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The goal of our paper is to propose a way to obtain more re ned de nitions of randomness than the notions known so far (e.g. Martin-L of randomness). We s h o w that a \perfect" de nition of randomness based on provability does not exist. We t h e n w eaken our requirements on the de nition by replacing provability b y consistency and obtain a formula that de nes a set of random sequences that ful lls rather strong conditions.

Introduction

If somebody tells us that he have tossed a coin sixty times getting a string u 1 101010110010011010010010101000101100011010000101011110100101 ( 0 stands for head, 1 for tail) we are not surprised. However, the string u 2 010101010101010101010101010101010101010101010101010101010101 looks suspicious and we are ready to reject the assumption that the coin is fair. Why? Is not the probability of both sequences the same| 2 ;60 ? There are four explanations why the former sequence, u 1 , looks more random than the latter, u 2 : L.I.P., Ecole Normale Sup erieure de Lyon -CNRS, 46 All ee d'Italie, 69364 Lyon Cedex 07, France. E-mail: Bruno.Durand@ens-lyon.fr.
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x Email: uspensky@lpcs.math.msu.ru { Work done at L.I.P., Ecole Normale Sup erieure de Lyon. E-mail: ver@mech.math.msu.su. 1 a) u 2 belongs to a simply described set of small measure, namely, to the set of strings with alternating digits having the measure 2 ;59 . I n c o n trast, we do not see any simply described set of small measure containing u 1 b) u 2 has much regularities, it may be described very easily as \01 thirty times", in contrast the rst string seems to have no shorter descriptions than the displayed one c) u 2 is predictable: if you give its 30 rst bits to a person he will surely predict the rest d) the subsequence of u 2 consisting of all odd terms has much more zeros than ones (actually no ones at all), and we expect that for any r u l e o f choice of a subsequence (which does not use the information of the value of the chosen term) in the resulted subsequence, the frequency of zeros is about one half. It is pretty clear that it is impossible to divide nite strings in random and non-random. One may hope only to measure the amount of randomness, which should re ect our belief in that the sequence was obtained by fair coin tossing.

The argument b) can be formalized by means of the Kolmogorov complexity K(u) de ned, for a nite binary sequence u as the bit size of minimal program that prints u . The less is l(u) ; K(u) ( l( ) stands for the length of strings) the more random looks the string.

The reason a) is more or less equivalent to b). Indeed, if K(u) is small then u belongs to the set fug of small measure having small Kolmogorov e n tropy (the Kolmogorov e n tropy of a set is the bit length of the shortest program printing, in some order, the list of elements in the set). Conversely, i f u belongs to a small set A having small Kolmogorov e n tropy, t h e n u can be identi ed by t h e pair (program printing the list of elements of A , the number of u in that list), which has short size since both its components are short. Reasons c) and d) can be also reduced to a). Thus, in the case of nite binary strings, we h a ve a quite adequate de nition of the amount of non-randomness in a string. This is the value l(u) ; K(u) .

The things seem to become easier, in a sense, when we turn to the case of in nite binary strings (=binary sequences). One may hope to divide them into random and non-random. That is, to give a rigorous de nition of a sequence which m a y be an outcome of in nite series of coin tosses. For instance, everyone will agree that the in nite coin tossing may not result in the series 0101010101010101010101010101010101:::::::::::::::::::

The aim of the de nition of randomness is to clear our intuition in this respect.

There are four known approaches (according to four above explanations) to de ne randomness of in nite sequences. Let us sketch these four approaches (the detailed survey may be found in 7] and three of the four approaches are exposed in 8] and 9]). We denote by the set of all in nite binary sequences

x .

The rst approach corresponds to a The most famous de nition of typicalness belongs to Martin-L of 6] and is as follows. Let u denote the set of all in nite continuations of a nite string u: Recall the the set A has measure 0 (=is a null set) if for any n there exists a set B n of nite strings such that 1) A S u2Bn u and 2) P u2Bn mes( u ) = P u2Bn 2 ;l(u) < 1=n . In other words, A can be covered by an open set (in Cantor's topology) of arbitrarily small measure. Martin-L of considers the constructive v ersion of this de nition: a set A is called a e ectively null set if there exists a sequence B n satisfying 1) and 2) such that the set fhu ni : u 2 B n g is enumerable. This means that there exists an algorithm printing all the elements of this set in some order (the order does not matter).

As the set may be in nite, the process of printing may last in nitely long.

According to Martin-L of, the sequence is called random (we will also use the term \typical") if it avoids all e ectively null sets. Thus as S one takes the class of sets of the form T n S u2Bn u , where P u2Bn 2 ;l(u) < 1=n and the set fhu ni : u 2 B n g is enumerable. The family S is countable, as any its element is identi ed by an algorithm and the number of algorithms is countable. The complements of e ectively null sets are called e ectively full sets. It turned out that every law of probability theory among the laws studied so far includes an e ectively full set, and hence is satis ed by a n y Martin-L of random sequence. We c a l l a l a w of probability theory (LPT) an assertion about an in nite binary sequence such that the set fx : ( x)g has measure one. The examples of LPTs are the law of large numbers (the frequency of zeros among rst n bits tends to 1/2) or the law of the iterated logarithm.

Thus, for any such particular studied by probability theory there exists an e ectively full set included in fx : ( x)g . F or one of them, namely for ergodic theorem, this has been unknown for a decade. In other words, Martin-L of random sequences satisfy all known LPTs. Yet one cannot be sure that this will be so for ever: we c a n b y n o w construct ad hoc LPTs that are not satis ed by Martin-L of random sequences.

The second, the third and the forth approaches correspond respectively to arguments b), c), d) above. The obtained notions of randomness are called chaoticness, unpredictability and stochasticness. W e will not present the de nitions of these notions, the interested reader is referred to 7]. Let us just mention that chaoticness is equivalent t o t ypicalness, and both imply unpredictability unpredictability implies stochasticness, which i s w eaker than unpredictability. The notions of chaoticness and stochasticness are also presented in 8] a n d in 9] (the reader should be warned that in 9] instead of the terms chaoticness and stochasticness the terms Kolmogorov randomness and Mises{Kolmogorov{ Loveland randomness are used respectively).

The goal of our paper is to propose a way to obtain more re ned de nitions of typicalness than the notions known so far. Why w e think that the existent notions like the Martin-l of's one is not good enough? That is because one can de ne (in a quite simple way) a particular sequence, which is Martin-L of random. For instance, the binary representation of the so called Chaitin's number of wisdom 1] this real number is the probability of a programm to halt when a programming system is xed and the set of programs is endowed by some standard probability distribution. Or, one can de ne a particular Martin-L of random sequence by means of simple diagonal de nition. For our intuition it seems slightly uncomfortable to accept a de nable sequence as random.

Another argument agains the notions of randomness known so far is that they use the theory of algorithms. The notion of an algorithm cannot be expressed, as far as we k n o w, in terms of set theory (see 9]). Thus it is not quite natural to see that it interfers with the notion of randomness. We w ould prefer a de nition expressed in a logical framework.

The perfect notion of a random sequence in the framework of typicalness would be a notion satisfying two principles.

; Almost all sequences are random. That is, the set of random sequences has measure 1.

; Any random sequence satisfy any m e n tal law of probability theory.

Let us formulate both principles in the rigorous form. By the notion of randomness we mean a formula (x) in a set theoretical language (that of Zermelo{Fraencel system, ZFC ). The precise form of the principles is:

(1) ZFC `mesfx : (x)g = 1 . That is, it is provable, in Zermelo-Fraencel system, that almost all sequences are random.

(2) For any set theoretic formula (x) ,i fZFC `mesfx : ( x)g = 1 , then ZFC 8 x ( (x) ) (x)) . That is, if it is provable, in ZFC that the set fx 2 : ( x)g has measure 1, then it is provable, in ZFC that all random sequences satisfy (x) .

It is not hard to see that such a perfect notion of randomness does not exist (Theorem 1). Moreover, there is no notion of randomness satisfying (1) and the following weak form of principle (2):

(2 0 ) F or any particular (=de nable) sequence x 2 i t i s p r o vable, in ZFC that x is not random. That is, for any formula F(x) in the language of ZFC with the single parameter x such t h a t ZFC `(9 ! x 2 ) F(x) i t holds ZFC `(8x 2 ) (F (x) = ) : (x)) . Principle (2 0 ) follows from (2), as for any de nable sequence x 0 2 the assertion x 6 = x 0 is a law of probability theory and therefore on can prove that any random sequence is di erent f r o m x 0 .

Thus we should moderate our requirements. Our proposal to this end, which s e e m s t o b e a n e w o n e , i s a s f o l l o ws. Consider the following weaker form of principle (2):

(2 00 ) F or any set theoretic formula (x) s u c h that it is provable in ZFC that the set fx 2 : ( x)g has measure 1 , it is not provable in ZFC that there is a random sequence satisfying (x) .

Informally, the principle states that no one will ever prove that a particular law of probability theory is not satis ed by some random sequence. In particular, any notion of random sequence satisfying (2 00 ) is resistant to the above critics of Martin-L of randomness. This is, however, not all the requirements we nd necessary to impose on a notion of randomness. The point is that the principles (1) and (2 00 ) d o n o t imply, that the sequence (say) 000000000000000:::::: is not random. Principle (2 00 ) implies, of course, that one cannot prove that it is random. But we expect that such l a ws as \not to be identically zero" should be proved. This leads us to the third principle:

(3) For any known law ( x) of probability theory it is provable, in ZFC that any random sequence satis es (x) . More speci cally, i t i s p r o vable, that any random sequence is Martin-L of random.

Our main result is the notion of randomness denoted by (x) that satis es (1), (2 00 ) and (3) (Theorem 7). Principle (3) has of course a minor point: the choice of Martin-L of randomness there is not motivated anyhow (the same minor point is in the Martin-L of's de nition: there is no solid basis to restrict all the LPTs to e ectively full sets). However, our construction applies to any previously speci ed stock o f L P T s : f o r a n y de nable provably countable family of provably measure-one sets there exists a notion of randomness satisfying (1) and (2 00 ), and and such that is is provable that any random sequence belongs to all those sets.

To present the idea let us come back to the Martin-L of randomness. Recall that countable intersections of open sets are called G sets. Let us say that a sequence of sets B n of nite binary sequences is a code for a G set U i U = T n S u2Bn u . By the above de nition, a sequence x 2 is Martin-L of random i it avoids any G set with enumerable code.

Our approach will be to increase the number of full G sets to avoid, at least including all those having arithmetical codes. This will result in the notion of randomness satisfying (1), (2 00 ) and a much more stronger version of (3) than the above one.

The de nition of is as follows. Consider any class of sets A: Let us call a sequence x A -random if it avoids all null G sets having a code in A: If A is countable, then the set of A-random sequences has full measure. Let L be the set of all constructible sets (in G odel's sense). (x) w i l l s a y t h a t x 2 i s Lrandom whenever the set of all L-random sequences has full measure, and x is arithmetically random (i. e. A-random, where A is the class of all arithmetically de nable objects, see below) otherwise. It is straightforward that satis es (1) and [START_REF] Durand | \Arithmetical randomness[END_REF]. Using the Solovay model, one may p r o ve that it satis es (2 00 ).

The notion satis es also the common closure properties: it is stable with respect to nite changing, it is stable with respect to choosing a subsequence by means of an algorithm (the algorithm makes decisions which term to choose on the basis of the value of previously chosen terms).

\Provable" set theoretic randomness

In what follows, sequence will mean: an in nite binary sequence, that is an element of the set = 2 ! :

One could have t h e i n tension to de ne a sequence r to be random in the case when it avoids any s e t X de nable by a set theoretic formula (x) such that ZFC proves that mesfx 2 : ( x)g = 0 where mes is the Lebesgue measure. However this would not be a good approach.

Indeed in this case one would have got a mixture of mathematical and meta-mathematical (provability) notions, that hardly can be adequately realized in a mathematically legitimate de nition. To see this suppose, towards the contrary, that a set theoretic formula (x) adequately expresses the de nition above. Then would satisfy the requirements (1) and (2) above. However:

Theorem 1 There d o es not exist any formula satisfying both (1) and (2).

Proof. Suppose that is such a formula. The argument is based on ideas connected with the G odel constructibility. G odel de ned in 1938 a class L of sets called constructible sets and proved that L is a model of ZFC: The statement that all sets are constructible is called the axiom of constructibility and formally abbreviated by the equality V = L where V denotes the universe of all sets. The axiom V = L was proved to be consistent with ZFC by G odel (the key fact is that V = L is true in the class L ) and independent f r o m ZFC by Cohen in 1961. (We refer to [START_REF] Durand | \Arithmetical randomness[END_REF][START_REF] Jech | Set Theory[END_REF] in matters of all general set theoretic facts used below a s w ell as in matters of the history of related set theoretic research.)

The most important here property of L is that there is a well-ordering < L of L de nable by a concrete set theoretic formula.

Let now ( x) s a y the following: x 2 satis es (x) b u t x is not the < L -least element of the set fx 2 \ L : (x)g: (The \but" reservation makes sense only when the intersection fx 2 : (x)g \ L is non-empty.)

It follows from (1) that ZFC proves that fx : ( x)g is a set of full measure. Therefore, by the assumption of (2), ZFC must prove t h a t (x) implies (x): However the axiom V = L (which is consistent w i t h ZFC ) clearly implies that there is a sequence x satisfying (x) b u t n o t ( x) | namely, t h e < L -least element of the set fx 2 : (x)g which is equal to fx 2 \ L : (x)g in the assumption V = L . 2 2 \Consistent" set theoretic randomness Thus there is no formula satisfying both (1) and (2). This setback leads us to the idea to reduce our expectations. For instance one may b e i n terested to nd out whether there is a set theoretic formula (x) satisfying (1) and a weaker than (2) assumption, (2 00 ). We will demonstrate that such a formula really exists | and that it is a derivative o f a n e v en more interesting formula, that of the Solovay randomness.

Solovay random sequences

De nition 2 A sequence x 2 i s Solovay random over L i it is L-random in the sense above, that is, it avoids any n ull G set with a code in L:

The formula saying that x 2 is Solovay random over L is denoted by L (x): Put R L = fx 2 : L (x)g (all Solovay random over L sequences). 2

In fact it will not be di erent t o s a y: whenever X i s a n ull Borel set with a code in L: 1 To see this note, rst of all, that any n ull Borel set X can be covered by a n ull G set U which is a classical fact of measure theory. The construction of the covering set U can be maintained e ectively enough to get the following re nement: any n ull Borel set coded in L can be covered by a n ull G set coded in L .

Solovay random sequences in di erent set universes

It occurs that basic properties of R L depend on the structure of the set universe.

In other words, there is not much t o s a y a b o u t R L in ZFC but some special provisions can make R L to be a very useful set.

At the trivial side, R L is obviously empty if the axiom of constructibility V = L is assumed. Thus R L can be very small, even empty.

To m a k e R L large, even a set of full measure, another consistent set theoretic hypothesis can be employed. Recall that @ 1 is the least uncountable cardinal, or, that is the same, the least cardinal bigger than @ 0 = card N the countable cardinality.

By @ L 1 they denote \ @ 1 in the sense of L ", that is, something which i s de ned, in L as the least uncountable cardinal. One easily sees that @ L 1 is, from the point of view of the whole set universe, an ordinal number (perhaps, not a cardinal 2 ), which satis es either @ L 1 < @ 1 or @ L 1 = @ 1 .

The \or" case follows e. g. from V = L and is not much o f i n terest here.

The \either" case is also consistent w i t h ZFC but it needs to apply the method of forcing to get a suitable model. Models of ZFC which satisfy @ L 1 < @ 1 belong to a wide class of collapse generic models: if the inequality holds, they say that @ 1 collapses (in the extension from L to the whole set universe V ).

Lemma 3 If @ L 1 < @ 1 then R L is a G set of full measure. 1 It would be di cult to fully present here the involved mechanism of coding Borel subsets of : It is based on the observation that construction of a Borel subset of from sets of the form u where u is a nite binary sequence (see Introduction) needs only countably many applications of the operations of countable union and countable intersection. This can be adequately coded e. g. by a sequence c 2 : Sequences which code Borel sets this way are called Borel codes. The set of all Borel codes is a co-analytic subset of .

2 Cardinals are viewed as initial ordinals, i. e. those ordinal numbers which are not equinumerous to any < .

Proof. It su ces to prove that the set \ L of all constructible sequences is countable in the assumption @ L 1 < @ 1 : To see this note that, in L the continuum hypothesis 2 @ 0 = @ 1 holds, hence sequences in can be put in 1 ; 1 correspondence with nite and countable ordinals. However nite and L-countable ordinals is the same as ordinals smaller than @ L 1 so that we h a ve only countably many of them by the assumption @ L 1 < @ 1 .

2

It occurs that @ L 1 < @ 1 is not necessary for R L to be of full measure: in so-called amoeba generic models we h a ve @ L 1 = @ 1 but R L is of full measure.

Solovay random sequences in the Solovay m o d e l

The behaviour of the Solovay random sequences becomes especially interesting in the Solovay model, which is a kind of a collapse generic model of ZFC .

To obtain the Solovay model, one has to x an inaccessible cardinal # in the constructible universe L: Then one de nes a generic extension of L which is a model of ZFC where all L-cardinals < # including @ L 1 but not the cardinal # itself, become countable. The extension is the Solovay model. It has a lot of applications in set theory, for instance it is true in this model that all projective sets of sequences are Lebesgue measurable. This result is based on the following key fact (we refer to 3, 4] for proof): Proposition 4 The following is true in the Solovay model. If X is de nable by a set theoretic formula containing only sets in L as parameters then there i s a B o r el set B with a code in L such that, for any Solovay random over L sequence x we have x 2 X () x 2 B . 2 Note that @ L 1 < @ 1 holds in the Solovay model by the construction. Therefore R L has full measure in the Solovay m o d e l b y Lemma 3, so that, in the Solovay model, every set of sequences, de nable by a formula with parameters in L is a Borel set modulo a null set. It follows that every such a set of sequences is Lebesgue measurable in the Solovay model | and this remains true even if we allow, in addition, arbitrary parameters in in de nitions of sets. Corollary 5 The following is true in the Solovay model. If X is a set of full measure, de nable by a formula containing only sets in L as parameters, then R L X . Proof. By Proposition 4, we can w. l. o. g. assume that X i s a Borel set of full measure, coded in L: Then, it follows from observation at the end of Section 2.1, that there is a null measure G set U coded in L such that X 0 = n X is a subset of U: However U \ R L = by de nition. It follows that R L X as required. 2

Arithmetical randomness

Let us x once and for all a recursive e n umeration fu l g l2! of all nite binary sequences. Let J l = u l = fx 2 : u xg: For any (in nite) sequence c 2 let U c be the set of all pairs hi li of natural numbers such t h a t c(2 i 3 l ) = 0 :

(Thus U c can be an arbitrary subset of N 2 : ) W e nally de ne G c = \ i2! hi li2Uc J l which is clearly an arbitrary G subset of .

Let us say that a set G i s an arithmetically coded G set i G = G c for an arithmetically de nable sequence c 2 : ( c 2 is said to be arithmetically de nable i there exists a formula with addition, multiplication, equality relation, the relation \ x(i) = 0 " and with quanti ers over natural numbers which is true if and only if x = c .) De nition 6 (introduced in 2]) A sequence x 2 i s arithmetically random i it avoids any n ull measure arithmetically coded G set.

The formula saying that x 2 is arithmetically random is denoted by A (x): Put R A = fx 2 : A (x)g (all arithmetically random sequences). 2 One easily proves, in ZFC that R L R A or, in other words, L (x) implies A (x): Unlike R L the set R A is, provably in ZFC a set of full measure. Clearly any Martin-L of random sequence x 2 belongs to R A .

A formula for \consistent" randomness

Let (x) be the formula saying:

x 2 R A and if R L is a set of full measure then x 2 R L . Thus de nes the set R L of all Solovay random sequences over L | provided this is a set of full measure, while otherwise it de nes simply the set R A of all arithmetically random sequences. It easily follows that satis es (3).

Theorem 7 The formula (x) also satis es requirements (1) and (2 00 ). Proof. It is clear that provably in ZFC de nes a set of full measure. Thus it remains to check ( 2 00 ). Let (x) be a set theoretic formula such t h a t ZFC proves that it de nes a set of full measure. To p r o ve the consistency of the statement that (x) = ) (x) we s h o w t h a t t h e s e t fx 2 : (x) & : (x)g is empty in the Solovay model. Indeed, in this model the set X = fx : ( x)g is de nable by ( x) a parameter-free formula, and mesX = 1 b y t h e c hoice of while we h a ve fx : (x)g = R L see above. It remains to apply Corollary 5.
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