
HAL Id: hal-02101834
https://hal-lara.archives-ouvertes.fr/hal-02101834v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed computing power : from local function to
global computing

Laurent Bienvenu, Christophe Papazian

To cite this version:
Laurent Bienvenu, Christophe Papazian. Distributed computing power : from local function to global
computing. [Research Report] LIP RR-2003-15, Laboratoire de l’informatique du parallélisme. 2003,
2+10p. �hal-02101834�

https://hal-lara.archives-ouvertes.fr/hal-02101834v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du
Parallélisme
École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON
no 5668

Distributed computing power : from local

function to global computing

Laurent Bienvenu
Christophe Papazian

Février 2003

Research Report No 2003-15

École Normale Supérieure de
Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37

Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : lip@ens-lyon.fr

Distributed computing power : from local

function to global computing

Laurent Bienvenu
Christophe Papazian

Février 2003

Abstract

We show here a natural extension of finite graph automata, by allowing each
node of a network to store in its memory some pieces of information that are
only bounded by the size of the underlying network (like a unique address). De-
pending of the power of the new local transition function, we show results about
the power of the global function computed by the graph automata. The main
result is that the global power is always less than the local computing power
and even with very powerful local function (non recursive) we can not com-
pute all global functions (even some primitive recursive ones) : Distributed
computing is limited by its own structure.

Keywords: Graph automata, Computability, Distributed Algorithms

Résumé

1

1 Introduction

The main goal of this research is to understand the true power of distributed
systems : what they can compute about their own structure, what properties
they can recognize in their underlying network, what time is needed to compute
or recognize some particular properties. Graph automata is very suitable for
such a study because it is a simple and naturel way to modelize distributed
computing like networks of computers in computer science, or complex dynamic
systems in physics.

We show here some new results about non finite extensions of graph au-
tomata : we consider that each automaton in the network is no more finite but
as a memory size linked to the size of the network. Those non finite extensions
are motivated by two main reasons : as we study complexity and computability
in the limits, we can here consider that some natural properties that we effec-
tively use in practical life can be embedded in our model, like each node of the
network having a unique address in its memory (implying its memory size to be
greater than the logarithm of the size of the network). The second reason is to
better understand why the computing power is weaker than a Turing machine :
is it due to the limitation of each node (considered as a finite automaton) or a
more structural limitation due to the fact that the computing is distributed in
a network ?

We show here that distributed computing is limited by its own structural
properties.

History of graph automata

Graph automata were first introduced by P. Rosenstiehl [7], under the name
of intelligent graphs, surely because a network of finite automata is able to
know some properties about its own structure. P. Rosenstiehl created some
algorithms that find Eulerian paths or Hamiltonian cycles in those graphs, with
the condition that every vertex has a fixed degree [8]. These algorithms are
called ”myopic” since each automaton has only the knowledge of the state of its
immediate neighborhood.

A. Wu and A. Rosenfeld ([9] [10]) developed ideas of P. Rosenstiehl, using a
simpler and more general formalism : the d-graphs. Hence, a graph automata is
formed from synchronous finite automata exchanging information according to
an adjacency graph. A. Wu and A. Rosenfeld gave a linear algorithm allowing
a graph automata to know if its graph is a rectangle or not.

E. Rémila [5] extended this result to other geometrical structures like cylin-
ders, torii or spheres. Then C. Papazian and E. Rémila show how graph au-
tomata can recognize some properties of regularity in their own structure by
deciding if their underlying graph is a subgraph of an infinite regular network.

2

#

#

#

#
#

#

#

#

#

#
#

#

1

2
3

4

1
3
4

1 2

34

3
4

1
2

34 1
2

3

4

1

23

4

1
23

4

1

2 3

4

2

1 2

Figure 1: A d-graph (on right) and its underlying graph

2 Definitions

Notation : We will use d, i, j, k, n for integers, e, f for edges, and µ, ν for
vertices, G for graphs, A for automata, and L for languages.

πji is the projection function of arity j on the ith input : π5
3(a, b, c, d, e) = c.

When arity is obvious, we do not show it.
For any finite set Q, we note Q∗ the set of finite words on the alphabet Q.

2.1 Growing functions

For any growing function ϕ from N to N, we can define ϕ−1 such as :

ϕ−1(n) = min{i | ϕ(i) > n}

Of course, if limn→∞ ϕ(n) is infinite, then ϕ−1 is a total growing function from
N to N.

We note as usual ϕ ∈ O(ψ) iff ∃n, k ∈ N ∀i ≥ n (ϕ(i) ≤ k.ψ(i))
and ϕ ∈ o(ψ) iff ∀k ∈ N ∃n ∈ N ∀i ≥ n (k.ϕ(i) ≤ ψ(i))

2.2 A d-graph

A graph is a pair G = (V,E) where V is the set of vertices and E is the set
of edges. E is a subset of V 2. We only consider graphs with no loops (for all
ν ∈ V (ν, ν) �∈ E), and symmetric (if (ν, µ) ∈ E then (µ, ν) ∈ E). If V is finite,
we say that the graph G is finite.

Let d be a fixed integer such that d ≥ 2. A d-graph is a 3-tuple (G, ν∗, ρ),
where G = (V,E) is a symmetric connected graph with only two kinds of ver-
tices : vertices of degree 1 (which are called #-vertices) and vertices of degree
d; ν∗ is a d-vertex of G which is called the leader, or the general; ρ is a mapping
from E to {1, 2, ..., d} such that, for each d-vertex ν of V , the partial mapping
ρ(ν, .) is injective. The subgraph G′ of G induced by the set of d-vertices is
called the underlying graph of G.

From any graph G′ of degree at most d, we can construct a d-graph (G, ν0, ρ)
whose underlying graph is G′. For each vertex, we call an up-edge, an edge that
links this vertex to another vertex that is closer from the leader than itself.

3

2.3 Graph automata

Intuitively, a graph automata is a network of automata. We put a copy of the
same automata on each vertex of a graph, and we obtain a synchronous dynamic
system (similar to cellular automata) which is a natural model of networks. The
leader vertex will initiate the process of recognizing.

A d-automaton is a triplet A = (Q,Σ, δ) with :

• Q is a set of state (the memory of automaton) with 5 particular states
: An accepting state qA, a rejecting state qR �= qA, an initial state qI , a
quiescent state q0 and a ”not here” state q#.

• Σ is a finite set of messages with particular messages : σiI with 1 ≤ i ≤ d
are the initial messages. σ0 is the ”do nothing” message. σ# is the empty
message.

• δ is the transition function from Q× Σd into Q× Σd such that

– q0 is quiescent (δ(q0, (σ0)d) = (q0, (σ0)d))

– q# is unreachable (∀q, q′ ∈ Q ∀σ, σ′ ∈ Σd with δ(q, σ) = (q′, σ′) q �=
q# ⇒ q′ �= q#)

– q# is greedy (∀q, q′ ∈ Q ∀σ, σ′ ∈ Σd with δ(q, σ) = (q′, σ′) q = q# ⇒
q′ = q#)

– qA and qR are greedy.

We say that A is finite if Q is finite.

A graph automaton is a set M = (Gd, A) with Gd a d-graph, and A a finite
d-automaton. A configuration C of M is a mapping from the set of vertices of
Gd to Q× Σd, such that C(ν) = (q#, σd#) iff ν is a #-vertex.

We compute a new configuration from a previous one by applying the tran-
sition function δ simultaneously to each vertex of Gd, by reading its state and
the messages previously computed by its neighbors : if we consider a vertex ν
and its neighbors νi such that ρ(ν, νi) = i then

Cnew(ν) = δ
(
π1(C(ν)), πρ(ν1 ,ν)+1(C(ν1)), ..., πρ(νd,ν)+1(C(νd))

)
We note C � Cnew.

Hence, we have a synchronous model, with local memory. The initial config-
uration CI is a configuration where all vertices are quiescent, except the leader :

• CI(ν∗) = (qI , σ1
I , ..., σ

d
I)

• CI(ν) = (q0, (σ0)d) for all other non #-vertices

• CI(ν) = (q#, (σ#)d) for all #-vertices

We say that a configuration C is reachable if there is a finite sequence of
configuration (C1, C2, ..., Cn) such that CI � C1, Ci � Ci+1 and Cn � C. We
note CI �∗ C.

4

A configuration C is accepting-terminal if π1(C) = qA or C is rejecting-
terminal if π1(C) = qR. Hence, a d-graph is accepted if CI �∗ C with C
accepting-terminal and rejected with C rejecting-terminal (due to the greediness
of qA and qR, this two facts exclude each other).

Now we want to link the memory size of the automata on our networks to
the size of the networks. We have many good reasons to build such a link.
A practical reason is to allow a theoretical study of networks algorithm where
we are allowed to manipulate logarithm-size data into the memory of one of
the nodes of the network. Such an hypothesis implies that the memory size of
automata is at least greater than k. log(n) (with n the number of nodes in the
network). A theoretical reason is to better understand the structure of network
computing. What memory size do we really need to compute some recognizing
tasks ? This article will answer to those questions.

Intuitively, a ϕ-family is a single automaton with growing memory size.
When using a ϕ-family in a network, we use in fact the automata An in the
family, where n is the number of vertices in the network. This is a modelisation
of the fact that we assure each automaton on the network to be able to encode in
its memory some particular pieces of information about the network, whatever
the size of the considered network is.

A ϕ-family of d-automata is a set F∆ = (Ai)i∈N such that :

• ϕ is a space-constructible growing function in NN.

• Ai = (Qi,Σ, δi) where Qi = Q
ϕ(i)
0 (Q0 is a finite set of states) and δi =

∆|Qi×Σd with ∆ function from Q∗ × Σd into Q∗ × Σd. ∆ is the global
transition function of the family.

Hence, the function ϕ is the magnitude of the size of the memory of the
automata.

A language L of graphs is recognize by a family F iff every graph of L with n
vertices is recognized by An ∈ F , and An rejects all other graphs with n vertices.

So we have a computing model for a natural decision problem. Inputs are
d-graphs, machines are the finite d-automata (if we consider only the classical
model) or the ϕ-family (for the extended model), and answers are Yes the graph
is recognized, No the graph is not recognized or no answer.

3 The classical model : ϕ(n) = 1

When we consider ϕ as a constant function, each ϕ-family corresponds to a
single finite d-automaton. This is in fact the classical model of recognition on
graph automata.

The main algorithmic problem of this model is that finite automata can not
store in their memory an arbitrary number. So we can not give an address to
each node of the network and we have to consider the space-time of the graph
automata to make some computations dealing with the number of vertices or
some structural properties of the underlying network.

5

Many results have been proved in this model and interested readers are in-
vited to look at the bibliography to understand the basics of recognizing by
finite automata ([9],[10],[5] and see [2] and [3] for more complex algorithms).
We present here one of the most important (and easiest) algorithmic process
in recognizing by graph automata : the linearisation. It allows to consider the
set of vertices as a virtual tape (like a turing machine with one tape bounded
by the size of the input for example), and it implies a canonical order on ver-
tices (allowing intuitively to consider “for each nodes do ...” loops in our
network algorithms).

3.1 Building a tree : the virtual tape

The best way to build the virtual tape is to build a breadth first search tree.
First the leader vertex sends a signal Build Tree to each of its neighbors. Then,
the first time a vertex receives a signal Build Tree from a neighbor ν it keeps
into its memory that ν is its father (if it receives multiple signal Build Tree
at the same time, it can choose one, and ignores the others), and then sends
the signal Son to its father and the signal Build Tree to its others neighbors.
When a vertex receives the signal Son from one of its neighbors µ, it keeps into
its memory that µ is one of its son in the tree.

Hence, a depth first search in this tree implies a canonical order on vertices
(without encoding address into their memory), and allows to consider the set of
vertices ordered, like a tape.

As this process can be done with finite automata, it can be used we any
ϕ-family. Hence, we can build a tape of size n.k.ϕ(n) for any graph with n
vertices.

4 The numbered model : ϕ(n) = log(n)

Considering ϕ(n) = log(n) is a natural question. First, when each automaton
has a memory of size k. log(n), we can store address in their memory and then,
we can consider the graph automata like ”real” networks. Moreover, we can
encode the entire graph by adjacency lists in the entire memory, as the adjacency
list is of size n. log(n) and we have n automata of size log(n) : the virtual tape
is now enough large to store the entire graph. log is the least function to have
this property.

The fact that the set of messages is finite is not a restriction. It does not
prevent an automaton from transfering all its (unbound) memory to one of its
neighbors. One can just make the transfer of all bits one after the other by
using messages.

4.1 The power of the global transition function ∆

If we consider any log-family, with ∆ an arbitrary function in NN, the model
is of course more powerful than a Turing machine, as we could consider non
recursive ∆.

Lemma 1 There is a non recursive language recognized by a log-family

6

Rec Prim

Recognizable

Non Rec

Rec

Non Recognizable

Figure 2: The class recognizable by a log-family

Proof. K is a non recursive language on N. Consider the following language
K̃ on the set of d-graphs : K̃ = {G | G is a cycle of n vertices and n ∈ K }.

K̃ is obviously non recursive, but can be recognized in the following way :

1. Every vertex verifies it has exactly two neighbors. If it is not the case,
there is a reject message that is sent (in all directions) to the leader to
reject the graph.

2. At the same time, the leader send its memory (in fact 1) to one of its
neighbors. When a vertex receives the memory of one of its neighbors, it
adds 1 and sends the result to its other neighbor, until the leader vertex
receive n, which will be the size of the cycle.

3. We can then use the ∆ transition to know if n is in K or not.

So K̃ is recognized by a log-family.

Corollary 1 For any computability class C, some language of C can be recog-
nized by a log-family

This result can be seen as the following figure. We saw that we can recognized
complex languages. We will proof that we can not recognize all languages, even
among the simplest. So this model defines some transversal class of recognition.

5 The complete model : ϕ(n) = n. log(n)

If we now consider ϕ(n) = n. log(n), we will be able to encode the entire graph
(for example, by adjacency lists) into the memory of a single automaton (the
leader). As we will see, n. log(n) is the least function that have this property
and it will imply the total powerfulness of the class of n. log(n)-family.

Lemma 2 The number of connected graphs (with n vertices) of degree 3 is
ultimately greater than n

n
5 .

7

ν
12 2k−2 2k108642

µ

ν

ν
ν

Figure 3: Example of Gσ

Proof. We build a family F of graphs that has enough large cardinality.
Consider the graphs Gσ = (V,E) (n = |V |) such that

V =
{
ν1, ν2, ..., ν�n

2 �, µ1, µ2, ..., µ	n
2

}

E =
{

(νi, νi+1) | 1 ≤ i <
⌊n

2

⌋}
∪

{
(µi, µi+1) | 1 ≤ i <

⌈n

2

⌉}
∪

{
(ν2i, µ2σ(i)) | 1 ≤ i ≤

⌊n

4

⌋}

where σ is a permutation of {1, ..., ⌊n4 ⌋}.
It is easy to see that each graph of this family can not be isomorphic to

more than one another. So there is at least 1
2 (n4)! graphs with n vertices. This

is ultimately larger than n
n
5 .

Corollary 2 There is a constant kG such that we need kG.n. log(n) bits to
encode a d-graph with n vertices (and kG ≥ 1

5).

As we can encode the entire underlying network into the memory of a single
automaton, we can deduce the following result :

Lemma 3 All languages can be recognized by a n. log(n)-family

Proof. Just build a depth first search tree, create a numbering of the
vertices and each vertex sends to the leader the adjacency list of its neighbors.
Then use ∆ to decide if the graph is in the language.

But we can extend the previous lemma into the following equivalence

Theorem 1 ϕ is a growing function from N into N. All languages can be
recognized by a ϕ-family iff n log(n) ∈ O(ϕ(n)).

Proof.
If n log(n) ∈ O(ϕ(n)), using the lemma 3, we can immediately deduce that

all languages can be recognized by a ϕ-family.
In the other way, if we suppose n log(n) �∈ O(ϕ(n)), we have to prove that

there is a primitive recursive language that is not recognized by any ϕ-family.
The number of possible transition functions for automata with a memory

size less than λ.ϕ(n) is 2(λ.ϕ(n).2λ.ϕ(n)).
Using the lemma 2, we know that we have at least 2n

n
5 different parts of

d-graphs with n vertices. But, using hypothesis, we have for any λ (with in fact
λ = log(|Q0|)), 2n

n
5 �∈ O(2(λ.ϕ(n).2λ.ϕ(n))). So, for any λ and any n0 there is a

n1 > n0 such that ”there is a (finite) set of d-graphs (with n1 vertices) that is
not recognized by any ϕ-family with memory size less than λ.ϕ(n)” (this is the
� property).

So we recursively build a language L =
⋃
Li such that λ = 1 and n0 = 1

we obtain n1 and L1 (that is not recognized by any automaton with memory

8

Figure 4: Transformation Θ : On the left G, on the right an element of Θ(G)

size less than 1.ϕ(n)), then having Li and ni we obtained (by � property using
λ = i+ 1) Li+1 and ni+1.

L is not recognized by any ϕ-family, because for any ϕ-family, there is a
λ such that the memory of the automaton is less than λ.ϕ(n), so it does not
recognize Lx>λ.

Corollary 3 If ϕ(n) ∈ o(n log(n)) is a growing primitive recursive function
there is a primitive recursive language L that is not recognized by any ϕ-family.

Proof. By using hypothesis, there is k ∈ N such that λn = n. log(n)
k.ϕ(n) and

for all n we have 2(λn.ϕ(n).2λn.ϕ(n)) < 2n
n
5 .Then the recursive method we give

to build L is primitive : For any size n, just try all possible transition function
and find one Ln that is not recognized by a ϕ-family with memory size less than
λn.ϕ. As limn→∞ λn = +∞, we effectively build a non recognizable primitive
recursive language.

Finally, we show that we can precise the structure of the computational
power of the ϕ-families for ϕ ∈ o(n. log(n)), and define a hierarchy of network
recognizing.

Theorem 2 (Theorem of network recognizing hierarchy) Let ϕ and ψ
be two growing function in o(n. log(n)) such that ϕ ∈ o(ψ). Let Cψ (respectively
Cϕ) the class of languages that can be recognized by one ψ-family (respectively a
ϕ-family). Then Cϕ � Cψ.

Proof. We will build a language that will be recognizable by a ψ-family
and that will be not recognizable by any ϕ-family.

We first define a transformation Θ from languages of graphs into languages
of graphs such that Θ(

⋃
Ai) =

⋃
Θ(Ai) and Θ({G = (V,E)}) is the set of

graphs G′ = (V ′, E′) such that

§1 V ′ = V ∪W with W = {w1, w2, ..., wm}.
§2 |V ′| ≥ max[(2|V | + 1) , (ψ−1(|V | log |V |))].

§3 E′ = (E \ {(ν, ν′)}) ∪ {(ν, w1), (ν′, w1)} ∪ {(wi, wi+1)} with (ν, ν′) an ar-
bitrary edge of V .

Informally, we take a graph and add a long band such that we can effectively
encode the graph into a memory size of ψ(|V ′|) ≥ |V | log |V |. Due to condition
§2, we can easily find where is the band and where is the original graph, as
|W | > |V |.

So the process of recognizing Θ(L), for any language L, by a ψ-family is as
follow :

9

• First we have to find where is w1. We can use the linear time bridge
detection algorithm on graph automata as explained in [10]. Then verify,
for each bridge, that we have on one side a branch that is longer that
the size of the other side. This can be easily done in linear time by finite
automata. If we don’t find such a branch, the graph is rejected. By this
first step of detection we verify §1, §3 and |W | > |V |.

• Then, each vertex of V will send its adjacency list to the leader (assuming
that ν and ν′ the neighbors of w1 in V are neighbors). If the leader can
not store in its memory the lists of adjacency of the entire graph, it means
that we do not have |V ′| ≥ ψ−1(|V | log |V |), and the graph is rejected.

• As all the graph is now encoded into the memory of the leader, just apply
properly defined ∆ to know if the graph is in L.

So Θ(L) is recognizable by some ψ-family. But, for the same cardinality
reasons as the proof of theorem 1, Θ(L) will not be recognizable by any ϕ-
family.

In fact, as we can see from the proof, the transformation Θ is not useful by
adding vertices to the graph (to allow more global memory size), but by locally
increasing the size of the memory of each automaton. Hence, if we consider
graph automata with finite automata, such a transformation is useless.

6 To conclude

At last, we ca say that the local power (computational power of ∆) is never
entirely transmitted to the global computational power of the network, as the
only case where the global power equals the local power is when we can centralize
all pieces of information about the network into a single node.

The main result of this research is the following idea : To allow the detection
of more properties in a network, you have to add memory to at least one node
(the leader), and it’s useless to add more nodes.

So, we can represent the structure of recognizable classes by the following
figure. If you only consider recursive local transition function ∆, the figure is
the same with removing the top part of non recursive functions.

Hence, some properties on graphs, even among the simplest, resist to be
recognized by distributed computing.

References
[1] C. Papazian, E. Rémila, Graph Automata Recognition, Research report, LIP (1999)

[2] C. Papazian, E. Rémila, Linear Time Recognizer for Subsets of Z2, Proceedings of
Fundamentals of Computation Theory, Springer LNCS 2138, FCT 2001, 400-403

[3] C. Papazian, E. Rémila, Hyperbolic Recognition by Graph Automata International
Colloquium on Automata, Languages and Programming, Springer LNCS 2380,
ICALP 2002, 330-342

[4] J. Mazoyer, C. Nichitiu, E. Rémila, Compass permits leader election, Proceeding
of SODA, 948-949, (1999)

10

Non Rec

Rec

Rec Prim

n.log(n)

Finite Automata

log(n)

n

Figure 5: Structure of recognizable classes by ϕ-families

[5] E. Rémila, Recognition of graphs by automata, Theoretical Computer Science TCS
136, 291-332, (1994)

[6] E. Rémila, An introduction to automata on graphs, Cellular Automata, M. De-
lorme and J. Mazoyer (eds.), Kluwer Academic Publishers, Mathematics and Its
Applications 460, 345-352, (1999).

[7] P. Rosensthiel, Existence d’automates finis capables de s’accorder bien qu’arbi-
trairement connectés et nombreux, Internat. Comp. Centre 5, 245-261 (1966).

[8] P. Rosensthiel, J.R Fiksel and A. Holliger, Intelligent graphs: Networks of finite
automata capable of solving graph problems , R. C. Reed, Graph Theory and com-
puting, Academic Press, New-York, 210-265 (1973).

[9] A. Wu, A. Rosenfeld, Cellular graph automata I, Information and Control 42,
305-329, (1979).

[10] A. Wu, A. Rosenfeld, Cellular graph automata II, Information and Control 42,
330-353, (1979).

