0_DD :

Lemma Ht0_DDf : (DD (t+long-1) (0) (long+1)).

Les "remark"(s) sont des lemmes locaux à la section, ils ont pour but de simplifier l'écriture des preuves en établissant des faits utilisés plusieurs fois. Par exemple Remark B21 : (Etat (t+2) (1))=B.

Les trapèzes.

Le triangle supérieur se décompose en un alignement de trapèzes dont les cotés parallèles sont verticaux (verticales d'états G). La section commence par une petite série de lemmes arithmétiques très spécifiques à ce chapitre et sans intérêt (c'est pourquoi ils n'ont même pas été placés en bibliothèque).

Il se poursuit par l'étude du trapèze de hauteur 2. Il est défini par les hypothèses suivantes : Hypothesis Hh : (Horizontale_t1 t x (0) G_Etat C_Etat L_Etat).

Hypothesis Hv : (Verticale t (x+3) (2) G_Etat).

Les propriétés intéressantes de ce trapèze sont :

Lemma H2_Vg :

(Verticale (t+1) x (1) G_Etat).

Lemma H2_Hh : (Horizontale_t1 (t+1) x (0) G_Etat B_Etat G_Etat).

Lemma H2_Hg :

(Horizontale (t+2) x (2) G_Etat).

Puis on étudie successivement les trapèzes construits sur des diagonales A_basic, B_basic et C_basic.

On établit tout d'abord la frontière gauche :

à l'aide des lemmes A_ZCB et ZCB_Vg pour la base, puis de ZCB_Ht1 et Ht1_VV pour la partie supérieure.

On distingue ensuite le cas particulier cote=2 :

où le trapèze est trop étroit pour avoir un appel récursif et où l'on conclut par une horizontale d'état G en utilisant le lemme H2_Hg démontré précédemment. amène un appel récursif. Il se démontre à l'aide des lemmes A_ZCB, ZCB_Ht1 et Ht1_DD.

On procède de même avec les trapèzes de base B_basic. D'abord la verticale de gauche :

qui se démontre de la même façon avec B_Vg, B_ZCB, ZCB_Ht1, Ht1_VV et vv_vert pour assembler les morceaux. Le reste de la démonstration est semblable aux démonstrations pour A_basic et B_basic. D'abord la verticale de gauche :

puis le cas particulier de longueur 3 :

enfin le cas général :

Le sommet.

On a désormais tous les outils nécessaires pour établir le théorème principal relatif au triangle supérieur. celui-ci établit le fait que si l'hypoténuse est de nature DD et le coté vertical une verticale d'états G alors le coté horizontal est une horizontale d'états G.

L'étude se fait par cas selon la nature du côté DD.

• Si DD est un quatre_end :

Variables t,x:nat.

Hypothesis He : (quatre_end t x).

Hypothesis Hv : (Verticale (t+1) (x+4) (3) G_Etat). le lemme s'établit en calculant tous les états :

Lemma quatre_Hg : (Horizontale (t+4) x (3) G_Etat).

• Si DD est un cinq_end :

Variables t,x:nat.

Hypothesis He : (cinq_end t x).

Hypothesis Hv : (Verticale (t+1) (x+5) (4) G_Etat).

on calcule de même :

Lemma cinq_Hg : (Horizontale (t+5) x (4) G_Etat).

• I l reste à étudier le cas général :

Theorem DD_Hg : (t,x,cote:nat) (DD t x cote) -> (Verticale (t+1) (x+cote+1) cote G_Etat) -> (Horizontale (t+cote+1) x cote G_Etat).

Ce théorème s'établit par induction sur la structure de DD, en utilisant les lemmes quatre_Hg et cinq_Hg pour les cas terminaux, Ha3_DD, Hb3_DD ou Hc3_DD pour les récurrences simples et Ha_DD, Hb_DD ou Hc_DD pour les récurrences doubles où les deux figures de la décomposition font appel au théorème. Dans tous les cas sauf les deux premiers, la ligne horizontale d'états G est construite par aboutement de deux lignes d'états G (lemme hh_hor). Ce théorème demande également quelques calculs auxiliaires de longueur qui ont été établit dans des lemmes ("remark") préliminaires. Lemma Hg_Hf : (t,long:nat) (0<long) -> (Horizontale t (0) long G_Etat) -> (G_Etat t (long+1)) -> (Horizontale (t+1) (0) long F_Etat).

En fin.

Tout est en place pour conclure.

• D'abord la situation initiale : Lemma base1 : (Horizontale_t0 (0) (0) (N-1) G_Etat L_Etat).

• pui s le bord supérieur du triangle médian :

Lemma diagonale :

(DD (N-2) (0) N).

en appliquant Ht0_DDf;

• la situation initiale à droite :

Lemma base2 : (Horizontale_t1 O (N+1) (N-1) G_Etat C_Etat L_Etat).

• et sa conséquence, le bord droit :

Lemma vert_droite : (Verticale (1) (N+1) (2.N-1) G_Etat).

en appliquant Ht1_VV;

• enfin le bord haut du triangle supérieur :

Lemma sommet_1 : (Horizontale (2.N-1) (0) N G_Etat).

avec le lemme DD_Hg;

• qui permet de conclure :

Theorem firing_squad : (Horizontale (2.N) (0) N F_Etat).

grâce au lemme Hg_Hf. -On rappelle que le fait de commencer à zéro transforme le 2N-1 du papier de J.Mazoyer en 2(N+1)-1-1-.