
HAL Id: hal-02101826
https://hal-lara.archives-ouvertes.fr/hal-02101826v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Application-Level Network Mapper
Arnaud Legrand, Frédéric Mazoit, Martin Quinson

To cite this version:
Arnaud Legrand, Frédéric Mazoit, Martin Quinson. An Application-Level Network Mapper. [Research
Report] LIP RR-2003-09, Laboratoire de l’informatique du parallélisme. 2003, 2+15p. �hal-02101826�

https://hal-lara.archives-ouvertes.fr/hal-02101826v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

An Application-Level Network Mapper

Arnaud Legrand,
Frédéric Mazoit,
Martin Quinson

February 2003

Research Report No 2003-09

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

An Application-Level Network Mapper

Arnaud Legrand, Frédéric Mazoit, Martin Quinson

February 2003

Abstract
This paper presents a tool to automatically discover the network topol-
ogy. The goal is to evaluate the performance of concurrent transfers (for
example to improve collective communications) and not to discover the
physical machines interconnection scheme (for administration purposes).
The problems encountered, preliminary algorithms to solve them, as well
as theoretical proofs of their validity (under some conditions) are pre-
sented.

Keywords: Grid computing, simulation, network topology, communication performance
prediction

Résumé
Cet article présente un outil de découverte automatique de la topolo-
gie du réseau. Son objectif est d’évaluer les performances de transferts
concurrents (par exemple pour améliorer des communications collec-
tives) et non de découvrir le schéma d’interconnexion physique des ma-
chines (ce qui pourrait servir à diagnostiquer des problèmes de configu-
ration réseau). Les problèmes rencontrés, des algorithmes préliminaires
pour les résoudre, ainsi que la preuve de leur validité (sous certaines
conditions) sont présentés.

Mots-clés: Calcul distribué à grand échelle, simulation, topologie de réseaux, prédiction
de performances de communications

An Application-Level Network Mapper 1

1 Introduction

Metacomputing consists in federating distributed computational resources in order to aggre-
gate their power. The Grid [FK98] denotes the resulting virtual computer formed by a large-
scale set of machines sharing their local resources with each other. Usually, Grid testbeds are
constituted by several organizations providing access to several of their machines, resulting
in a wide area constellation of local area networks.

Using the resulting platform is known to be a challenging task due to its heterogenous,
dynamic and shared nature. We need to get not only the available bandwidth and latency of
all end-to-end host pairs, but also the interconnection topology. Such knowledge can be used
to simulate or predict performance of collective communications, or to determine the optimal
placement of services like web caches or computational servers.

Even if we would like to get information about communications between all possible host
pairs, monitoring everything would reduce drastically the scalability of the system. More-
over, monitoring all links would imply to deploy sensors on routers, which is simply impossi-
ble. That is why we must predict the performance on an unmonitored path by aggregating
measurements done on its parts.

According to [Pax97], it is very difficult to determine the paths followed by the packets
on wide area networks and it would be almost impossible to deduce the communication
performance and the interaction of a data stream on another. That is why our goal is to
acquire a macroscopic point of view of the network, rather than a raw microscopic one.

This paper presents a tool called ALNeM (Application-Level Network Mapper), which
is designed to gather network topology informations useful to network-aware applications.
Its goal is not to help administrators to monitor their network and diagnostic bottlenecks
or failure points, but rather to give other applications the ability to predict the network
performance of several interacting data streams.

This paper is organized as follows: Section 2 presents some methodologies existing in
the literature to gather such informations, including the one used by ALNeM. Section 3
focuses on what informations about the network topology we are looking for, depending
on the planned use. The main part of this article comes with Section 4, which sketches the
ALNeM algorithm, from the experiment plans to the reconstruction of the searched topology,
as well as the proof (under some assumptions) of the validity of the reconstruction algorithm.
Section 5 concludes this paper and presents future work.

2 State of the art

Most of the previous work focused on collecting information about each separate host, or
host-to-host communication [WSH99, Din02], and little attention has been given to gathering
informations about the global network topology, and its impact on parallel data transfers.
Most often, Grid systems rely on manual configuration [CD98], which is very error prone.

Some tools [dBKB02, BCW] rely on the traceroute tool to get informations about the
network topology. This program computes the network path to a remote host by sending
packets with increasing TTL (time to live). Most routers give their address in the error
message they return when a packet dies, allowing traceroute to list the hosts traversed by
packets on the path.
This approach suffers of several drawbacks: First, since routers can return different addresses,

2 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

combining the paths can be non-trivial. Then traceroute gives no information on how
concurrent transfers interact when sharing a given link, neither even the available bandwidth.
Finally, the informations given by traceroute are at level 3 of the OSI standard, while the
applications are on level 4 and upper. Thus, the reality captured by this program may differ
from the one experienced by applications.

pathchar uses the same methodology as traceroute, changing not only the packets TTL,
but also their size. If enough measurements are done, it can statistically compute the latency
and bandwidth of each link in the path [Dow99], which would almost fulfill our purposes.
Sadly, this tool is not usable in our context for several reasons. First, pathchar takes a
very long time to get the characteristics of a given link (some of our experiments on a path
constituted of 4 links took up to one hour), which decreases the usability of this tool on very
large platforms. Then, in order to forge the packets needed for its experiments, pathchar
needs to be given the super-user privileges on the machines where it runs, which is clearly
unacceptable in Grid context. Finally, it only gives the bandwidth of encountered links and
not how they will be shared between several competing data streams.

In LAN management context, SNMP (Simple Network Management Protocol [BJ00]) is
often used to gather information about the network. On the other hand, BGP (Border Gate-
way Protocol [RL95]) is used to exchange routing informations between autonomous systems
of the Internet, and could be used to get information about WAN. The Remos [DGK+01] tool
uses the SNMP protocol to construct the local network topology, plus some simple benchmarks
to gather informations about WAN [MS00]. But we believe that none of these approaches is
satisfying in our context. The main problem is that the gathering of informations with these
protocols is almost always restricted to authorized users. This is due to two major reasons:
security, since it is possible to conduct Deny Of Service attacks by flooding the network of
requests, and privacy, since ISP generally do not like to publicly expose the possible bottle-
necks of their networks.
Moreover, even when these informations are available, we believe that they do not fulfull our
expectations, because they give no information about how a given network resource will be
shared when two streams try to use it.

Contrary to the SNMP- or BGP-based approach, we decided not to get the network config-
uration from where it is expressed by administrators, but rather to conduct some experiments
to feel its effects. Our approach differs from the traceroute one, because we do not focus on
the path followed by level 3 packets, but on interactions between application-level streams.
Finally, contrary to pathchar, we do not try to get all possible informations about the un-
derlying network, but only the ones we need to predict application-level performance. This
allows us to map a given network more quickly, and without any special authorization or
privilege.

This approach is not completely new, and was first presented in ENV [SBW99]. Although
if very innovating, the ENV project suffers from a number of drawbacks. First, to reduce the
number of tests needed, ENV does not try to give a complete map of the network, but only
the view a given machine (the so-called master) has. It is well adapted to the master/slave
paradigm, but is clearly not general enough. Mapping completely the network using the ENV
methodology may require N4 tests, with N being the number of hosts in the network, and
each test during up to a minute, which is not really scalable. Moreover, ENV requires a recent
version of the python scripting language to be deployed on all machines of the testbed, which
is a too strong requirement for a Grid application. Finally, ENV is very sensible to external

An Application-Level Network Mapper 3

network load during its experimentations.

3 Which topology for which use

Before presenting how ALNeM tries to gather the information, this section presents more in
details the information that we are trying to obtain, and why. Even if we hope this tool to be
useful for other purposes, we designed it to help us for two projects in which we are involved.

First, the SimGrid [CLM03] grid platform simulator needs something like a platform
catalog, which the user could choose, and run his simulated application onto. It would
naturally be possible to generate random platforms, but since the realism of a given graph as
network platform is so hard to qualify [PF97, CDZ97, FFF99], a tool to capture real platforms
is welcome.

Then, the goal of the FAST [Qui02] library is to provide grid middleware schedulers the
informations they need about the platform, both in term of routine requirements (compu-
tational time, memory space, communication amount, etc.), and platform availability (CPU
load, free memory, bandwidth, etc.). It relies on the Network Weather Service [WSH99] to
obtain the information about the network. Moreover, when each part of a network path is
monitored by NWS but not the complete path, FAST tries to approximate the path charac-
teristics by aggregating the values measured for each part. For this approach to work, the
deployment of NWS is naturally crucial.
Moreover, it is very important for their accuracy that NWS experiments never collide. If two
probe packets are sent on the same link at the same time, each of them will only report half of
the available bandwidth. That is why NWS implements a clique protocol to ensure that only
one host from a machine set sharing a common resource will conduct a network experiment
at the same time [WGT00]. Naturally, this clique protocol is not completely scalable, and it
would be a bad idea to run only one clique containing all hosts of the testbed.

For these two reasons, it is a very difficult and error prone task to choose which link will
be monitored and which can be recomputed from subparts as well as to determine which
experiments set have to conducted under the clique protocol to avoid conflicts. Doing this
automatically suppose a very accurate knowledge of the network topology, and its effects on
application-level data-streams.

To fulfill both project requirements, we need to get network performance between the
machines participating to the grid platform, i.e. on which the grid middleware can launch
jobs (such machines are called nodes in this article). But knowing the end-to-end performance
is not enough if we do not know how several data streams will interact with each other. To
solve this problem, we need a graph representing the network. Each node has to be represented
as vertex of this graph, but since the performance of routers and switches are not important
at all for us, some routers may be omitted, or some fake routers may be added if it simplifies
the process. There is clearly more that one graph fulfilling these criteria, and we search one
of them.

For example, if it was possible to run pathchar between each pair of nodes and to aggregate
the results in a graph, this would be sufficient for us. But as we discussed above, running this
program is not possible on a Grid platform. That is why we have to search for such a graph
using other methods.

4 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

4 ALNeM algorithm

4.1 Overview

Our method is decomposed in two phases. The first one consists in measuring the possible
interferences between data streams on the platform while the second builds a graph inducing
the effects measured during the first step. Most of the technical difficulties reside in the first
phase, since it requires a lot of optimizations. The second phase is theoretically difficult,
because it involves solving a difficult graph-theoretic problem.

4.2 Gathering the informations

4.2.1 Presentation and notations

The first step of the algorithm consists in gathering informations about the platform by
conducting interference experiments. Given four nodes a, b, c and d, we measure if a data
stream from a to b does interfere with another data stream from c to d. This is done by
measuring the available bandwidth on (ab) when (cd) is quiet (noted bw(ab)), and comparing
it to the available bandwidth on (ab) when a data stream saturates (cd) (noted bw�cd(ab)).
If the ratio of the two measured bandwidth for (ab) is equal to 0.5, it means that (ab) and
(cd) share a resource ruled by a fair-sharing algorithm. If this ratio equals 1, (cd) have no
influence on (ab). In the real world, we have to use arbitrary thresholds since this ratio is
rarely equal to 1 or 0.5.

Definition 1. We say that (ab) and (cd) do not interfere if and only if bw�cd(ab)

bw(ab) > 0.9. In
that case, we use the notation (ab) �rl (cd) (rl stands for real life).

Definition 2. If this ratio is below 0.7, we say that both transfer do interfere, and we use
the notation (ab) ��rl (cd).

Note that a ratio between 0.7 and 0.9 is supposed to denote an experimental error.

Remark 1. ��rl is a symmetric relation (i.e. (ab) ��rl (cd) ⇔ (cd) ��rl (ab) holds for all
a, b, c, d). It comes from the fact that each side is possible if and only if (ab) and (cd) share a
network element and if the use of this element by one stream limits the other stream.

Remark 2. The equivalence (ab) ��rl (cd) ⇔ (ba) ��rl (cd) is wrong in the general case, because
network routes are not always symmetric on Internet.

We implicitly supposed that running two streams were enough to detect all interferences,
but this is not the case since some network resources may become limiting (thus creating
the interference) only when shared between 3 or more streams. This leads us to enhance
our notion of interference: a N-interference is an interference is revealed by the use of N
simultaneous streams. When unspecified, we speak of 2-interference in this paper.

The information we want to gather can be stored in a 4-dimensional matrix defined as:

Definition 3. Let I(V,��rl) be the interference matrix between all elements of a set V as
induced by the interference relation ��rl:

I(V,��rl)(a, b, c, d) =

{
1 if (ab) ��rl (cd)
0 otherwise

An Application-Level Network Mapper 5

Remark 3. The matrix I is symmetric due to the remark 1 and thus only contain N4

2 useful
cells.

4.2.2 Naive algorithm

The simplest way to gather this information will take N4 steps, each of them consisting for
(a, b, c, d) in V 4:

1. measuring bw(ab)

2. measuring bw�cd(ab) .

3. computing the ratio.

Both steps (1) and (2) have to be long enough to let the network stabilize: in (1), we have
to wait until the previous experiment really ends to avoid a possible perturbation, and then,
we have to wait until (cd) saturate the link until we can go for step (2). It seems reasonable
to expect that each step can be run in half a minute or a minute, which allows the complete
algorithm to run in N4

2 minutes, or N4

4 minutes. If N = 20, this represents 25 or 50 days.

4.2.3 ALNeM algorithm

In order to speed things up, ALNeM does some of the tests in parallel. The idea here is
to consider independent edges. Since they do not interfere with each other, we can conduct
saturation experiments on them in parallel. That way, each time we start a new transfer, we
do not test it against only one other edge, but against all already started experiments.

If starting a experiment on one new edge leads to interferences with an already running
experiment, we indicate this interference in the computed matrix, remove the lastly added
edge, and continue. If the new edge does not interfere with already running ones, we try
adding a new one. This process may even discover some N-interference that way, but we only
conduct the needed experiment to search 2-interferences.

The more independent edges we start at the same time, the better parallelism we achieve.
In order to guess which edges should be independent, we run traceroutes between all nodes
and merge them as a graph. Note that the resulting graph will contain errors, for example
because of Virtual LANs which are not detected by this tool. That is to say that it may report
two edges as probably independent when they actually interfere with each other. Anyway,
this a good guess about independent edges to lead our experiments.

The obtained speedup naturally depends on the graph characteristics. The worst case is
when all edges interact with all others. In that case, no test can be done in parallel, and we
still need N4 steps. The best case is when there is no interaction at all. In that case, we can
run in 2N2 steps. Since the target platform is a constellation of local networks, which in turn
are often trees, the expected gain of this parallelization is high.

Since this algorithm needs a centralized clock to run well, the efforts of sensors are coor-
dinated by a special node called maestro. The position of this node has no influence on the
resulting mapping. The pseudo code for sensors and maestro is given in Appendix A.

6 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

4.3 Reconstructing a graph from these informations

4.3.1 Problem presentation and formalization

In order to model the interferences, we decided to search for a hybrid graph, counting two
different kinds of vertices: nodes, being machines participating to the Grid platform, and
separators, representing the contention spots of the network. That way, our algorithm can
focus on vertices, and if they are connected or not. All edges have the same signification
and no associated value since the network characteristics are ported by the separator edges.
Moreover, separator characteristics can capture not only the link abilities, but also the delay
encountered in routers and switches.

The problem is thus to construct a graph containing all nodes and some separators which
would induce the interference effects measured during the first phase. To formalize this
problem further, some additionnal notations are needed:

Let G̃ = (Ṽ , Ẽ) be the graph representing the idealistic real topology, with Ṽ being the
set of all real machines (nodes, routers and switches) and Ẽ the existing links between them.

Let H be the set of nodes (without routers or switches).

Definition 4. Let u, v ∈ Ṽ : we use the notation
(

u −→
eG

v

)
to denote the ordered set of

vertices belonging to the route from u to v (u and v are respectively the first and the last
elements of this set). This notation represents the routing on the graph G̃.

Definition 5. Let a, b, c, d ∈ H : we define �� eG by

(ab) �� eG (cd) ⇐⇒
(

a −→
eG

b

)
∩

(
c −→

eG
d

)
�= ∅

Remark 4. The previous definition does not match exactly the experimental Definition 2
since the capacity of routers and links are not taken into account. Using a more idealistic
definition should help to gain some intuition on the problem.

The problem is then the following:

Definition 6. InterferenceGraph: Given H and I(H, G̃), find a graph G(V,E) and a
routing in this graph such that:

H ⊂ V

I(H,��G) = I(H,�� eG)
|V | is minimal.

.

As time of writing, we still don’t know whether this problem is NP-complete or not. Our
feeling is that it is NP-complete in the general case, but that good approximation schemes
exist and that it is solvable in a polynomial time under some assumptions about the underlying
G̃ graph and the routing it uses.

The rest of this section presents some mathematical tools that help designing a polynomial
algorithm to find a small graph whose interference matrix is equal to I(H,�� eG) under some
hypothesis.

We will suppose in the rest of the paper that G̃ respect the following hypotheses:

An Application-Level Network Mapper 7

Hypothesis 1 (Routing hypothesis). ∀(a, b, c) ∈ Ṽ :

c ∈
(

a −→
eG

b

)
⇒

(
a −→

eG
b

)
∩

(
a −→

eG
c

)
=

(
a −→

eG
c

)
This hypothesis states that the routing used in G̃ does not present weird inconsistencies.

If a node c is encountered on the path from a to b, packets routed from a to c will follow the
same beginning path than when traveling from a to b. The contrary would imply for example
that a use a machine ρ as gateway, and that ρ routes packets for b through c while a can
connect to c directly using another network and not the one offered by ρ.

Hypothesis 2 (Symmetry hypothesis). ∀(a, b) ∈ Ṽ :
(

a −→
eG

b

)
=

(
b −→

eG
a

)
This hypothesis states that the network routes are symmetric.
We know that these hypothesis are violated in the reality of Internet, since any imaginable

routing inconsistency do exist [Pax97]. But even if the current version of our algorithm cannot
deal with these problems, it can detect them, allowing us to propose some special handling
in future versions.

4.3.2 Notations and preliminary lemma

Definition 7. For sake of simplicity in the following proof, we introduce the following nota-
tion:

a ⊥ b ⇐⇒ ∀(u, v) ∈ H \ {a, b}, (au) �� eG (bv)

We trivially have a ⊥ b ⇔ b ⊥ a.

Lemma 1 (Separation). For all a, b ∈ H, we have:

a ⊥ b iff there exists ρ ∈ Ṽ such that ∀z ∈ H : ρ ∈
(

a −→
eG

z

)
∩

(
b −→

eG
z

)
.

Proof. For sake of clarity we will denote by (v −→ w) the set
(

v −→
eG

w

)
.

⇒ Suppose that a ⊥ b. Let u be in H\{b, a} and ua be the first node distinct of a, appearing
in (a −→ u) ∩H.

Let ρ be the first vertex in (a −→ ua) ∩ (b −→ ua). Note that ρ ∈ Ṽ (see Figure 1).
Let’s show that ua is the first node distinct of a and b, in H, appearing in (b −→ ua).

Proof. Using Hypothesis 1, we have the following relations:{
(a −→ ua) = (a −→ ρ) ∪ (ρ −→ ua)
(b −→ ua) = (b −→ ρ) ∪ (ρ −→ ua)

– If ρ = a then there cannot be any c ∈ H\{b, a} such as c ∈ (b −→ a) (otherwise, we
would have bc � eG aua). Thus ua is the first node of H distinct of a appearing in
(b −→ ua).

8 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

Building ua and ρ An absurd situation

ba

ua

u

ρ

z

δ

ba

ua

u

ρ

Figure 1: Sketch of the proof of Lemma 1

– If ρ �= a, then we have (ρ −→ ua) ∩H = {ua} thanks to the definition of ua. There
cannot be any c ∈ H\{b} such as c ∈ (b −→ ρ). Indeed, otherwise we would have
b� c � ρ� ua, a� ρ� ua. And as (b −→ ρ) ∩ (a −→ ua) = {ρ} (definition of ρ)
we would have bc � eG aua, which is absurd. ua is then the first node distinct of a
and b, in H, appearing in (b −→ ua).

Now, let’s prove that for all z : ρ ∈ (a −→ z).

Proof. Suppose that there exists a z such that ρ �∈ (a −→ z). Using Hypothesis 1, we
have the following relation:

(a −→ z) ∩ (ρ −→ ua) = ∅

Then let δ be the first node in (a −→ z) ∩ (a −→ ua). We know that δ ∈ (a −→ ρ) and
(δ −→ z) ∩ (ρ −→ ua) = ∅ (using Hypothesis 1).

Thanks to the definition of ρ, we have δ �∈ (b −→ ρ). Therefore, (a −→ z) ∩ (b −→ ua) = ∅,
which is absurd since a ⊥ b.

Using the same arguments, we can show that ρ ∈ (b −→ z), hence the result:

∀z ∈ H :

{
ρ ∈ (a −→ z)
ρ ∈ (b −→ z)

⇐ This implication is obvious. Let ρ ∈ Ṽ such as

∀z ∈ H :

{
ρ ∈ (a −→ z)
ρ ∈ (b −→ z)

Then for all u, v ∈ H : ρ ∈ (a −→ u) ∩ (b −→ v), therefore we have a ⊥ b.

Remark 5. The proof of Lemma 1 does not rely on Hypothesis 2.

An Application-Level Network Mapper 9

Definition 8. For a and b ∈ H, a node ρ such as the one given by Lemma 1 is called a
separator of a and b.

Lemma 2 (Transitivity).

∀a, b, c ∈ H : a ⊥ b and b ⊥ c ⇒ a,b and c have the same separator and then a ⊥ c.

Proof. Let a, b, c be in H and suppose that a ⊥ b and b ⊥ c. Let u ∈ H and ua be the first
node distinct of a, in H, appearing in (a −→ u). Let ρ be the first node in (a −→ ua)∩ (b −→ ua)
and σ be the first node in (b −→ ua) ∩ (c −→ ua).
ρ is a separator of a and b and σ is a separator of b and c (using Lemma 1). Then we have
ρ ∈ (b −→ c) and σ ∈ (b −→ c). Suppose that ρ �= σ.

• if ρ ∈ (b −→ σ) then let d ∈ H be different from a, b and c. Let’s show that (b −→ a) � eG

(c −→ d). We need to show that (b → ρ → a) ∩ (c → σ → d) = ∅. Using Hypothesis 2,
we have (ρ −→ a) =(a −→ ρ) and (σ −→ c) =(σ −→ c), therefore (ρ −→ a) ∩ (c −→ σ) = ∅
and (b −→ ρ) ∩ (c −→ σ) = ∅ (there is no loop in a path: Hypothesis 1). If we had
(a −→ ρ)∩(σ −→ d) �= ∅, then (a −→ d) would not contain ρ. If we had (ρ −→ b)∩(σ −→ d) �=
∅, then (b −→ d) would not contain σ. Therefore, we have (b −→ a) � eG (c −→ d), which is
absurd.

• if ρ ∈ (σ −→ c) then (c −→ ua) =(c → ρ → ua) and σ �∈ (c −→ ua), which is absurd.

Then we have ρ = σ and ρ is then a separator for a and c.

a

ρ

d

σ

cb

Figure 2: Lemma 2 counter-example when Hypothesis 2 is not verified.

Remark 6. Lemma 2 does not hold if the Hypothesis 2 is not verified. Figure 2 depicts a
situation where a ⊥ b and b ⊥ c but a �⊥ c.

Remark 7. ⊥ is an equivalence relation.

Lemma 3 (Leader). Let C be an equivalence class for ⊥ and ρ a separator for these nodes.

∀a ∈ C,∀b, u, v ∈ H : (a, u) �� eG (b, v) ⇔ (ρ, u) �� eG (b, v)

Proof. Let ρ be a separator for the nodes of C (using Lemma 2). Let a ∈ C and b, u, v ∈ H.

10 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

• Suppose that (a −→ u)∩(b −→ v) �= ∅ and (ρ −→ u)∩(b −→ v) = ∅. Then we have (a −→ ρ)∩
(b −→ v) �= ∅. Let θ be the first node of ((a −→ ρ) \{ρ}) ∩ (b −→ v). The path from a to v
is then (a → θ → v) and ρ does not belong to it, which is absurd. Therefore we have:

(a −→ u) ∩ (b −→ v) �= ∅ ⇒ (ρ −→ u) ∩ (b −→ v) �= ∅

• Suppose that (a −→ u) ∩ (b −→ v) = ∅. Then we have (a → ρ → u) ∩ (b −→ v) = ∅ and
therefore (ρ −→ u) ∩ (b −→ v) = ∅.

Thus we have:

(a, u) �� eG (b, v) ⇔ (ρ, u) �� eG (b, v)

Remark 8. The proof of Lemma 3 does not rely on Hypothesis 2. It only requires that there
is a common separator for a group of nodes and that these nodes are all ��.

4.3.3 Reconstruction algorithm

We will now present an algorithm building a graph inducing the same interference matrix I
than the one of G̃. This algorithm is not guaranteed to find such a graph in any case, and we
will discuss later the conditions in which it succeeds and the conditions in which it fails.
Tree(V, I(V,�� eG))

1. C0 ← V and i ← 0.

2. E0 ← ∅ ; V0 ← ∅

3. Let h1, . . . , hp be the equivalence classes of ��Ci
. They can easily be computed (with a

greedy algorithm) from I(Ci,�� eG). For each hi, select a leader li. Ci+1 ← {l1, . . . , lp} and
I(Ci+1,�� eG) is computed from I(Ci,�� eG).

4. Vi+1 ← Vi ; Ei+1 ← Ei

For all hj ∈ Ci :

{
∀v ∈ hj : Ei+1 ← Ei+1 ∪ {(v, lj)}
Vi+1 ← Vi+1 ∪ {v}

5. Repeat step 3 and 4 until Ci = Ci+1.

Theorem 1. When the algorithm does finish with one leader, the resulting graph G satisfies
I(H,��G) = I(H,�� eG) with a shortest path routing.

Proof. Let a, u, b, v ∈ V be four distinct nodes.
We note x̄ the leader of the connected component in (V,Ei) containing x. One can prove

by recurrence that, at step i, I(V,�� eG)(a, u, b, v) can be determined using the following decision
tree (where Iā(x, y, z, t) = I(V,��(V,Ei)

)(x, y, z, t)):

An Application-Level Network Mapper 11

true

true

true true

true

false
false

false false

false

false

true

Exchange a with b and u with v

Iā(a, u, b, b̄)

Iā(a, u, ā, v) I(ā, ā, b̄, v̄)

Iā(a, u, b, v)

I(ā, b̄, c̄, d̄)

�

b̄ = v̄

ā = b̄ ā = b̄

b̄ = v̄

ū = v̄

ā = ū

Thus, when (Vi, Ei) is connected, the resulting interference matrix is equal to the original
one.

4.3.4 Working out an example

In this section, we run the algorithm on a graph generated with Tiers [Doa96] (see Figure 3).

Hypothesis 3 (Graph structure hypothesis). G̃ is a tree, or a constellation of trees where
all root tree are fully connected and do not interfere one with another (ie, are connected by
a clique).

This hypothesis seem acceptable for most of the Grid testbeds deployed in the reality, and
we are working on relaxing this in order to allow G̃ to be a more general graph.

Some graph structures seem to be easy to identify, only according to the interference
matrix. Trees can be detected, using the �� relation. Cliques can be detected using the
following relation : a �T b iff ∀u, v ∈ T : au � eG bv. There is little hope to prove strong
relations on �T like we did on �� because this relation is much less constraining. Nevertheless,
a set T such as ∀a, b : a �T b can easily be conceived as a clique. Once a clique has been
detected, the gateway (if it is unique) can be identified using �� and the whole clique can
the be replaced by the gateway. That is why on graphs fulfilling hypothesis 3’s requirements,
InterferenceGraph can easily be solved by alternating tree detection and clique detection.
Detection and handling of cycles is subject of future work.

5 Conclusion

All the work presented in this paper is still ongoing, and deserves more efforts to be fully
satisfying. We plan to tackle the following problems in the future:

12 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

0

32

42

5

6

8

16

20

22

14

39

120
34

36

15

130

31

135

46

60

140
40

145

7

47

155

44

18

160
58

165

17

80

170 52

175

59

65

53

2

27

3

51

21

25

85

95

23

24
26

9

45

50

57

100

101

105 108

110

111112

115

117

118

119

121

124

133

136

137

138

141

144

149

158

75

163

164

166

172

176

70

180

184

90

61

64

67

68

74
77

78

81

83

87

92
94

98

167

177

178
179

54

55

181

182

183

56

162

168

169

161

143

157

159

41

48
43

49

146

147

148

156

113
114

116

122

123

125

126

127
128

129

131

134

139

142

150

151

152

153

154

33

37

38

1

132

30

35

29

171

173

174

102
103

104

28 88

89

9193
96

97

10

106

107

109

11

12
19

13

4

62

63

66

69

71 72

7376
79

82

84

86

0

32

42

5

6

8

16

20

22

14

39

120
34

36

15

130

31

135

46

60

140
40

145

7

47

155

44

18

160
58

165

17

80

170 52

175

59

65

53

2

27

3

51

21

25

85

95

23

24
26

9

45

50

57

100

101

105 108

110

111112

115

117

118

119

121

124

133

136

137

138

141

144

149

158

75

163

164

166

172

176

70

180

184

90

61

64

67

68

74
77

78

81

83

87

92
94

98

100

101

105 108

110

111112

115

117

118

119

121

124

133

136

137

138

141

144

149

158

75

163

164

166

172

176

70

180

184

90

61

64

67

68

74
77

78

81

83

87

92
94

98

Original graph Machine nodes and involved
routers

Input of the reconstruction
algorithm (along with the

interference matrix)

100

101

105 108

110

111112

115

117

118

119

121

124

133

136

137

138

141

144

149

158

75

163

164

166

172

176

70

180

184

90

61

64

67

68

74
77

78

81

83

87

92
94

98

100

101

105 108

110

111112

115

117

118

119

121

124

133

136

137

138

141

144

149

158

75

163

164

166

172

176

70

180

184

90

61

64

67

68

74
77

78

81

83

87

92
94

98

Output of the current
reconstruction algorithm

Output of the ideal
reconstruction algorithm

(cycles have been identified)

Figure 3: An example of graph reconstruction

An Application-Level Network Mapper 13

First, we would like to limit even further the number of needed tests during the information
gathering phase. We could for example try to deduce that a whole set of related information
given by traceroute is right by testing only some of them and not all.

Then, we would like to handle more generic underlying graphs G̃ than the ones specified
in hypothesis 3. We have some ideas to detect and handle properly cycles in the graphs, but
this point definitively deserves some more theoretical work. We would also like to improve
the detection of routing inconsistency violating hypothesis 1, and provide a better handling
than just informing the user that this problem prevents us to map the network. Another
possible relaxation to our hypotheses would be to consider the case that streams use QoS and
are therefore not equally served by resources.

We also plan to extend this algorithm to an incremental version. Indeed, nodes of a
grid platform can fail and quit the testbed while new nodes can join the platform after the
beginning of the experiment. In such a case, it would be pleasant to not have to recompute
the whole interference graph each time. If possible, we would also like to develop a version
of these methods based only on locally available knowledge, and remove the need of a central
maestro orchestrating the experiments. Even if very appealing, this last extension seems
however very difficult.

Naturally, we also plan to actually implement this algorithm, both on top of the SimGrid
simulator, to test it on some special cases, and in the real life to test it in real condition
and prove its usability. We would like to use the simulator to compare the behavior of some
classical communication patterns on the real topology and on the topology discovered by
ALNeM, and experimentally show that this tool captures the right informations for our
purpose.

References

[BCW] H. Burch, B. Cheswick, and A. Wool. Internet mapping project.
http://www.lumeta.com/mapping.html.

[BJ00] A. Bierman and K. Jones. Physical topology mib. RFC2922, september 2000.

[CD98] H. Casanova and J. Dongarra. Using Agent-Based Software for Scientific Com-
puting in the Netsolve System. Parallel Computing, 24:1777–1790, 1998.

[CDZ97] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling internet
topology. IEEE Communications Magazine, 35(6):160–163, June 1997. Available
at http://citeseer.nj.nec.com/calvert97modeling.html.

[CLM03] Henri Casanova, Arnaud Legand, and Loris Marchal. Scheduling distributed appli-
cations : the SimGrid toolkit. In Proceedings of the IEEE Symposium on Cluster
Computing and the Grid (CCGrid’03). IEEE Computer Society, May 2003. Ac-
cepted for publication.

[dBKB02] Mathijs den Burger, Thilo Kielmann, and Henri E. Bal. TOPOMON: A monitor-
ing tool for grid network topology. In International Conference on Computational
Science (ICCS 2002), volume 2330, pages 558–567, Amsterdam, April 21-24 2002.
LNCS.

http://www.lumeta.com/mapping.html
http://citeseer.nj.nec.com/calvert97modeling.html

14 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

[DGK+01] P. Dinda, T. Gross, R. Karrer, B Lowekamp, N. Miller, P. Steenkiste, and
D. Sutherland. The architecture of the remos system. In 10th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC-10), Au-
gust 2001.

[Din02] Peter Dinda. Online prediction of the running time of tasks. Cluster Computing,
5(3), 2002.

[Doa96] Matthew B. Doar. A better model for generating test networks. In Globecom ’96,
Nov 1996. Available at http://citeseer.nj.nec.com/doar96better.html.

[Dow99] Allen B. Downey. Using pathchar to estimate internet link characteristics. In
Measurement and Modeling of Computer Systems, pages 222–223, 1999.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-
tionships of the internet topology. In SIGCOMM, pages 251–262, 1999. Available
at http://citeseer.nj.nec.com/faloutsos99powerlaw.html.

[FK98] I. Foster and C. Kesselman. The Globus project: A status report. In Proceedings
of the Heterogeneous Computing Workshop, pages 4–18, 1998.

[MS00] Nancy Miller and Peter Steenkiste. Collecting network status information for
network-aware applications. In INFOCOM’00, pages 641–650, 2000.

[Pax97] Vern Paxson. Measurements and Analysis of End-to-End Internet Dynam-
ics. PhD thesis, University of California, Berkeley, 1997. Available at
ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz.

[PF97] Vern Paxon and Sally Floyd. Why we don’t know how to simulate the internet. In
Proceedings of the Winder Communication Conference, December 1997. Available
at http://citeseer.nj.nec.com/article/floyd99why.html.

[Qui02] Martin Quinson. Dynamic performance forecasting for network-enabled servers in
a metacomputing environment. In International Workshop on Performance Mod-
eling, Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-
PDS’02), April 15-19 2002.

[RL95] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). RFC1771, March
1995.

[SBW99] Gary Shao, Francine Berman, and Rich Wolski. Using effective network views to
promote distributed application performance. In International Conference on Par-
allel and Distributed Processing Techniques and Applications, June 1999. Available
at http://apples.ucsd.edu/pubs/pdpta99.ps.

[WGT00] Rich Wolski, Benjamin Gaidioz, and Bernard Tourancheau. Synchronizing net-
work probes to avoid measurement intrusiveness with the Network Weather Ser-
vice. In 9th IEEE High-performance Distributed Computing Conference, pages
147–154, August 2000.

http://citeseer.nj.nec.com/doar96better.html
http://citeseer.nj.nec.com/faloutsos99powerlaw.html
ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz
http://citeseer.nj.nec.com/article/floyd99why.html
http://apples.ucsd.edu/pubs/pdpta99.ps

An Application-Level Network Mapper 15

[WSH99] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing. Fu-
ture Generation Computing Systems, Metacomputing Issue, 15(5–6):757–768, Oct.
1999.

16 Arnaud Legrand, Frédéric Mazoit, Martin Quinson

A Pseudo-code of the first phase

Let E be the set of all possible host pairs. For sake of simplicity, we denote
(

a −→
eG

b

)
by

(a −→ b).

SensorCode()
do forever:

wait request from maestro
switch on request:

case ”traceroute to node a”:
Do this traceroute and send the result back to the maestro

case ”test connectivity to node a during n seconds”:
Try to saturate the link to a during n seconds
Compute the achieved bandwidth during that time and send it to the maestro

MaestroCode(E)
Traceroute step:
do for each host pair a and b

Ask a the traceroute to b, and b the traceroute to a
wait all the traceroute results

Initialization:
T ← ∅. (Tested pairs. By construction, ∀a, b ∈ T, a �rl b)
C ← ∅. (Conflicting pairs, ∀c ∈ C,∃t ∈ T/c ��rl t)
A ← E. (Available pairs, ie not currently tested)

Iteration:
while Some info are missing
(search an experiment to start)

Let H =

(a −→ b) ∈ A

/ a and b are not an endpoint of any pair in T
(a −→ b) is not known to interfere with any pair in T
we need more info about (a −→ b)

if H �= ∅

Choose h ∈ H so that according to traceroute, ∀t ∈ T, h �rl t
If no such h exists in H, take any h in H
A ← A \ h ; T ← T ∪ h
(Make the experiment)
∀ (a −→ b) ∈ T , ask a the connectivity to b for n seconds ; Gather sensors’ answers
(Conclude from measurements)
if ∃t ∈ T/ the bandwidth of t decreased since last iteration

T ← T \ h ; C ← C ∪ h
for each such t, do remember that it banned on (more) pair to C (see below)

for all t ∈ T , if t had a stable bandwidth, then t �rl (a −→ b) else t ��rl (a −→ b)
else

Let t be the element of T which banned the most elements to C
T ← T \ {t} ; A ← A ∪ {t}
Move from C to A all pairs which were banned by t

	1 Introduction
	2 State of the art
	3 Which topology for which use
	4 ALNeM algorithm
	4.1 Overview
	4.2 Gathering the informations
	4.2.1 Presentation and notations
	4.2.2 Naive algorithm
	4.2.3 ALNeM algorithm

	4.3 Reconstructing a graph from these informations
	4.3.1 Problem presentation and formalization
	4.3.2 Notations and preliminary lemma
	4.3.3 Reconstruction algorithm
	4.3.4 Working out an example

	5 Conclusion
	A Pseudo-code of the first phase

