Guy Cuvillier

Gil Utard

Compilation de programmes data-parall eles pour un r eseau de stations de travail

Keywords:

We describe the compilation and execution of data-parallel languages for networks of workstations. Executions of distributed programs on cluster of workstations must take i n to account the loads changing dynamically due to other users. We s h o w that data-parallel programming model is a good candidate to include dynamics load balancing features. We present an implementation for a network of workstations with the data-parallel language C* and PVM.

Introduction

Le ratio prix/performances des stations de travail ne cesse de diminuer et des technologies r ecentes (l'alpha de DEC ou le HP-PA) permettent de construire des machines de puissance inimaginable auparavant. Par ailleurs, nombre d'institutions se dotent d e r eseaux locaux dont les possibilit es d'extension seront d ecupl ees dans un proche avenir, grâce aux innovations telles que le FDDI.

Dans la pratique on observe q u e c haque station d'un r eseau est utilis ee la plupart du temps pour des applications interactives. Une exp erience de l'universit e d'Ohio qui consistait a observer pendant trois mois un r eseau constitu e de 200 stations sans disque et de 18 serveurs, a montr e que le taux d'inoccupation des ressources en calculs etait de 90% avec une variance de 2,5% 12] ! La puissance de calcul et la capacit e m emoire de tels r eseaux sont pourtant cons equentes et o rent pour le calcul intensif une alternative economique s eduisante aux super-calculateurs.

L'hypercomputing 4] est l'exploitation des ressources inutilis ees par la machine parall ele virtuelle que constitue un r eseau de stations. Des outils logiciels tels que PVM 1] et Linda 19] visent cet objectif.

Mais le probl eme r ecurrent du parall elisme demeure : quel mod ele de programmation employer pour d evelopper des applications? Le mod ele de programmation o ert par PVM est essentiellement celui du passage de messages. Les inconv enients de ce mod ele sont maintenant bien connus : absence de structures de donn ees, mise au point d elicate due au nond eterminisme, extensibilit e limit ee des applications. Le mod ele propos e par Linda n ecessite un syst eme d'ex ecution sophistiqu e 14]. Nous allons nous int eresser a une autre approche : le parall elisme de donn ees 2].

Ce mod ele dispose d'un certain savoir-faire h erit e de la programmation des machines SIMD et du mod ele algorithmique th eorique PRAM. Autre avantage, une application dataparall ele s' etend de mani ere naturelle en fonction de la taille des donn ees a traiter.

La compilation d'un langage data-parall ele pour un r eseau de stations peut largement employer les techniques d evelopp ees pour les machines MIMD a m emoire distribu ee [START_REF] Geist | PVM 3 Beyond network Computing[END_REF][START_REF] Nicol | Optimal Dynamic Remapping of Data Parallel Computations[END_REF]. Il existe d'ailleurs une impl ementation de Hyper C pour r eseaux de stations 9]. Dans les machines MIMD, les n uds sont l e p l u s s o u v ent h o m o g enes et enti erement d edi es a l'application. Pour un r eseau de stations, ils sont de capacit e v ariable, et chacun est g en eralement d edi e a un utilisateur. Le contexte d'ex ecution est ici tr es particulier. Ex ecuter e cacement un programme parall ele sans spolier les utilisateurs n ecessite alors d'introduire un m ecanisme de redistribution automatique de la charge 4].

Nous rappellerons la technique de compilation par virtualisation des langages data-parall eles pour machines MIMD et montrerons qu'elle o re un cadre favorable a la redistribution dynamique de la charge. Nous pr esenterons une impl ementation d'un compilateur C* pour PVM avec redistribution dynamique de charge et les premiers r esultats obtenus.

2 Un sch ema de compilation data-parall ele : la virtualisation Dans le mod ele de programmation data-parall ele, un probl eme est repr esent e par un domaine, typiquement des tableaux multidimensionnels. Ce sont l e s collection en Hyper C, ou les shape en C*. Par exemple, en calcul par el ements nis, un domaine correspond a un maillage de l'espace. On d e nit di erentes variables parall eles sur ce domaine. Les composantes de ces variables sont accessibles en parall ele. Un programme est une composition s equentielle d'op erations el ement a el ement et d'op erations de r earrangement. C h a q u e o p eration est associ ee a un ensemble de composantes o u elle sera appliqu ee : ces composantes sont dites actives.

G en eralement les langages data-parall eles sont a s s o c i es a un langage scalaire pour le calcul de la partie non parall ele de l'application. Par exemple C*, Hyper C et mpl sont des extensions data-parall eles de C MP-FORTRAN et CM-FORTRAN sont des extensions de FORTRAN.

Classiquement, le mod ele d'ex ecution sous-jacent associe une machine SIMD virtuelle a chaque domaine, telle que la CM2 de TMC ou la Maspar de DEC. C'est une machine compos ee d'un processeur scalaire et d'une grille de processeurs el ementaires a m emoire distribu ee correspondant au domaine. L'unit e d e c o n trôle di use de mani ere synchrone les instructions parall eles du programme a l'ensemble des processeurs el ementaires qui les ex ecutent ou non selon l'activit e de la composante qu'il repr esente. Cette activit e est repr esent ee par le contexte des processeurs virtuels. Les op erations de r earrangement g en erent d e s c o m m unications entre les processeurs el ementaires. Le code scalaire est ex ecut e par le processeur du même nom.

La virtualisation est une technique de compilation courante des programmes data-parall eles. C'est une simulation de la machine SIMD virtuelle associ ee au programme sur une machine a topologie x ee 18]. En pratique, la taille du domaine est nettement sup erieure a la taille de la machine physique. Chaque processeur physique traite plusieurs processeurs el ementaires (dit virtuels) de la machine emul ee. Chaque processeur virtuel est repr esent e par son image m emoire et son contexte, i.e. son etat au sens de la s emantique op erationnelle. L'ensemble des processeurs virtuels allou es a un processeur physique est d eduit du code source et d'une fonction de distribution des domaines du programme sur la machine physique. Pour faciliter le calcul d'adresse des op erations de r earrangement, la fonction de distribution est g en eralement r eguli ere (e.g. de type bloc). Sur une machine MIMD a m emoire distribu ee, le code scalaire est g en eralement dupliqu e sur l'ensemble des processeurs physiques pour des raisons d'e cacit e.

Le code g en er e par la virtualisation est de type SPMD. L'ex ecution consiste en une succession de phases de calculs et de communications. Les phases de calculs correspondent aux op erations el ement a el ement du programme source, et sont i m p l ement ees par des boucles de virtualisation. Les phases de communications correspondent a u x o p erations de r earrangement du programme source, et sont i m p l ement ees par l'appel a des fonctions de communication sp eci ques. De par la s emantique synchrone du mod ele d'ex ecution, aucun processeur phy-sique ne doit commencer une nouvelle phase de calcul tant qu'un autre processeur d etenant des donn ees n ecessaires n'a pas encore termin e la phase de calcul pr ec edente. Ceci est assur e dans le cas de machine MIMD a m emoire distribu ee, d'une part par un ôt identique d'appel aux routines de communications sp eci ques, ind ependamment d u ôt de donn ees parall ele, et d'autre part par une impl ementation des routines de communication qui conserve l'ordre d' emission/r eception des messages.

Lors de l'ex ecution d'un programme obtenue par cette technique de compilation, on observe un couplage fort entre les processeurs physiques. La vitesse de l'application est cadenc ee par le plus lent. Avec cette technique de compilation, le langage data-parall ele doit être consid er e comme un langage evolu e (car parall ele) de bas niveau (la qualit e d e l'ex ecution est extrêmement sensible a l ' ecriture du programme).

Du fait de la s emantique s equentielle des programmes data-parall eles, l'analyse du ot des donn ees est grandement facilit ee, et les optimisations possibles sont b a s ees sur le r earrangement de l'ordre des instructions parall eles. Ainsi il est possible d'augmenter la granularit e des programmes obtenus par fusion des boucles de virtualisation, et de recourir au recouvrement des communications par les calculs. Le lecteur int eress e p e u t s e r ef erer a 1 8 , 8 , 5] .

Les facteurs de d es equilibre interne a l'application sont dus en g en eral a une non homog en eit e des calculs sur l'ensemble du domaine et/ou a une mauvaise distribution du domaine sur l'ensemble des processeurs physiques. Elles sont de la responsabilit e du programmeur, ou du compilateur amont q u i a g en er e le code data-parall ele a partir d'un langage dit evolu e.

3 Ordonnancement d'applications parall eles sur r eseau de stations L'ordonnancement d'applications parall eles sur les r eseaux de stations se heurte d'une part a l'h et erog en eit e du parc de machines disponibles, et d'autre part au contexte multiutilisateur. Comme la charge des stations evolue selon des facteurs externes, seul l'ordonnancement dynamique peut-être e cace. De tels ordonnanceurs dynamiques sont aujourd'hui disponibles. Du fait des latences elev ees des communications, la granularit e des applications doit être elev ee. Deux grands types de granularit e sont actuellement trait es : { une grosse granularit e a u n i v eau ((job)), a vec la s election de site distant pour l'ex ecution de commande shell tel que lsf d'Utopia ou certain make parall eles { une granularit e m o yenne au niveau processus ou sous-programme, avec le placement d'une application parall ele d ecrite par un graphe de tâches.

La granularit e des applications etant elev ee et non divisible, les algorithmes d'ordonnancement dynamique ne cherchent pas a atteindre un equilibrage ((parfait)) de la charge, mais plutôt a partager celle-ci sur l'ensemble des stations. L'objectif est de ne pas surcharger ou laisser inoccup ees des stations.

Le cas des programmes data-parall eles

Un programme data-parall ele est consid er e comme etant de granularit e ne. La technique de virtualisation permet d'obtenir dans la plupart des cas des programmes SPMD de granularit e m o yenne. La granularit e escompt ee est fonction du rapport entre le nombre d'op erations de r earrangement e t c e l u i d e s o p erations el ement a el ement, de la taille des domaines, et du nombre de processeurs physiques.

L'hypoth ese principale est que la charge de calcul d'un processeur physique est proportionnelle au nombre de processeurs virtuels emul es. On est alors dans un cadre id eal pour le r e equilibrage dynamique de l'ex ecution du programme data-parall ele. Redistribuer la charge est equivalent a redistribuer les donn ees, i.e. les processeurs virtuels, entre les processeurs physiques. Par rapport aux applications parall eles d ecrites par un graphe de tâches indivisibles, on a ici un plus grand degr e de nesse dans l' equilibrage de la charge des processeurs.

Les phases de communications sont un moment propice pour e ectuer le r e equilibrage, elles correspondent a la transition entre deux phases de calcul sur les processeurs physiques. L' etat des processeurs virtuels etant parfaitement connu, ils peuvent c hanger de processeur physique hôte.

Un processeur virtuel est repr esent e par sa m emoire et son contexte dans le processeur physique. A c haque redistribution, ces informations d' etat sont rassembl ees pour chaque processeur virtuel migrateur. { Dans l'a rmative, il le signale aux esclaves en attente de sa r eponse, en associant a son message des consignes pour r ealiser la nouvelle r epartition. Ceux-ci r ealisent alors les echanges de donn ees n ecessaires (gure 3). { Si en revanche une redistribution n'est pas rentable, il con rme aux esclaves qu'ils peuvent c o n tinuer a travailler avec l'ancienne distribution.

MAITRE >

Fig. 2 -A une phase de communication convenue, propagation de la d ecision du ma^ tre.

MAITRE >

Fig. 3 -Echanges de donn ees entre les esclaves pour r ealiser l' equilibrage demand e.

Distribution des processeurs virtuels

La distribution est equivalente a un partitionnement du domaine. Dans la pratique, les partitionnements sont d e t ype bloc. Deux types de distribution par blocs des domaines sur les stations de travail sont consid er es : { une dimension : le domaine est d ecompos e en bandes { deux dimensions : le domaine est d ecompos e en rectangle recti-lin eaire, deux pav es adjacents en ligne (resp. en colonne) ont l e m ême nombre de colonnes (resp. de lignes).

Le partitionnement en deux dimensions permet d'exploiter l'organisation des r eseaux en En fonction d'une distribution initiale des processeurs virtuels, chaque station r eserve a l'initialisation l'espace m emoire n ecessaire pour les accueillir, plus une fraction suppl ementaire pour permettre la r ealisation des r e equilibrages futurs.

Calcul et r ealisation d'une redistribution

Le calcul d'un r e equilibrage est bas e sur une connaissance globale du syst eme. En g en eral, les r eseaux disposent d ' u n m edium de type bus qui permet d'obtenir cet etat a un faible coût en terme de communication. L'avantage d'une connaissance globale est qu'une redistribution optimale peut rapidement être calcul ee. Sous l'hypoth ese que la charge de travail est proportionnelle au nombre de processeurs virtuels emul es, une distribution au prorata des vitesses de chaque station est optimale.

La migration des processeurs virtuels se fait de telle sorte que la structure du d ecoupage en blocs soit conserv ee. Le mouvement des processeurs virtuels s'e ectue par bandes. Cette restriction diminue le degr e de nesse dans le r e equilibrage de la charge mais si la structure r eguli ere de la r epartition n'est pas conserv ee, alors l'adressage de processeurs virtuels se complexi e. Ici l'adressage est obtenu simplement par le maintien d'une table d'adressage indiquant les bornes d'adresse de chaque station.

Le r e equilibrage s'e ectue pour la shape C* courante : ce sont t o u t e s l e s v ariables parall eles li ees a la shape qui devront migrer. Ces variables sont de deux sortes : les variables utilisateur et les variables temporaires g en er ees a la compilation.

Le compilateur a et e m o d i e pour conserver trace de toutes les variables parall eles li ees a c haque shape. De plus, le contexte d'activit e etait g er e classiquement par des tableaux de bool eens. Un changement d e c o n texte revenait a empiler un nouveau tableau d ecrivant l e nouveau contexte ou a d epiler le tableau courant. La taille de cette information etait donc variable. Les travaux de Levaire ont m o n tr e que la gestion de contexte par piles de tableaux pouvait être remplac ee par l'emploi d'un tableau de compteurs unique 13]. A n de r eduire la taille des informations de contexte a traiter, nous avons introduit une repr esentation des contextes par compteurs dans C*.

D etermination de la vitesse d'une station de travail

Classiquement, la d etermination de la vitesse d'une machine est une fonction complexe de la puissance et de la charge de chaque machine.

{ La puissance doit être d e nie par une liste de crit eres qualitatifs telles que le type de processeur, la fr equence d'horloge de ce dernier, la quantit e d e m emoire. { Les crit eres de mesure de la charge de machine sont d elicats a a p p r ehender. La m ethode la plus classique est d'observer les di erentes les d'attente de processus du syst eme d'exploitation. Une machine charg ee a une le d'attente de processus prêts a être ex ecut es longue. L'inconv enient de cette m ethode est qu'elle ne prend pas en compte la nature des processus qui vont être ex ecut es. Une machine avec une longue le d'attente de processus l egers est-elle moins charg ee qu'une machine avec une le d'attente courte de processus lourds?

C'est une m ethode de mesure plus simple qui est impl ement ee. Elle consiste a relever le temps r eel ecoul e dans les phases de calculs de l'application data-parall ele. L'avantage d'une telle mesure est qu'elle int egre les param etres de la charge de la machine et de sa puissance intrins eque. Seuls les temps des phases de calculs sont consid er es. Si l'on int egre aussi les temps des phases de communication, on obtiendra des temps quasiment identiques pour toutes les stations, du fait du fort couplage des processeurs physiques.

La vitesse d'une station de travail est le nombre de processeurs virtuels emul es par unit e de temps. C'est le rapport entre le nombre de processeurs virtuels emul es et le temps ((r eel)) ecoul e dans les phases de calculs. Seuls les processeurs virtuels actifs sont comptabilis es. Prendre en compte les processeurs virtuels inactifs int egre le d es equilibre possible dû a l'application, ce qui n'est pas le propos de cette etude.

R e equilibrage dans le cas mono-dimensionnel.

La largeur de la bande de processeurs virtuels d etenue par chaque station est d etermin ee au prorata de leur vitesse. Le calcul de la distribution doit aussi tenir compte des contraintes au niveau de la m emoire des stations. Si la distribution pr ec edente est telle qu'une ou plusieurs stations voient leur capacit e d epass ee, alors le reliquat sera distribu e d e l a m ême mani ere sur les stations restantes (et ainsi de suite si de nouvelles stations sont satur ees).

La connaissance de la nouvelle et de l'ancienne distribution etant g l o b a l e , c haque station peut ais ement d eterminer les communications n ecessaires pour atteindre la nouvelle distribution. Les primitives d'envoi non-bloquant de messages et celle de r eception bloquante disponibles dans les protocoles de communication sont utilis ees. Ainsi, il n'y a pas de risque d' etreintes fatales dans le protocole de r e equilibrage.

Plus pr ecis ement, chaque station e ectue les etapes suivantes.

{ Au vu de la nouvelle distribution, elle d etermine l'intervalle de processeurs physiques d esormais propri etaires de la section de donn ees qu'elle poss edait. Les envois n ecessaires des sous-sections sont e ectu es. { La partie des donn ees restantes est d ecal ee en m emoire. { L'ancienne distribution procure l'intervalle de processeurs physiques qui doivent f o u r n i r les nouvelles donn ees dont elle a la responsabilit e. Elle e ectue les r eceptions successives des nouvelles sous-sections.

Pour r eduire le coût des d ecalages m emoires, ceux-ci sont recouverts par le temps de communication.

A l'issue des echanges de donn ees, il ne reste qu' a actualiser la table d'adressage pour rendre compte de la nouvelle distribution, ainsi qu' a ((con gurer)) le processeur physique pour qu'il emule le nouveau nombre de processeurs virtuels r esultant de la redistribution.

R e equilibrage dans le cas bi-dimensionnel.

Le partitionnement d e v ant-être rectangulaire recti-lineaire, une distribution ((exacte)) au prorata de la vitesse des stations n'est plus possible. Les blocs adjacents ayant l e m ême nombre de lignes et de colonnes, l'attribution entre les stations est inter-d ependante.

Consid erons la r epartition d'un domaine bi-dimensionnel de L lignes et C colonnes, i.e. N = L C processeurs virtuels, en n tranch e s d e l i g n e s e t p tranches de colonnes. Soit v i j avec 1 i n et 1 j p la vitesse (en nombre de processeurs virtuels emul es par unit e d e temps) de la station d etenant l e b l o c (i j). Soit n = (n i j) l e n o m bre de processeurs virtuels du bloc (i j) d'une distribution arbitraire. Le temps de calcul t n d'une distribution n est egal a : t n = max i j (n i j =v i j) La distribution qui minimise ce temps de calcul est celle o u c haque station d etient u n n o m bre de processeurs virtuels au prorata de sa vitesse, i.e. quand n i j = N v i j P k l v k l . Le temps de calcul optimal t o est alors egal a N P k l v k l . Le probl eme est de trouver une partition n recti-lin eaire du domaine tel que le temps de calcul soit minimal. La distribution n est d ecrite par deux vecteurs l = (l i) 1 i n et c = (c j) 1 j p tel que P i l i = L et P j c j = C, repr esentant le partitionnement des lignes et des colonnes. Le nombre de processeurs virtuels du bloc (i j) est egal a n i j = (l i c j).

Il s'av ere que le d ecoupage optimal est di cile a obtenir. Il n'est pas egal a u n d ecoupage des lignes (resp. des colonnes) tel que la part relative d e c haque tranche de lignes (resp. de colonnes) soit la somme des vitesses relatives des stations de la tranche. Consid erons l'exemple s u i v ant d'un d ecoupage d'un domaine 30 30 en 3 lignes et 3 colonnes, sur des stations dont les vitesses sont d o n n ees par la matrice suivante : 0 B @ 2 1 1 1 1 1 l(k)

8 > > > > > > < > > > > > > : 1 i n : (k) i = min 1 j p (v i j c (k) j
) Nombre de lignes de p.v. trait ees sur la ligne j par unit e de temps.

1 i n : l (k) i = L (k) i P 1 l n (k) l
Distribution des lignes de p.v au prorata des vitesses de chaque lignes.

La suite des temps de calcul obtenue a c haque it eration est monotone d ecroissante (la distribution au prorata des vitesses assure que le temps de calcul ne peut pas augmenter). L'algorithme converge car l'espace de recherche est ni. La solution donn ee est un optimum local. Dans la pratique l'algorithme converge rapidement.

Pour r ealiser une nouvelle distribution donn ee, le mouvement des processeurs virtuels entre les stations peut devenir tr es complexe. La surface d'interaction d'une station pour un echange de processeurs virtuels est d e nie comme etant l e n o m bre de stations qui seront impliqu ees dans les communications. Une variation forte de la distribution peut entra^ ner une augmentation forte de cette surface, entra^ nant une augmentation du temps de communication et compliquant la gestion de la m emoire. La solution adopt ee est de choisir, dans la nouvelle distribution calcul ee, une seule dimension (ligne ou colonne) o u sera e ectu ee un r e equilibrage (celle qui minimise le plus le temps de calcul). Le mouvement des processeurs virtuels est e ectu e d e l a m ême mani ere que dans le cas mono-dimensionnel (on raisonne en termes de lignes ou colonnes de processeurs virtuels).

D eclenchement d'une redistribution

La prise de d ecision d'un r e equilibrage est d ecid ee a des phases de communications convenues a l'avance. A c hacune de ces phases, un r e equilibrage est d ecid e ou non, et la prochaine phase de prise de d ecision est d etermin ee. Les phases sont c hoisies de telle mani ere que le temps entre chaque prise de d ecision soit constant.

Le gain d'une redistribution ne doit pas être absorb e par son coût. Ce dernier est la somme du coût de la d etermination d'une nouvelle distribution, qui peut être r eduit par un m ecanisme d'anticipation, et de celui de la migration des processeurs virtuels.

D etermination de la nouvelle phase de prise de d ecision

Une constante de temps k repr esente le temps voulu entre deux etapes de r e equilibrage. Le ma^ tre re coit r eguli erement les messages de charge des esclaves. Il calcule le temps moyen entre deux messages emanant d ' u n m ême processeur et se sert de cette valeur pour calculer la prochaine phase de rendez-vous P, i . e . l e n o m bre de messages charges que devra envoyer chaque processeur esclave a vant de ce mettre en attente des informations de r e equilibrage envoy ees par le ma^ tre. P = k Temps moyen inter-messages Cette valeur sera communiqu ee aux esclaves en même temps que la d ecision de r e equilibrage.

R eduction du coût de la d etermination d'une distribution

Dans le coût de la d etermination d'une distribution on a celui de la constitution de l' etat global du syst eme et celui du calcul de la distribution. Le calcul de la distribution est peu coûteux car les algorithmes sont simples. La constitution de l' etat global n ecessite la di usion d'informations par chaque station, i.e. un coût de communication, et d'attendre que toutes les stations aient di us e leur information, i.e. un coût de d es equilibre.

Le d es equilibre implique une attente des stations lentes par les plus rapides. Une anticipation de la di usion de la d ecision du ma^ tre, i.e. dans une phase de communication pr ec edente, permet d'une part de recouvrir le coût de communication par du calcul utile, et d'autre part d'entamer, dans la mesure du possible, le processus de migration des processeurs virtuels entre les stations les plus rapides.

Ainsi, le ma^ tre ne calculera et ne di usera pas la d ecision d'un r e equilibrage a la phase de communication P calcul ee auparavant, mais au moins dans une phase de communication pr ec edente.

Pour savoir si l'anticipation pr ec edente etait su sante, il su t d'observer s'il n'y a pas eu d'attente de d ecision du ma^ tre par un esclave. Les esclaves communiquent a u m a ^ tre leur temps d'attente eventuel. Le calcul du nombre de phases a a n ticiper s'exprime donc par le quotient du temps maximum d'attente des esclaves par ce temps moyen inter-phase de communication.

anticipation = Temps d'attente maximum Temps moyen inter-messages

Crit e r e d e d ecision d'un r e equilibrage

Le r e equilibrage doit être d eclench e quand le coût temporel de la migration des processeurs virtuels est inf erieur au gain de temps de calcul escompt e. Le coût temporel de la migration des processeurs virtuels peut être evalu e a partir de la vitesse de communication. Celle-ci est evalu ee lors des phases d' equilibrage pr ec edentes, a l'instar de la vitesse de calcul : vitesse comm = nombre de processeurs migr es temps ecoul e pour l' equilibrage La valeur de cette vitesse est r eactualis ee a c haque equilibrage. Le coût temporel de l' equilibrage de charge a v enir peut être approxim e p a r : tempsEquilibrage = nombre de processeurs virtuels migr es vitesse comm Le gain temporel de calcul escompt e correspond a l a d i erence entre les temps maximaux d'ex ecution pour la nouvelle distribution (d i) et l'ancienne distribution (d 0 i). Pour chaque station i, f i est sa vitesse :

gainTemporelCalculs = m a x i (d i f i) ; max i (d 0 i f i)
Un r e equilibrage aura lieu si : tempsEquilibrage < gainTemporelCalculs

Exp erimentation

Comme nous sommes partis d'une version alpha du compilateur C*de l'universit e du New Hampshire, nous n'avons pas cherch e a obtenir des performances de calculs. Les exp eriences que nous avons men ees avaient pour but de valider deux principales id ees : l'exploitation de la bande passante o erte par une organisation en grappes du r eseau, et le m ecanisme d'adaption a l a v ariation de charge des stations.

Ex ecution dans un r eseau en grappe

Les exp eriences se placent dans une situation de communications intensives. Le programme C* consiste a e ectuer un grand nombre de d ecalages dans une shape de dimension deux, dont une dimension est privil egi ee en communication. Le programme e ectue alternativement r d ecalages dans la dimension privil egi ee, puis un d ecalage dans l'autre dimension. La taille de la shape est egale au nombre de stations : chaque station ne g ere qu'un processeur virtuel, ceci a n de r eduire le coût des boucles de virtualisation. Chaque processeur virtuel d etient un tableau d'une taille x e :o nau n ev ariable parall ele de tableaux. Chaque op eration de d ecalage g en ere, pour chaque station, un envoi de tableau vers la station d etenant l e processeur virtuel voisin sur la shape.

Les exp eriences ont et e e x ecut ees alternativement sur six stations d'une même grappe, puis sur deux grappes de trois stations. La shape est distribu ee de telle mani ere que les communications dans la dimension privil egi ee restent d a n s l a m ême grappe.

La premi ere exp erience a consist e a observer les di erents d ebits (sur une grappe et deux grappes) selon la taille des messages. Toutes les communications se font dans la dimension privil egi ee. Les d ebits obtenus sont p r esent es sur la gure 5 pour des messages de tailles de 1Ko, 2Ko, 4Ko et 6Ko. Ceci nous permet d' evaluer la bonne taille des messages pour masquer ((l'e et paquet)) dû a u d i erentes couches de communication PVM/TCP-IP. O n v oit que de bons d ebits peuvent être obtenus avec des messages de 4Ko.

La seconde exp erience a consist e a observer l'augmentation du d ebit selon le rapport de communication entre les deux dimensions. La taille des messages est x e a 4Ko. Les r esultats sont p r esent es dans la gure 6. Pour un rapport de 1/1, la passerelle constitue un goulot d' etranglement. Mais d es le rapport 2/1 le d ebit maximun th eorique d'une grappe est d epass e.

Adaptation aux variations de charges

Dans un premier cadre d'exp erimentation nous nous sommes plac es dans un r eseau de stations isol ees o u nous ajustions les charges a v olont e. Nous avons adopt e une strat egie de r e equilibrage gloutonne, une version restreinte du m ecanisme de prise de d ecision pr esent e e n 4.4.3 : d es qu'une variation de charge d epasse un certain seuil (au moins 5% de processeurs virtuels migrent), la redistribution est e ectu ee. Ceci a n de ne pas masquer le comportement du r eseau par une politique trop ra n ee. Les tests portent sur la multiplication de matrices ligne par ligne. Pour une matrice d'ordre N, le domaine est un tableau mono-dimensionnel de N composantes comportant c hacune un tableau de taille N. P our p processeurs, la complexit e de l'algorithme est en N 3 =p et g en ere N p communications de taille N. L a g r a n ularit e e s t La premi ere exp erience a consist e a e x ecuter le programme sur deux stations non perturb ees de puissances di erentes. Le gain obtenu p a r l e r e equilibrage dynamique correspond alors a u n r e equilibrage statique au prorata des performances des machines. Notre m ethode permet de prendre en compte l'h et erog en eit e des ressource de calcul disponibles sur un r eseau.

L'exp erience suivante (tableau 1) consistait a observer le comportement d a n s u n r eseau de stations perturb ees. Le premier test devait appr ecier le comportement de notre dispositif dans un milieu de type interactif les perturbations g en er ees al eatoirement etaient d e c o u r t e dur ee (30 secondes au maximum) e t f r equentes. Le deuxi eme cadre d'essais devait jauger notre outil face a des perturbations r eguli eres et de longue dur ee dues au lancement d e traitements par lot. L'algorithme de partitionnement rectilineaire en deux dimensions est inspir e des travaux de Nicol 16]. Ce dernier a de plus montr e que le même probl eme en trois dimensions est NP. Nous aurions pu utiliser les partitionnements recursifs des domaines propos es par Kaddoura, Rank et Wang qui permettent de mieux exploiter l'h et erog en eit e d e s r eseaux 10]. En fait nous avons consid er e les partitionnements rectilin eaires pour modi er au minimun le compilateur de l'Universit e du New Hampshire, con cu initialement pour les architectures homog enes.

L' equilibrage de charge que nous avons d ecrit est fonction de facteurs externes a l'application : disparit e des puissances des machines et variations de leur charge. L'id ee principale est d'a ranchir l'utilisateur de l'h et erog en eit e d ' u n r eseau en lui pr esentant des machines SIMD virtuelles (ou templates pour reprendre la terminologie d'HPF) homog enes. On pourrait ainsi facilement employer les techniques de Dekeyser, Fonlupt et Marquet pr ec edemment cit ees pour int egrer les facteurs internes de d es equilibre de l'application. Dans le cas des communications irr eguli eres on remarque que par rapport a l ' e n tropie de la distribution, le volume de communication est d'autant plus grand que l' equilibrage spatial est parfait. Par exemple avec deux stations, si les n processeurs virtuels sont partag es equitablement o n a u n e e s p erence math ematique de n 1=2 pour les communications externes. Par contre, avec une distribution en 9=10 et 1=10 elle n'est plus que de n 9=50 n 1=5. En fait la courbe d'e cacit e de la gure 7 est justement celle d'une distribution spatiale homog ene. Une autre id ee serait de choisir les stations qui vont maximiser l'entropie lors de la r eduction de leur nombre, i.e. pro ter du d es equilibre spatial induit par le d es equilibre de charge. On peut de même renforcer le d es equilibre pour introduire un d ephasage entre les stations (i.e. certaines emettront leurs messages avant les autres) qui permettrait de r eduire les contentions du r eseau. C'est ce que nous nous proposons d'impl ementer u l t erieurement dans une version am elior ee de la librarie C*.

Fig. 1 -

 1 Fig. 1 -A chaque communication, collecte des informations d'e cacit e. 4.1 Description g en erale Le fonctionnement d e s t âches esclaves est le suivant. { A c haque passage dans une fonction de communication les esclaves envoient a u m a ^ tre leur mesure d'e cacit e (gure 1). Notons que l'envoi de ces informations n'est ici syst ematique que parce que nous tenons a assurer une veille assidue sur le d eroulement d u programme ceci pour permettre une bonne observation de l'ex ecution. L'impl ementation r ealis ee permet de xer une fr equence d' emission des informations des esclaves. { A une phase de communication P convenue ils attendent a u c o n traire la d ecision du ma^ tre concernant u n e eventuelle proc edure d'adaptation de la charge (gure 2). Le ma^ tre r ealise les op erations suivantes. { I l c o n c e n tre les informations d'e cacit e d elivr ees par les esclaves (gure 1). { A la phase de communication P convenue, il evalue une nouvelle distribution de processeurs virtuels au vu des informations d'e cacit e collect ees. Il d ecide du r e equilibrage et transmet sa d ecision (gure 2).{ Dans l'a rmative, il le signale aux esclaves en attente de sa r eponse, en associant a son message des consignes pour r ealiser la nouvelle r epartition. Ceux-ci r ealisent alors les echanges de donn ees n ecessaires (gure 3). { Si en revanche une redistribution n'est pas rentable, il con rme aux esclaves qu'ils peuvent c o n tinuer a travailler avec l'ancienne distribution.

)

 Nombre d e c olonnes de p.v. trait ees sur la colonne j par unit e de temps. 1 j p : c (k) j = C (k) de p.v au prorata des vitesses de chaque colonne.

Fig. 5 -Fig. 6 -

 56 Fig. 5 -D ebit (Ko/s) selon la taille des messages sur une ou deux grappes de stations

Tab. 1 -

 1 Multiplication de matrices avec et sans r e equilibrage (minutes:secondes) Environnement i n teractif Environnement b a t c h Matrices 400 400 Matrices 800 800 Matrices 400 400 Matrices 800 800 p Sans Avec Sans Avec Sans Avec Sans Avec 6 Conclusion et travaux concomitants Dans cette etude nous avons pr esent e une technique d'ex ecution de programmes dataparall eles sur r eseau de stations. Le langage source est imp eratif et orient e collection. la technique de compilation est la virtualisation. L'ex ecution prend en compte les variations de charge des di erentes stations par une redistribution dynamique des donn ees. Une exploitation possible de l'organisation des r eseaux en grappes, augmentant la bande passante de communication, a et e p r esent ee et exp eriment ee. Les programmes data-parall eles o rent un cadre favorable au r e equilibrage de la charge : les charges sont d e nies par la distribution des donn ees et les calculs sont i d e n tiques sur l'ensemble des donn ees. On a un r e equilibrage dynamique de la charge dirig e p ar les donn ees de mise en uvre plus ais ee et plus ne que le r e equilibrage classique bas e sur les graphes de processus. Cette id ee de r e equilibrer par les donn ees a d ej a et e emise par Dekeyser, Fonlupt et Marquet qui proposent d ' i n t egrer des m ecanismes de redistribution des donn ees au niveau de l'application même 6]. De Keyser et D. Roose avaient d ej a remarqu e q u e l'on pouvait exploiter les phases de communication des programmes data-parall eles pour op erer un r e equilibrage par redistribution des donn ees 11]. Ils appellent cette technique le r e equilibrage quasi-dynamique, et proposent d i erents algorithmes de calcul a partir d'un graphe de d ependance des equilibrages a e ectuer dans les di erentes communications. Ce r e equilibrage est donc li e a u d es equilibre de l'application. D'autres travaux existent sur l'utilisation de langages data-parall ele sur r eseau de stations. En terme de performances on peut citer les travaux de Mosberger, Turner et Peterson sur la compilation de C (version de TMC) sur un cluster de stations HPPA connect ees par un r eseau FDDI 5]. Leur compilateur est capable de r eordonner la suite d'op eration parall eles du programme source et de g en erer du code o u les communications recouvrent les calculs. Ils obtiennent une meilleur e cacit e comparativement a u c o d e g en er e pour une CM5. Il y a aussi les travaux de Nedeljkovi c et Quinn sur la compilation de Data-Parallel C qui int egrent les premiers l' equilibrage de la charge par migration des processeurs virtuels 15]. Seuls les distributions en une dimension etaient consid er ees, et n'exploitaient pas les possibilit es o ertes par une organisation en grappe des stations.

Fig. 8 -

 8 Fig.[START_REF] Geist | PVM 3 Beyond network Computing[END_REF] -Proportionalit e du volume de communications par rapport au nombre de stations. Le domaine est un tore 2 D e t l ' o p eration de communication est un d ecalage du domaine dans une dimension. Quand le domaine est distribu e sur deux stations, deux colonnes transitent sur le bus, tandis qu'avec u n d ecoupage sur quatre stations, ce sont quatre c olonnes qui transitent.

Fig. 9 -

 9 Fig.9-E cacit es dans le cas de communications r egulieres en fonction du ratio granularit e r eseau/granularit e p r ogramme et de la taille du domaine.

 ((grappes)). Chaque grappe poss edant son propre bus de communications on augmente ainsi la bande passante totale. Mais ce type d'organisation n'est compl etement exploitable que s'il existe un axe de communication privil egi e dans le domaine de l'application (gure 4). Sinon, les communications etant egales dans les deux dimensions, les passerelles constituent un goulot d' etranglement d a n s l ' echange des donn ees entre les grappes. Le partitionnement Fig.4-Exploitation d'un r eseau en grappes. Il existe dans le domaine de l'application un axe de communication privil egi e (l a eche). Le domaine est distribu e p our exploiter au mieux la bande passante du r eseau.en n-dimension peut de la même mani ere être envisag e pour exploiter une arborescence de grappes de stations. Une arborescence de plus de deux niveaux de grappes de stations ne rentre plus dans le cadre des r eseaux locaux. Il s'agit plutôt des r eseaux hi erarchiques de grande taille (interurbains notamment). Dans ce cas on a une organisation de type ((thintree)) du r eseau de communications, et le type d'application envisageable est limit e 3]. Elle n ecessite d'introduire des m ecanismes de tol erance aux pannes et demande une coordination de l'administration des syst emes 7].

 La distribution est calcul ee par une m ethode it erative. Elle consiste a xer une distribution dans une dimension et a d eterminer la distribution optimale dans l'autre dimension, puis de calculer la meilleure distribution dans l'autre dimension avec la nouvelle distribution obtenue. L'algorithme est it er e jusqu' a stabilisation.Plus formellement, si on part d'une distribution des lignes arbitraire l(0) , la distribution successive des colonnes c(k) et des lignes l(k) est donn ee par les algorithmes suivants.

		1
	1 1 1	C A
	Une distribution telle que l = (1 2 9 9) e t c = (12 9 9), i.e. au prorata de la somme des vitesses des stations pour chaque ligne et colonne, donnerait comme matrice de temps de calcul : 0 B @ 1 74 108 108 108 81 81 108 81 81 C A
	soit un temps maximum de 108. Alors qu'une equi-distribution avec l = (10 10 10) et c = (10 10 10) donnerait comme matrice de temps de calcul : 0 B @ 1 50 100 100 100 100 100 100 100 100 C A
	soit un temps maximun de 100.	

Impl ementation Le support utilis e pour cette r ealisation est le compilateur C*de l'Universit e du New Hampshire (UNH-C*). Ce compilateur est d elivr e a vec des biblioth eques de communication pour le Delta d'Intel, et comporte egalement une biblioth eque de simulation pour station de travail.Ce compilateur a tout d'abord et e p o r t e sur un r eseau de stations de travail sous PVM. La biblioth eque de communication ecrites pour le Delta a et e d etourn ee : les appels syst eme de communication du Delta ont et e remplac es par des appels equivalents aux primitives de communication PVM.Pour simpli er la mise en uvre, une gestion centralis ee a et e adopt e e . C e c hoix permet de plus de superviser l'ex ecution des programmes data parall eles. Un programme ma^ tre baptis e ((lanceur)) engendre autant d e t âches PVM esclaves que demand e par l'utilisateur. Chacune de ces tâches peut être a ect ee a une station propre.Une fois les tâches esclaves lanc ees, le ma^ tre se met en attente des messages de r esultats, qui attestent que le programme s'est bien d eroul e. Si une erreur se produit, le signal est r ecup er e dans la tâche esclave et un label de message sp ecial avertit le ma^ tre. Celui-ci prend alors en charge la suppression de l'ensemble des tâches esclaves et l'arrêt total du programme.

3:11

3:30 -9% 27:48 30:14 -8% 4:07 2:52 30% 38:32 38:07 1% 4 2:09 2:12 -2% 14:06 13:00 8% 2:11 1:30 31% 17:00 11:39 31% 8 1:07 1:04 4% 07:53 07:21 7% 1:11 0:50 29% 08:40 05:30 36%On constate que les gains obtenus lors du premier test sont faibles. Dans le cas des deux n uds, on observe m ême une augmentation du temps d'ex ecution. Le protocole induit dans cette situation une augmentation du couplage des machines. Pour des calculs long (800 800), les r e equilibrages sont f r equents. Ce ph enom ene est dû aux perturbations courtes et nombreuses. En moyenne cependant, chaque station subit une même somme de perturbations et le r e equilibrage n'apporte rien. On constate alors que le protocole de r e equilibrage n'est pas trop coûteux, mais qu'il est n ecessaire d'int egrer un m ecanisme d' evaluation de l'opportunit e de r e equilibrage, comme present e dans la section 4.4.3. Le protocole consomme inutilement les ressources en communication du r eseau.Dans notre deuxi eme exp erience, seule la moiti e des machines etait perturb ee. Les tâches parasites etaient longues mais l'instant d e d eclenchement etait propre a c haque site. Les gains deviennent ici appr eciables. La perturbation etant p l u s r eguli ere, le nombre de r e equilibrages est en g en eral moindre. Le cas du produit de matrices 800 par 800 pour 2 stations a r ev el e u n p h enom ene de ((ping-pong)). Ceci viendrait a notre sens d'une variation de priorit e des processus induite par UNIX dans sa strat egie d'ordonnancement sur une machine perturb ee, l'ordonnanceur local donne alternativement la priorit e au perturbateur puis a n o t r e application. La distribution des donn ees qui devrait en th eorie se stabiliser varie alors suivant deux etats.

est donn ee par la formule suivante :

Le mod ele de communication est simpli e e t n e c o n s i d ere pas un temps d'initialisation. On l'admet car on s'interesse au cas o u l e v olume de communication est assez grand pour absorber le coût d'initialisation.

Typiquement l e v olume de calcul de chaque phase est de l'ordre de la taille du domaine, i.e. il y a une s equence de k op erations el ement a el ement a vant c haque op eration de r earrangement :f(n) = k n. L'e cacit e (1) est alors donn e p a r :

La fraction repr esente le rapport entre la vitesse des stations et le d ebit du r eseau, i.e. la granularit e d u r eseau.

La r egularit e est un crit ere de classi cation des op erations de communications.

Communications irr eguli eres

Dans le cas de communications irr eguli eres, on fait l'hypoth ese d'une communication al eatoire et uniforme sur le domaine. Chaque processeur virtuel va communiquer avec un autre processeur virtuel choisi al eatoirement selon une loi uniforme. Le domaine est partitionn e e n p blocs de taille n i 0 (P i=p i=1 n i = n). Pour un processeur virtuel d'une station i, l a probabilit e que la communication soit interne (i.e. ne sorte pas de la station) est egale n i =n. Pour une station i, l'esp erence math ematique des communications internes est egale a n 2 i =n. Pour le r eseau en entier, l'esp erence math ematique des communications internes est egale a P i=p i=1 n 2 i =n. Donc l'esp erence math ematique du volume de communications sur le r eseau (les communications externes) est egale a :