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Abstract

The goal of our paper is to propose a way to obtain more re�ned
de�nitions of randomness than the notions known so far �e�g� Martin�
L�of randomness	� We show that a 
perfect� de�nition of randomness
based on provability does not exist� We then weaken our require�
ments on the de�nition by replacing provability by consistency and
obtain a formula that de�nes a set of random sequences that ful�lls
rather strong conditions�
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R�esum�e

Nous proposons ici de ra
ner les d�e�nitions classiques du caract�ere
al�eatoire des suites in�nies �en particulier la tr�es classique d�e�ni�
tion de Martin�L�of	� Nous prouvons qu�il n�existe pas de d�e�nition
parfaite fond�ee sur la notion de prouvabilit�e� En rempla�cant la prou�
vabilit�e par la consistence� nous obtenons une d�e�nition des suites
al�eatoires tr�es g�en�erale qui remplit des conditions raisonablement
fortes�

Mots�cl�es� Suites al�eatoire� logique� mod�ele de Solovay
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Abstract

The goal of our paper is to propose a way to obtain more re�ned
de�nitions of randomness than the notions known so far �e�g� Martin�
L�of randomness�� We show that a �perfect� de�nition of randomness
based on provability does not exist� We then weaken our requirements
on the de�nition by replacing provability by consistency and obtain a
formula that de�nes a set of random sequences that ful�lls rather strong
conditions�

Introduction

If somebody tells us that he have tossed a coin sixty times getting a string u�

������������������������������������������������������������

� � stands for head� � for tail	 we are not surprised� However� the string u�

������������������������������������������������������������

looks suspicious and we are ready to reject the assumption that the coin is fair�
Why� Is not the probability of both sequences the same����� �
There are four explanations why the former sequence� u� � looks more ran�

dom than the latter� u� �
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a	 u� belongs to a simply described set of small measure� namely� to the set
of strings with alternating digits having the measure ���� � In contrast�
we do not see any simply described set of small measure containing u� �

b	 u� has much regularities� it may be described very easily as 
�� thirty
times�� in contrast the �rst string seems to have no shorter descriptions
than the displayed one�

c	 u� is predictable� if you give its �� �rst bits to a person he will surely
predict the rest�

d	 the subsequence of u� consisting of all odd terms has much more zeros
than ones �actually no ones at all	� and we expect that for any rule of
choice of a subsequence �which does not use the information of the value
of the chosen term	 in the resulted subsequence� the frequency of zeros is
about one half�

It is pretty clear that it is impossible to divide �nite strings in random and
non�random� One may hope only to measure the amount of randomness� which
should re�ect our belief in that the sequence was obtained by fair coin tossing�
The argument b	 can be formalized by means of the Kolmogorov complexity

K�u	 de�ned� for a �nite binary sequence u� as the bit size of minimal program
that prints u � The less is l�u	 � K�u	 � l��	 stands for the length of strings	
the more random looks the string�
The reason a	 is more or less equivalent to b	� Indeed� if K�u	 is small then u

belongs to the set fug of small measure having small Kolmogorov entropy �the
Kolmogorov entropy of a set is the bit length of the shortest program printing�
in some order� the list of elements in the set	� Conversely� if u belongs to a
small set A having small Kolmogorov entropy� then u can be identi�ed by the
pair �program printing the list of elements of A � the number of u in that list	�
which has short size since both its components are short�
Reasons c	 and d	 can be also reduced to a	� Thus� in the case of �nite binary

strings� we have a quite adequate de�nition of the amount of non�randomness
in a string� This is the value l�u	�K�u	 �
The things seem to become easier� in a sense� when we turn to the case of

in�nite binary strings ��binary sequences	� One may hope to divide them into
random and non�random� That is� to give a rigorous de�nition of a sequence
which may be an outcome of in�nite series of coin tosses� For instance� everyone
will agree that the in�nite coin tossing may not result in the series

�����������������������������������������������������

The aim of the de�nition of randomness is to clear our intuition in this respect�
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There are four known approaches �according to four above explanations	 to
de�ne randomness of in�nite sequences� Let us sketch these four approaches
�the detailed survey may be found in ���� and three of the four approaches are
exposed in ��� and ���	� We denote by � the set of all in�nite binary sequences
x �
The �rst approach corresponds to a	� One �xes a countable class L of

subsets of � of measure � and then de�nes a sequence to be random if it
belongs to all sets in L� �In this paper� the measure means the Lebesgue� or
uniform� measure in � � it is denoted by mes� 	 The set R of random strings has�
of course� measure one� The larger class L we take the more re�ned notion of
randomness we obtain and the stronger is our belief that any random sequence
may be obtained by fair coin tossing� Equivalently� one can choose a class S of
subsets of � of measure zero and de�ne a sequence to be random if it avoids
�does not belong to	 all the sets in S� The common name of obtained notions
of randomness is typicalness�
The most famous de�nition of typicalness belongs to Martin�L�of ��� and

is as follows� Let �u denote the set of all in�nite continuations of a �nite
string u� Recall the the set A � � has measure � ��is a null set	 if for any
n there exists a set Bn of �nite strings such that �	 A �

S
u�Bn

�u and �	P
u�Bn

mes��u	 �
P

u�Bn
��l�u� � ��n � In other words� A can be covered

by an open set �in Cantor�s topology	 of arbitrarily small measure� Martin�L�of
considers the constructive version of this de�nition� a set A is called a e�ectively
null set if there exists a sequence Bn satisfying �	 and �	 such that the set
fhu� ni � u � Bng is enumerable� This means that there exists an algorithm
printing all the elements of this set in some order �the order does not matter	�
As the set may be in�nite� the process of printing may last in�nitely long�
According to Martin�L�of� the sequence is called random �we will also use

the term 
typical�	 if it avoids all e�ectively null sets� Thus as S one takes the
class of sets of the form

T
n

S
u�Bn

�u � where
P

u�Bn
��l�u� � ��n and the set

fhu� ni � u � Bng is enumerable� The family S is countable� as any its element
is identi�ed by an algorithm and the number of algorithms is countable�
The complements of e�ectively null sets are called e�ectively full sets�
It turned out that every law of probability theory among the laws studied

so far includes an e�ectively full set� and hence is satis�ed by any Martin�L�of
random sequence� We call a law of probability theory �LPT	 an assertion  
about an in�nite binary sequence such that the set fx �  �x	g has measure
one� The examples of LPTs are the law of large numbers �the frequency of
zeros among �rst n bits tends to �!�	 or the law of the iterated logarithm�
Thus� for any such particular  studied by probability theory there exists an
e�ectively full set included in fx �  �x	g � For one of them� namely for ergodic
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theorem� this has been unknown for a decade� In other words� Martin�L�of
random sequences satisfy all known LPTs� Yet one cannot be sure that this
will be so for ever� we can by now construct ad hoc LPTs that are not satis�ed
by Martin�L�of random sequences�
The second� the third and the forth approaches correspond respectively to

arguments b	� c	� d	 above� The obtained notions of randomness are called
chaoticness� unpredictability and stochasticness� We will not present the de�ni�
tions of these notions� the interested reader is referred to ���� Let us just mention
that chaoticness is equivalent to typicalness� and both imply unpredictability�
unpredictability implies stochasticness� which is weaker than unpredictability�
The notions of chaoticness and stochasticness are also presented in ��� and
in ��� �the reader should be warned that in ��� instead of the terms chaoticness
and stochasticness the terms Kolmogorov randomness and Mises�Kolmogorov�

Loveland randomness are used respectively	�
The goal of our paper is to propose a way to obtain more re�ned de�nitions

of typicalness than the notions known so far� Why we think that the existent
notions like the Martin�l�of�s one is not good enough� That is because one can
de�ne �in a quite simple way	 a particular sequence� which is Martin�L�of ran�
dom� For instance� the binary representation of the so called Chaitin�s number
of wisdom ���� this real number is the probability of a programm to halt when
a programming system is �xed and the set of programs is endowed by some
standard probability distribution� Or� one can de�ne a particular Martin�L�of
random sequence by means of simple diagonal de�nition� For our intuition it
seems slightly uncomfortable to accept a de�nable sequence as random�
Another argument agains the notions of randomness known so far is that

they use the theory of algorithms� The notion of an algorithm cannot be ex�
pressed� as far as we know� in terms of set theory �see ���	� Thus it is not quite
natural to see that it interfers with the notion of randomness� We would prefer
a de�nition expressed in a logical framework�
The perfect notion of a random sequence in the framework of typicalness

would be a notion satisfying two principles�

� Almost all sequences are random� That is� the set of random sequences
has measure ��

� Any random sequence satisfy any mental law of probability theory�

Let us formulate both principles in the rigorous form� By the notion of
randomness we mean a formula ��x	 in a set theoretical language �that of
Zermelo"Fraencel system� ZFC 	� The precise form of the principles is�

��	 ZFC � mesfx � ��x	g � � � That is� it is provable� in Zermelo�Fraencel
system� that almost all sequences are random�
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��	 For any set theoretic formula  �x	 � if ZFC � mesfx �  �x	g � � � then
ZFC � �x ���x	 � $�x		 � That is� if it is provable� in ZFC� that the
set fx � � �  �x	g has measure �� then it is provable� in ZFC� that all
random sequences satisfy  �x	 �

It is not hard to see that such a perfect notion of randomness does not exist
�Theorem �	� Moreover� there is no notion of randomness satisfying ��	 and the
following weak form of principle ��	�

���	 For any particular ��de�nable	 sequence x � � it is provable� in ZFC�
that x is not random� That is� for any formula F �x	 in the language of
ZFC with the single parameter x such that ZFC � �� %x � �	 F �x	 it
holds ZFC � ��x � �	 �F �x	 �� � ��x		 �

Principle ���	 follows from ��	� as for any de�nable sequence x� � � the
assertion x 	� x� is a law of probability theory and therefore on can prove that
any random sequence is di�erent from x� �
Thus we should moderate our requirements� Our proposal to this end� which

seems to be a new one� is as follows� Consider the following weaker form of
principle ��	�

����	 For any set theoretic formula  �x	 such that it is provable in ZFC that
the set fx � � �  �x	g has measure � � it is not provable in ZFC that
there is a random sequence satisfying  �x	 �

Informally� the principle states that no one will ever prove that a particular
law of probability theory is not satis�ed by some random sequence� In partic�
ular� any notion of random sequence satisfying ����	 is resistant to the above
critics of Martin�L�of randomness�
This is� however� not all the requirements we �nd necessary to impose on

a notion of randomness� The point is that the principles ��	 and ����	 do not
imply� that the sequence �say	

���������������������

is not random� Principle ����	 implies� of course� that one cannot prove that it
is random� But we expect that such laws as 
not to be identically zero� should
be proved� This leads us to the third principle�

��	 For any known law  �x	 of probability theory it is provable� in ZFC�
that any random sequence satis�es  �x	 � More speci�cally� it is provable�
that any random sequence is Martin�L�of random�
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Our main result is the notion of randomness denoted by ��x	 that satis�es
��	� ����	 and ��	 �Theorem �	� Principle ��	 has of course a minor point� the
choice of Martin�L�of randomness there is not motivated anyhow �the sameminor
point is in the Martin�L�of�s de�nition� there is no solid basis to restrict all
the LPTs to e�ectively full sets	� However� our construction applies to any
previously speci�ed stock of LPTs� for any de�nable provably countable family
of provably measure�one sets there exists a notion of randomness satisfying ��	
and ����	� and and such that is is provable that any random sequence belongs
to all those sets�
To present the idea let us come back to the Martin�L�of randomness� Recall

that countable intersections of open sets are called G� sets� Let us say that a
sequence of sets Bn of �nite binary sequences is a code for a G� set U � �
i� U �

T
n

S
u�Bn

�u � By the above de�nition� a sequence x � � is Martin�L�of
random i� it avoids any G� set with enumerable code�
Our approach will be to increase the number of full G� sets to avoid� at

least including all those having arithmetical codes� This will result in the notion
of randomness satisfying ��	� ����	 and a much more stronger version of ��	 than
the above one�
The de�nition of � is as follows� Consider any class of sets A� Let us call a

sequence x A�random if it avoids all null G� sets having a code in A� If A is
countable� then the set of A�random sequences has full measure� Let L be the
set of all constructible sets �in G�odel�s sense	� ��x	 will say that x � � is L�
random whenever the set of all L�random sequences has full measure� and x is
arithmetically random �i� e� A�random� where A is the class of all arithmetically
de�nable objects� see below	 otherwise� It is straightforward that � satis�es
��	 and ��	� Using the Solovay model� one may prove that it satis�es ����	�
The notion � satis�es also the common closure properties� it is stable with

respect to �nite changing� it is stable with respect to choosing a subsequence
by means of an algorithm �the algorithm makes decisions which term to choose
on the basis of the value of previously chosen terms	�

� �Provable� set theoretic randomness

In what follows� sequence will mean� an in�nite binary sequence� that is an
element of the set � � ���
One could have the intension to de�ne a sequence r to be random in the case

when it avoids any set X � �� de�nable by a set theoretic formula $�x	 such
that ZFC proves that mesfx � � � $�x	g � �� where mes is the Lebesgue
measure� However this would not be a good approach�
Indeed in this case one would have got a mixture of mathematical and meta�
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mathematical �provability	 notions� that hardly can be adequately realized in
a mathematically legitimate de�nition� To see this suppose� towards the con�
trary� that a set theoretic formula ��x	 adequately expresses the de�nition
above� Then � would satisfy the requirements ��	 and ��	 above� However�

Theorem � There does not exist any formula � satisfying both ��	 and ��	�

Proof� Suppose that � is such a formula�
The argument is based on ideas connected with the G�odel constructibility�

G�odel de�ned in ���� a class L of sets called constructible sets and proved that
L is a model of ZFC� The statement that all sets are constructible is called
the axiom of constructibility and formally abbreviated by the equality V � L�
where V denotes the universe of all sets� The axiom V � L was proved to
be consistent with ZFC by G�odel �the key fact is that V � L is true in the
class L 	 and independent from ZFC by Cohen in ����� �We refer to ��� #� in
matters of all general set theoretic facts used below as well as in matters of the
history of related set theoretic research�	
The most important here property of L is that there is a well�ordering �L

of L� de�nable by a concrete set theoretic formula�
Let now  �x	 say the following� x � � satis�es ��x	 but x is not the

�L�least element of the set fx � � 
 L � ��x	g� �The 
but� reservation makes
sense only when the intersection fx � � � ��x	g 
 L is non�empty�	
It follows from ��	 that ZFC proves that fx �  �x	g is a set of full measure�

Therefore� by the assumption of ��	� ZFC must prove that ��x	 implies  �x	�
However the axiom V � L �which is consistent with ZFC 	 clearly implies that
there is a sequence x satisfying ��x	 but not  �x	 � namely� the �L�least
element of the set fx � � � ��x	g� which is equal to fx � � 
 L � ��x	g in the
assumption V � L � �

� �Consistent� set theoretic randomness

Thus there is no formula satisfying both ��	 and ��	� This setback leads us to
the idea to reduce our expectations� For instance one may be interested to �nd
out whether there is a set theoretic formula ��x	 satisfying ��	 and a weaker
than ��	 assumption� ����	� We will demonstrate that such a formula really exists
� and that it is a derivative of an even more interesting formula� that of the
Solovay randomness�

��� Solovay random sequences

De�nition � A sequence x � � is Solovay random over L i� it is L�random
in the sense above� that is� it avoids any null G� set with a code in L�
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The formula saying that x � � is Solovay random over L is denoted by
�L�x	� Put RL � fx � � � �L�x	g �all Solovay random over L sequences	� �

In fact it will not be di�erent to say� whenever X � � is a null Borel set
with a code in L� � To see this note� �rst of all� that any null Borel set X � �
can be covered by a null G� set U � �� which is a classical fact of measure
theory� The construction of the covering set U can be maintained e�ectively
enough to get the following re�nement�

� any null Borel set coded in L can be covered by a null G� set coded in L �

��� Solovay random sequences in di�erent set universes

It occurs that basic properties of RL depend on the structure of the set universe�
In other words� there is not much to say about RL in ZFC� but some special
provisions can make RL to be a very useful set�
At the trivial side� RL is obviously empty if the axiom of constructibility

V � L is assumed� Thus RL can be very small� even empty�
To make RL large� even a set of full measure� another consistent set the�

oretic hypothesis can be employed� Recall that �� is the least uncountable
cardinal� or� that is the same� the least cardinal bigger than �� � cardN� the
countable cardinality�
By �L� they denote 
�� in the sense of L �� that is� something which is

de�ned� in L� as the least uncountable cardinal� One easily sees that �L� is�
from the point of view of the whole set universe� an ordinal number �perhaps�
not a cardinal � 	� which satis�es either �L� � �� or �L� � �� �
The 
or� case follows e� g� from V � L� and is not much of interest here�
The 
either� case is also consistent with ZFC� but it needs to apply the

method of forcing to get a suitable model� Models of ZFC which satisfy
�L� � �� belong to a wide class of collapse generic models� if the inequality
holds� they say that �� collapses �in the extension from L to the whole set
universe V 	�

Lemma � If �L� � �� then RL is a G� set of full measure�

� It would be di�cult to fully present here the involved mechanism of coding Borel subsets
of �� It is based on the observation that construction of a Borel subset of � from sets of
the form �u� where u is a �nite binary sequence �see Introduction� needs only countably
many applications of the operations of countable union and countable intersection� This can
be adequately coded e� g� by a sequence c � �� Sequences which code Borel sets this way are
called Borel codes� The set of all Borel codes is a co�analytic subset of � �

� Cardinals are viewed as initial ordinals� i� e� those ordinal numbers � which are not
equinumerous to any � � � �
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Proof� It su
ces to prove that the set � 
 L of all constructible sequences
is countable in the assumption �L� � ��� To see this note that� in L� the
continuum hypothesis ��� � �� holds� hence sequences in � can be put in
� � � correspondence with �nite and countable ordinals� However �nite and
L�countable ordinals is the same as ordinals smaller than �L� � so that we have
only countably many of them by the assumption �L� � �� � �

It occurs that �L� � �� is not necessary for RL to be of full measure� in
so�called amoeba generic models we have �L� � �� but RL is of full measure�

��� Solovay random sequences in the Solovay model

The behaviour of the Solovay random sequences becomes especially interesting
in the Solovay model � which is a kind of a collapse generic model of ZFC �
To obtain the Solovay model� one has to �x an inaccessible cardinal � in

the constructible universe L� Then one de�nes a generic extension of L� which
is a model of ZFC where all L�cardinals � � �� including �L� � but not the
cardinal � itself� become countable� The extension is the Solovay model� It
has a lot of applications in set theory� for instance it is true in this model that
all projective sets of sequences are Lebesgue measurable� This result is based
on the following key fact �we refer to ��� #� for proof	�

Proposition 	 The following is true in the Solovay model� If X � � is

de�nable by a set theoretic formula containing only sets in L as parameters

then there is a Borel set B � � with a code in L such that� for any Solovay

random over L sequence x� we have x � X 
� x � B � �

Note that �L� � �� holds in the Solovay model by the construction� There�
fore RL has full measure in the Solovay model by Lemma �� so that� in the
Solovay model� every set of sequences� de�nable by a formula with parameters
in L� is a Borel set modulo a null set� It follows that every such a set of se�
quences is Lebesgue measurable in the Solovay model � and this remains true
even if we allow� in addition� arbitrary parameters in � in de�nitions of sets�

Corollary 
 The following is true in the Solovay model� If X � � is a set of

full measure� de�nable by a formula containing only sets in L as parameters�

then RL � X �

Proof� By Proposition #� we can w� l� o� g� assume that X � � is a Borel set
of full measure� coded in L� Then� it follows from observation at the end of
Section ���� that there is a null measure G� set U � �� coded in L� such that
X � � � n X is a subset of U� However U 
 RL � � by de�nition� It follows
that RL � X� as required� �
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��	 Arithmetical randomness

Let us �x once and for all a recursive enumeration fulgl�� of all �nite binary
sequences� Let Jl � �ul � fx � � � u � xg� For any �in�nite	 sequence c � ��
let Uc be the set of all pairs hi� li of natural numbers such that c��i�l	 � ��
�Thus Uc can be an arbitrary subset of N

�� 	 We �nally de�ne

Gc �
�

i��

�

hi�li�Uc

Jl �

which is clearly an arbitrary G� subset of � �
Let us say that a set G � � is an arithmetically coded G� set i� G �

Gc for an arithmetically de�nable sequence c � �� � c � � is said to be
arithmetically de�nable i� there exists a formula with addition� multiplication�
equality relation� the relation 
 x�i	 � � � and with quanti�ers over natural
numbers which is true if and only if x � c �	

De�nition � �introduced in ���	 A sequence x � � is arithmetically random

i� it avoids any null measure arithmetically coded G� set�
The formula saying that x � � is arithmetically random is denoted by

�A�x	� Put RA � fx � � � �A�x	g �all arithmetically random sequences	� �

One easily proves� in ZFC� that RL � RA� or� in other words� �L�x	 implies
�A�x	� Unlike RL� the set RA is� provably in ZFC� a set of full measure�
Clearly any Martin�L�of random sequence x � � belongs to RA �

��
 A formula for �consistent
 randomness

Let ��x	 be the formula saying�

� x � RA� and if RL is a set of full measure then x � RL �

Thus � de�nes the set RL of all Solovay random sequences over L � provided
this is a set of full measure� while otherwise it de�nes simply the set RA of all
arithmetically random sequences� It easily follows that � satis�es ��	�

Theorem � The formula ��x	 also satis�es requirements ��	 and ����	�

Proof� It is clear that � provably in ZFC de�nes a set of full measure� Thus
it remains to check ����	� Let  �x	 be a set theoretic formula such that ZFC
proves that it de�nes a set of full measure� To prove the consistency of the
statement that ��x	 ��  �x	� we show that the set fx � � � ��x	 ' � $�x	g
is empty in the Solovay model�
Indeed� in this model the set X � fx �  �x	g is de�nable by  �x	� a

parameter�free formula� and mesX � � by the choice of  � while we have
fx � ��x	g � RL� see above� It remains to apply Corollary &� �

��
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