N

N
N

HAL

open science

Parallel Execution of the Saturated Reductions
Benoit Dupont de Dinechin, Christophe Monat, Fabrice Rastello

» To cite this version:

Benoit Dupont de Dinechin, Christophe Monat, Fabrice Rastello. Parallel Execution of the Saturated
Reductions. [Research Report] LIP RR-2001-28, Laboratoire de I'informatique du parallélisme. 2001,

2+15p. hal-02101824

HAL Id: hal-02101824
https://hal-lara.archives-ouvertes.fr /hal-02101824
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101824
https://hal.archives-ouvertes.fr

%

Laboratoiredel’ I nformatique du Parall&isme

: L CENTRE NATIONAL
Ecole Normale Supérieure de Lyon % DE LA RECHERCHE
Unité Mixte de Recherche CNRS-INRIA-ENS LYON rf 8512 SCIENTIFIQUE

Parallel Execution of the Saturated
Reductions

Benoit Dupont de Dinechin
Christophe Monat

July 2001
Fabrice Rastello oY

Research Report N° 2001-28

Ecole Normale Supérieure de Lyon

- SPI
EEEEN
EEEEN

46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37 1 N R I A
Télécopieur : +33(0)4.72.72.80.80 .

Adresse électronique : 1ip@ens-lyon.fr

Parallel Execution of the Saturated Reductions

Benoit Dupont de Dinechin
Christophe Monat
Fabrice Rastello

July 2001

Abstract

This report addresses the problem of improving the execution performance of
saturated reduction loops on fixed-point instruction-level parallel Digital Signal
Processors (DSPs). We first introduce “bit-exact” transformations, that are
suitable for use in the ETSI and the ITU speech coding applications. We then
present “approximate” transformations, the relative precision of which we are
able to compare. Our main results rely on the properties of the saturated
arithmetic.

Keywords: Saturated Reductions, Fixed-Point Arithmetic, Fractional Arithmetic, ETSI / ITU Speech
Coding, Parallel Reductions, Instruction Level Parallelism

Résumé

Ce rapport traite de la parallélisation des réductions saturées sur les processeurs
DSP & arithmétique virgule fixe. Nous proposons dans un premier temps des
transformations “bit-exactes”, appropriée aux applications de codage de parole
ETSI et ITU. Puis nous présentons plusieurs transformations “approchées”, que
nous comparons. Nos principales contributions sont basées sur les propriétés de
I’arithmétique saturée.

Mots-clés: Réductions saturées, Arithmétique a virgule-fixe, Arithmétique fractionnaire, Codeurs de
parole ETSI / ITU, Réductions paralléles, Parallélisme au niveau des instructions.

Parallel Execution of the Saturated Reductions

Benoit Dupont de Dinechin *
Christophe Monat |
Fabrice Rastello !

July 2001

1 Introduction

The latest generation of fixed-point Digital Signal Processors (DSPs), that comprises the Texas Instru-
ments C6200 and C6400 series [8], the StarCore SC140 [6], and the STMicroelectronics ST120 [7], rely
on instruction-level parallelism exploitation, and fractional arithmetic support, in order to deliver high-
performance at low cost on telecommunication and mobile applications.

In particular, the instruction set of these so-called DSP-MCUs [3] is tailored to the efficient imple-
mentation of standardized speech coding algorithms such as those published by the ITU (International
Telecommunication Union) [5], and the ETSI (European Telecommunication Standards Institute) [4]. The
widely used ETSI / ITU speech coding algorithms include:

ETSI EFR-5.1.0 The Enhanced Full Rate algorithm, used by the European GSM mobile telephone sys-
tems.

ETSI AMR-NB The Adaptative Multi Rate Narrow Band, that will be used in the 3GPP/UMTS mobile
telephone systems.

ITU G.723.1, ITU G.729 Speech coders used in Voice over IP (VoIP), Voice over Network (VoN), and
for H.324 and H.323 applications.

In the ETSI and the ITU reference implementations of these algorithms, data are stored as 16-bit integers
under the @115 fractional representation, and are operated as 32-bit integers under the ();3; fractional
representation. The @, ., fractional representation interprets a n 4+ m bit integer = as [3]:

n—2+m

Qnm(w) = _2n71xn—1+m + Z 2kimxk
k=0

In other words, @, ., is the two’s complement integer representation on n + m bits, scaled by 27™, so the
range of a Q,.m number is [—27~1 27—l — 2=m],

Two’s complement addition of @, ,,, numbers yields a Q,41., number. Two’s complement multiplication
of Q,,.,, numbers yields a Q2y,.2,» number with the two upper bits identical except in the —27~! x —2n~! =
227=2 cage. This multiplication result fits into a Q2. 1.2my1 number, after saturation of 2272 to 2272 —
272m=1 TIn particular, the Q) ,, representations (n = 1) are widely used because their multiplication exactly
fits Q1.2m+1 numbers, except in the —1 x —1 case where the relative saturation error is 2—2m—1,

Because the ETSI and the ITU reference implementations operate on the Q1,15 and the Q1 3; fractional
representations, a saturation is involved every time two ()1 31 numbers are added into a (1.31 number, and
every time two (Q1.15 numbers are multiplied into a (1.31 number.

*STMicroelectronics. 12 rue Jules Horowitz, BP217, F-38019 Grenoble Cedex France. Benoit.Dupont-de-Dinechin@st.com
tSTMicroelectronics. 12 rue Jules Horowitz, BP217, F-38019 Grenoble Cedex France. Christophe.Monat@st.com
¥STMicroelectronics. 12 rue Jules Horowitz, BP217, F-38019 Grenoble Cedex France. Fabrice.RastelloQens-lyon.fr

So:= 8 So =8
fori=0ton—1 fori=0ton—1

Si+1 := saturate(s; + saturate(z[i] x y[i] < 1)) Si+1 := saturate(s; + a[i])
end for end for
return s, return s,

Saturated fractional MAC reduction Saturated additive reduction

Figure 1: Saturated reductions: motivating examples.

Let the saturate operator be defined on a 32-bit number s interpreted as a two’s complement integer:

if s > max32 then max32

saturate(s) = else if s < min32 then min32
else s
max32 ¥ 2311
min32 ¥ 23

In the ETSI and the ITU vocoders, a significant percentage of the computations is spent on saturated
reductions loops like those displayed in figure 1. In this figure, s and a[i] are 32-bit ()1.3; numbers, while z[i]
and y[i] are 16-bit ()1.15 numbers. Subscripted symbols like s; are temporary variables indexed by the loop
iteration number 4, in order to reference their value in proofs. In real programs, such temporaries would be
mapped to a single variable.

In the saturated fractional MAC reduction code of figure 1, the z[i] xy[i] product is a 32-bit ()2.30 number,
which is first shifted left one bit in order to align the fractional point. The result is a 33-bit ()2 3; number,
which is saturated back to a 32-bit (1.3; number. This value resulting from saturate(z[i] * y[i] < 1) is then
added to s, to yield a 33-bit (J2.31 number, which is saturated again to 32-bit, yielding the new value of s
under the (1.3 representation.

In order to efficiently execute speech coding applications under the requirement of “bit-exactness” with the
the ETSI and the ITU reference implementations, a DSP must support fractional arithmetic in its instruction
set. As a matter of fact, today’s leading fixed-point DSPs offer multiply-accumulate (MAC) instructions,
including fractional multiply-accumulates that compute s := saturate(s + saturate(z[i] * y[i] < 1)) and its
variants in a single cycle.

On the new DSP-MCUs, exposing more instruction-level parallelism than a single MAC per cycle is
required in order to reach the peak performances. Indeed, these processors are able to execute two (TI
C6200, STM ST120) to four (TT C6400, StarCore SC140) MACs per cycle. Unfortunately, saturated additive
reductions are neither commutative nor associative, unlike modular integer additive reductions. Therefore, a
main issue when optimizing the ETSI and the ITU reference implementations onto a particular DSP-MCU
is to expose instruction-level parallelism on saturated reduction loops.

In this report, we discuss several techniques that enable the parallel execution of saturated reduction
loops on the new DSP-MCUs. In section 2, we present the “bit exact” transformations that are suitable
for use in the ETSI / ITU speech coding algorithms, but require a 4-MAC DSP. In section 3, we study the
relative correctness of approximate transformations of saturated reduction loops that are commonly used on
2-MAC DSPs.

2 Bit-Exact Parallel Saturated Reductions

2.1 Compiler Optimization of the ETSI and the ITU Codes

In the ETSI and the ITU reference implementations of speech coding algorithms, all the Q.15 and Q.31
arithmetic operations are available as the functions known as the basic operators (files basicop2.c and
basic_op.hin the ETSI codes). Among the basic operators, the most heavily used are (ordered by decreasing
dynamic execution counts measured on the ETSI EFR-5.1.0):

for (i = 0; i < 1g; i++) { for (n = 0; n < L; n++) {
s = L_mult(x[il, al[0l); s = 0;
for (j = 1; j <=M; j++) { for (1 = 0; i <= n; i++) {
s = L_mac(s, aljl, x[i - j1); s = L_mac(s, x[i]l, hln - il);
} }
s = L_shl(s, 3); s = L_shl(s, 3);
y[i] = round(s); y[n] = extract_h(s);
} }
(residu) (convolve)

Figure 2: Saturated reductions: original code.

add(z,y) = saturate(z +y) > 16

L_mac(s, z,y) o saturate(s + saturate(z x y < 1))
mult(z,y) = saturate(z xy < 1) > 16
L_msu(s, z,y) o saturate(s — saturate(z x y < 1))
L_mult(z,y) = saturate(z * y < 1)

round(s) = saturate(s + 2'%) > 16

In these expressions, and y are 16-bit numbers under the), 15 representation, while s and t are 32-bit
numbers under the ()1 31 representation.

When porting an ETSI / ITU reference implementation to a particular DSP, the first step is to redefine
the basic operators as intrinsic functions, that is, functions known to the target C compiler, and inlined
into one or a few instructions of the target processor. Efficient inlining is compiler challenging, as virtually
all the ETSI / ITU basic operators have a side-effect on a C global variable named Overflow, which is
set whenever saturate effectively saturates its argument. Compiler data-flow analysis is used to isolate the
reductions whose side-effects can be safely ignored.

Precisely, on the ST120 DSP-MCU processor by STMicroelectronics [7], the side-effects of hardware
saturation and integer overflow are accumulated into sticky status registers'. The main optimization that
the C compiler performs after mapping the ESTI / ITU basic operators to the ST120 instructions, is to
dead-code eliminate the useless transfers of values between the Overflow variable, and the ST120 sticky
status registers.

Once efficient inlining of the ESTI / ITU basic operators is achieved, the performance bottlenecks are
identified in order to trigger more aggressive compiler optimizations. On the ESTI / ITU speech coding
algorithms, many of these bottlenecks involve saturated reduction loops. Typical examples of such loops,
from the EFR-5.1.0 vocoder, are illustrated in figure 2. In these cases, parallel execution can be achieved
without introducing any overhead, thanks to the unroll-and-jam compiler optimization.

Unroll-and-jam [1] can be described as outer loop unrolling, followed by the loop fusion of the resulting
inner loops. The main issues with this transformation are checking the validity of the inner loop fusion, and
dealing with iteration bounds of the inner loop that are outer loop variant. Unroll-and-jam of the codes of
figure 2 is illustrated in figure 3. In the residu code, the compiler Inter-Procedural Analysis (IPA) infers
that 1g is even, and that y does not alias a or x. Likewise in the convolve code, where the IPA infers that
L is even, and that y is alias-free. Thanks to these informations, remainder code for the outer loop unrolling
is avoided, and the inner loop fusion is found legal. Unlike residu, the convolve loop nest has a triangular
iteration domain, so its inner loop fusion generates residual computations.

Unroll-and-jam of saturated reduction loops is not always an option. Either the memory dependencies
carried by the outer loop prevent the fusion of the inner loops after unrolling, such as in the syn_filt code
found in the ETSI EFR-5.1.0 and the ETSI AMR-NB. Or there are no outer loops suitable for unrolling.
In such cases, parallel execution can still be achieved, by using the arithmetic properties of the saturated
additive reduction.

IRegisters that are only set as side-effect of instructions, and that must be reset with a dedicated instruction. Because of
the stickyness property, updates to these status registers can proceed in parallel.

for (i = 0; i < 1g/2; i++) {

short i_e = 2 *x i ;
short i_o =2 *x i + 1 ;
int s_e = L_mult(x[i_e], al0]);
int s_o = L_mult(x[i_o], al0]);
for(j =1 ; j<=M; j++) {
s_e = L_mac(s_e, aljl, x[i_e - j1);
s_o = L_mac(s_o, al[jl, x[i_o - j1);

}

s_e

L_shl(s_e, 3);
s_o = L_shl(s_o, 3);
y[i_el = round(s_e) ;
yli_o]l = round(s_o) ;

(residu)

for (n = 0; n < L/2; n++) {
short n_e = 2 * n;
2*xn+1;

[=]

short n_o =
int s_e = 0;
int s_o = 0;
for (1 = 0; i <= n_e; i++) {

s_e = L_mac(s_e, x[il, hln_e - il);
L_mac(s_o, x[i]l, hln_o - il);

s_o
}

s_o = L_mac(s_o, x[n_o], h[0]);
s_e = L_shl(s_e, 3);

s_o = L_shl(s_o, 3);

y[n_el = extract_h(s_e);
y[n_o] = extract_h(s_o);

(convolve)

Figure 3: Saturated reductions: after unroll-and-jam.

Ug =5
Vo = 0
ming := min32
mazxg := max32
fori=0to 5 —1
w1 = saturate(u; + ali])
Vi1 =0 +afi + §]
miny, := saturate(min; + a[i + §])
mazx;,, := saturate(max; + afi + §])

end for
max

return clip,,;,, > (uz +vz)
2

Program 1

int min = INT_MIN, max = INT_MAX;
for (i = 0; 1 < n/2; i++) {
u = L_mac(u, x[i], y[il);
v += L_mult(x[i+n/2], y[i+n/2]);
min = L_mac(min, x[i+n/2], y[i+n/2]);
max = L_mac(max, x[i+n/2], y[i+n/2]);
}
v += u;
if (v > max) return max;
if (v < min) return min;
return v;

Program 2

Figure 4: Saturated reductions: parallelized code with one 40-bit accumulation.

max32,

The clip operator is such that saturate = clipyinss:

clipi(s) =

2.2 Exploitation of a 4-MAC DSP with 40-bit Accumulators

We now introduce a first technique, based on the arithmetic properties of the saturated additive reduction,
that enables the “bit-exact” parallel execution of the saturated reductions. This techniques requires a DSP
that executes four MAC per cycle, to achieve an effective throughput of two iterations of the original saturated
reduction loop per cycle. The pseudo-code and the C code that implement this technique are displayed in
figure 4. Program 2 assumes the data-type mapping of the TI C6000 and the STM ST120 C compilers: long
integers are 40-bit, integers are 32-bit, and short integers are 16-bit.

Let us first consider the two programs in figure 5, that compute a saturated reduction over n values a[i].

if [> h then L
def else if s > h then h
else if s <[then [
else s

Theorem 1 In figure 5, if ming < s < maxg, then Program 8 and Program 4 compute the same result.

So:=s
ming := ...

Sp 1= mazy == ...

fori=0ton—1 fori=0ton—1

Si+1 := saturate(s; + ali]) Siy1 1= S; + ai]

end for min;41 := saturate(min; + ali])

return sy max;y; = saturate(maz; + ali])
end for
return clip i7" (Sn)

Program 3 Program 4

Figure 5: Saturated reductions: equivalent codes when ming < s < max.

Si+1 ¢ {min32, max32} ‘@

Siy1 7 max32

Si+1 = min32

Si+1 = max32

Si+1 = min32

J

Si+1 7 mMin32

Figure 6: Possible case transitions between the induction steps ¢ and ¢ + 1 of Theorem 1.

The proof is done by induction on the iteration index i, under the induction hypothesis that s; in Program 3

maz;
min;

equals clip

or
or

or

Because ming < Sy = s < maxyg, clip

(S;) in Program 4. This induction hypothesis is actually equivalent to the four following cases:

1
2
3
4

S; < min; = s; < max;
min; < s; = S; < max; and min; # mazx;

min; < mazr; = s; < .S;

(
(
(
(

—_— — ~— e

min; = S; = Max;

mazo

ming (S0) = So = s, while 5o = s, so the induction hypothesis is verified

for i« = 0. The proof is completed by applying Lemma 1 to each of the four cases above, as summarized in

Figure 6.

O
Lemma 1 Let x and y be two numbers.
If x <y then min32 < saturate(z + a[i]) < saturate(y + a[i]) < max32
If x <y and a[i] <0 then = + afi] < saturate(y + a[i]).
If x <y and afi] > 0 then saturate(z + a[i]) <y + a[i].
The proof follows from the definition of saturate. 0

Corollary 1 Program 1 and program 3 compute the same result.

Let us introduce the following notations:

Sp =S
m—1 fori=0tom—1 m—1
@ (s,ali]) = Si+1 := saturate(s; + a[i]) , and @)= (0, ali])
i=0 end for i=0
return s,
At the Program 1 end for control point, we have: uz = @i%:_ol(s,a[i]), so the result s, computed by
Program 3 equals:
n—1 n—1 %_1 n—1
sn=EP(s,ali)) =P | P (s.ali)), alil | = P (uz,ali)
i=0 i=2 \ i=0 =2

However, min32 < uz < max32, so by applying Theorem 1, with Sp replaced by uz and S; replaced by
uz +v; in Program 4, we get the stated result. 0

Note The proof of Corollary 1 assumes infinite precision arithmetic for computing S; in Program 4, as
opposed to the 32-bit arithmetic that is used for min; and max;. As far as n does not exceed 28, long integer
computations are equivalent to using unlimited precision integer arithmetic. In particular this condition is
verified in the ETSI / ITU reference implementations, where the main vector lengths are 40 and 160. On
applications where the vector lengths may exceed 28, strip-mining of the reduction loop can be used to create
inner loops that iterate no more than 22.

However, by applying Lemma 2 of the next section, we find that using 33-bit arithmetic in place of
infinite precision arithmetic for computing S; in Program 4 is enough: whenever S; overflows in 33-bit
arithmetic, min,, = maz,, so S, no longer contributes to the end result of Program 4. Thus strip-mining of
the reduction loop is not necessary, and Program 2 actually works whatever the loop iteration count n. In
addition, Program 2 only requires that long integers are larger than 32-bit.

2.3 Exploitation of a 4-MAC DSP with 32-bit Accumulators

One problem with the method of section 2.2 is that it requires a target DSP that computes three saturated
32-bit MACs, plus one non-saturated 40-bit MAC, per cycle. In this section, we show that Program 5
in figure 7 is bit-exact. The corresponding C code in Program 6 achieves an effective throughput of two
iterations of the original saturated reduction loop per cycle on a 4-MAC DSP, and only requires 32-bit

32
accumulations: three with saturation, and one that uses 32-bit modular integer arithmetic denoted +.
Theorem 2 In figure 8, Program 4’ and Program 7 compute the same result.

A first remark is that if min, = max,, then Program 4’ and Program 7 return the same result: min, =
maz,. Hence we shall assume min, < maz,, and the proof reduces to Lemma 2, followed by the simple
observations:

6) = S,=85,+ 232 > min32 + 232 = 23! > max32 > max,
(7) = S,=25,—2% <max32 - 2% = -2% — 1 < min32 < min,,

This yields Program 7, that also works in the min,, = maz,, case. 0

Lemma 2 If min, # max, then we have:

mazy, —max32 < S, —s < min, —min32 <= S,=35, (5)
S, — s < maz, —max32 << S,=35,+ 2% (6)
S, —s>min, —min32 <— §,=25,—2% (7)

ming := min32
mazxg := max32
fori=0to 5 —1
w1 = saturate(u; + ali])
Vi1 1= 0; ¥ ali + %]
miny1 := saturate(min; + afi + 2])
max;4 = saturate(maz; + ali + %))
end for
inf:=marz — max32
sup := minz — min32
if inf < vz < sup then
marn
return clipmm%2 (uz +vz)
end if
return maz, if va <inf
return miny, if vz > sup

Program 5

long inf, sup;
int u = s, v = 03
int min = INT_MIN, max = INT_MAX;
for (i = 0; 1 < n/2; i++) {
u = L_mac(u, x[i], y[il);
v += L_mult(x[i+n/2], y[i+n/2]);

min = L_mac(min, x[i+n/2], y[i+n/2]);
max = L_mac(max, x[i+n/2], y[i+n/2]);

}

inf = max - INT_MAX;

sup = min - INT_MIN;

if (inf <= v && v <= sup) {

if ((long)u + v > max) return max;
if ((long)u + v < min) return min;

return u + v;
if (v < inf) return max;
return min;

Program 6

Figure 7: Saturated reductions: parallelized code with only 32-bit accumulations.

If ai] > 0, maz;+1 = saturate(maz; + afi]) < maz; +a[i] by Lemma 1, so maz;+1 —maz; < a[i] = Sit1 —S;.
Else if a[i] < 0, maz;;1 = saturate(max; + ali]) = maz; + a[i], and maz;y1 — maz; = afi] = S;41 — S;.
Otherwise max;41 has reached min32, a contradiction since min32 < min;y1 < maz;11 = min32 = min;;1 =
maxiyy = min, = maz,. Summing the n inequalities max;11 — maz; < S;y1 — ; yields maz, — maxg <
Sp — So © max,, —max32 < S,, — s. Similarly, S,, — s < min,, — min32. This yields (8):

mazr, —max32< S,—s <min, —min32 (8)
-2 4 1=min32-max32< S, —s5 < max32-—min32=2%% -1 9)
-2 4 1=min32-max32< S, —s < max32—-min32=2% —1 (10)

Equation (9) is implied by (8), while (10) holds because S,, and s € [min32, max32]. Since S, and S, are
computed the same way, except for the modular 32-bit addition in case of S,, we are left with only three
possibilities:

o Sp, =S, Then (8) reduces to case (5).

o S, = 8, 4 232 We show by contradiction that S,, — s < maz, — max32, thus reducing to case (6).
From (8), we have S,, — s + 232 < min,, — min32. Subtracting those inequalities yields 232 < min,, —
mazx, + max32 — min32 & maz, < min, + max32 — min32 — 232 = min,, — 1 < min,,.

o S, =S, — 232 Likewise one can show by contradiction that S,, — s > min,, — min32, thus reducing to
case (7).

Finally, as min,, and maz, are signed 32-bit integers, maz, — min, < max32 — min32 < maz, — max32 <
min, —min32. Therefore, the inequalities S,, — s < max, — max32 and S, — s > min, — min32 are exclusive.

O

Corollary 2 Program 5 computes the same result as Program 3.

Proof identical to the proof of Corollary 1. 0

So:i=s

ming := min32

So:=s mazxg := max32

ming := min32 fori=0ton—1

maxg := max32 Siv1:=25; ¥ ali]

fori=0ton—1 min;41 := saturate(min; + a[i])
Sit1 = S; + afi] max;y1 = saturate(maz; + ali])
min;41 := saturate(min; + ali]) end for
maz;t1 ;= saturate(maz; + ali]) inf := max, — max32

end for sup := min, — min32

return clip; 7" (Sy,) return clipjnéo" (S,,) if inf < S, — s < sup

return mazx, if S, —s <inf
return min, if S,, —s > sup

Program 4’ Program 7

Figure 8: Saturated reductions: use of 32-bit modulo / saturated accumulations.

3 Approximate parallel reductions

3.1 Problem Statement and Notations

Section 2 illustrates that satisfying the “bit-exact” requirements when unroll-and-jam does not apply wastes
computational resources: four parallel MACs are required in order to run twice as fast as the original
saturated reduction. In this section, we discuss several “approximate” transformations of the saturated
reductions, that are suited to DSPs fitted with only two parallel MACs. All these transformations run twice
as fast as the original saturated reduction, but more or less approximate the “bit-exact” result.

The approximate parallel saturated reductions discussed are:

S ¥ Assaturate (@1 (s, afi]) + 13 alil)

Sy ¥ \s.saturate (@?261(87 ali]) + @7:_% (a[z]))

Ss < \s.saturate (s + ZZZI al2i] + Ei%:gl al2i + 1])
Si % Assaturate (@2 (s,a[21]) + B, (al2i + 1))

The common theme of these approximate algorithms is to split the reduction into sub-reductions, which
are computed in parallel and combined at the end using a saturated addition. When using non-saturated
arithmetic (modular integer arithmetic), overflows must be avoided by using wider precision arithmetic, such
as 40-bit integers on the new DSP-MCUs. Another difference between approximate algorithms is that some
of them expose spatial locality of memory accesses, such as S3 and Sy.

The correctness of an approximate algorithm mainly depends on the potential saturation of the sub-
reductions. Let us introduce the notations:

J J
7 .1 def def
Miéﬁz ali] = jmax [g a[k]] MINE ali] = mréljuén LE al]
=m

Then the different approximation cases we shall discuss for i € [j, k[are:

case 1 No saturation: min32 < MINEf;j1 afi] A MAXE?;l afi] < max32.

case 2 Saturation on one side: min32 < MINEf: ! afi] A max32 < MAXZHZ 1 afi], or min32 > MINXK - 1 afi] A
MAXE{ ! afi] < max32.

case 3 Saturation on both sides.

Each approximate algorithm achieves a tradeoff between three points:
Accuracy The main reason for using saturated arithmetic in fixed-point digital signal processing, instead
of integer modular arithmetic, is the better behavior of the former in linear filtering applications. However, as
saturations in linear filters implies signal distortion, it is a design goal of fixed-point digital signal processing

algorithms to avoid saturation as much as possible. Consequently, we sort those three different cases in order
of importance:

case 1 > case 2 > case 3

Interleaving There are two basic ways to split the reduction:
e cither separate odd and even index, as 7~ afi] = i%::)l al2i] + Zi%:_ol al2i + 1].
e or maintain the main order by summing the first § as well as the last § elements together, S ali] =
L 1 .
2o ali] + E:l:% ali]
Interleaving potentially yields better performances, as it exposes spatial locality between a[2i] and a[2i + 1].

On the new DSP-MCUs, spatial locality enables memory access packing, that is, loading or storing a pair of
16-bit numbers as a single 32-bit memory access.

32-bit versus 40-bit We will see that saturating the sub-sums usually gives worse results than summing
in higher-precision arithmetic, then saturating in the end.

3.2 Main Approximation Results

In this section, we denote: S = Az. @?:_%1 (z,al]).

Let us denote by s,, the result of @:f;—(}l(s, ali]), so that by sz = i%:;l(s,a[i]). The original saturated
reduction s, = @7 (s,ali]) = @?:_%1 (s2,ali]), and we are interested to know when Az. @?:_%1 (w,ali])
saturates.

Lemma 3 (Saturation of S)

n—1
S maz-saturates <= x+ MAXX a[i] > max32 (11)
7/:5
n—1
S min-saturates <= x+ MINX a[i] < min32 (12)
=%
n—1 n—1
S min-maz-saturates = MAXYali] — MINY a[i] > max32 — min32 (13)
1:5 1,:5
n—1 n—1
S does not saturate = MAXXa[i] — MINX a[i] < max32 — min32 (14)
1:5 1/:5

Relations (11) and (12) are straightforward from the definition of MAXY and MINX: because min and max
are linear functions, = can be subtracted to each sum and moved out from the min and max. Relations (13)
and (14) are obtained by subtractions on (11) and (12). 0

Lemma 4 (Saturation and extrema) Let us denote by S, = @?;_Ol(o,a[i]):
If S,,, maz-saturates and does not min-saturate, then

m—1

m—1
Sm =max32 <= Y afi] = MAXZali]

. i=0
=0

If S,,, min-saturates and does not maz-saturate, then

m—1

Sm =min32 <= > ali] = MINEa[]

=0

Consider that Sm = max32 does not saturate on min. Suppose, by contradiction, that there exists j < m
such that 770 afi] > 375" a[i]. Then, we have ZZ’;l afi] < 0. Eventually because @' (a[i]) does not
saturate on min

D7
)
N
~
DT
—
)
=
e
=
_/
IA
o
I
—
)
)
+
M7
)
2
ity

i=j i=0 i=0 i=j
j—1
< (ali])
=0
< max32
Reciprocally, suppose > .- Yai] = MAXST ! afi] and consider the largest index 0 < j < m such that
S; = max32. We have S;, = S; + ZZ:] ali] Then, because Ei:j afi] > 0, S, = max32. 0
Theorem 3 (Exact value of S)
n—1
S does not saturate — S(z)=z+ Z ali] (15)
=%
maz-saturates — nlo
does not min-saturate = S = z; ali] = <Mié)%(2 ali] = max32> (16)
=3
min-saturates = n—l
does not maz-saturate = S@)= z; ali] = <|\/i||:|\é2a[z] B m|n32> (17)
=%
n—1
S min-maz-saturates = S(z) = @(a[z]) Vz € [min32, max32] (18)

=3
o To prove Relation (16) let us prove by induction on m > j that if S,, saturates on max, not on min:
m—1 m—1 m—1
(sm = G%m[m) = 2; ali] — (MZA)éEa[z] - max32> (19)
1= 1=

where j is the smallest index such that El 0 a[z] > max32.

Because S; = max32 and Ei:O ali] = MAXEl o ali], and the induction hypothesis is true for m = j. Let us
consider m such that (19) is true. There are two possibilities:

1. S;n+1 = max32, and the result directly extends from Lemma 4.

2. Spg1 = S + a[m] < max32, and thanks to Lemma 4, > a[i] # MAXZZ afi], so MAXE afi] =
MAXX™ 5" afi]. The result follows from the relation on m.

o Let us prove Relation (18). Suppose without loss of generality that < z'. Because
x <y = saturate(z + a) < saturate(y + a)
We have,

Vm, ' r (z,ali]) < (2, ali]) < max32

3
3
i)

~
Il

[SIE]
~.
Il

w3

Now, since S saturates on max, if we denote by j an index where it saturates, we have

Ju

j—1

max32 = @(x,a[i]) = (', ali])

- n .
1=3 2

<.

Il
VB

Corollary 3 (Comparison on case 1) If S does not saturate, then:

|
-

n—1 n
S(x) = saturate | z + @(a[z]) = (a[i]) does not saturate

=5

~
Il
w3

The reciprocal is clearly true.
n—1

Suppose by contradiction that S’ = @i:%(a[i]) saturates. Since S does not saturates, from relations (13)

and (14), we can prove by contradiction that S’ does not saturate both on max and min. Hence, consider
without loss of generality that S’ saturates on max, not on min. From Relation (16) we get

n—1 n—1

n—1
saturate | = + @(a[z]) saturate | z + Z ali] — <M.A)n(2 ali] — max32>
=%

j— 1 j— 1
=% =%

n—1
= saturate (S - <Mé)n(2 ali] — max32>>
n—1
= S- (Mé)ﬂ(E afi] — max32>
= S

As a consequence of Theorem 3 and Corollary 3, in case 1 on [§,n — 1[, S; is better than S».

Theorem 4 (Comparison on case 2) Suppose © # 0, S maz-saturates, and S does not min-saturate.
Then:

n—1 neti n—1

S(z) =saturate | z+ Y ali] | <= MAXSZali]= Y _ ali] (20)
n—1 neti n—1

S(z) =saturate | z + P (afi]) | < MAXSafi]=> afi] \ z>0 (21)

Which is true in particular when afi] > 0Vi.

o Let us start with the proof of (20). From (16) we have
n—1
S(z) =z+ ali] — (w + MAXY ali] - max32>
: =5

Also from (11) we get that
n—1
r + MAXY a[i] — max32 > 0
=3
Consequently,

S(z) #x + Z_:a[i]

11

and
n—1

S(z) = saturate | + Z afi] | < S(z) = max32

i—n
=3

Eventually, we apply Lemma 4.

o To prove (21) we need to consider two cases:
1. @:L:_%l (a[i]) saturates on max. By applying Theorem 3 both on G):L:_%l(afi]) and @ . 2 (0,ali]), we get
S(x) = B4 (0,ali]). Now, z # 0 and z + =, (ali]) # S(z). So, saturate (w + 691»:% (a[i])) = S(z)
implies S(z) = max32, and the equivalence relation follows.

2. @ (afi]) does not saturate on max. First, because S saturates on max, necessary = > 0. More-

over, 7 + @} (ali]) > = + Y124 ali] > 24 (z,ali]) = S(x). Hence, saturate (a: + D, (a[i])) -
S(z) <= S(z) = max32.

As a consequence of Theorem 4, in case 2 on [§,n — 1], S is better than Ss.

Corollary 4 (Comparison on case 3) Ifx # 0 and S min-maz-saturates:

n—1)
S(@) = saturate [2+ Y afi] | V{mmzwan:zﬂ—lail

S(z) = saturate m+® (ali]) | <= V{ M|N2”iaﬂ=2”‘1a[i]/\w<0

i=3

Thus in case 3 on [§,n — 1[, S} is better than Ss.

3.3 Classification of the Approximate Algorithms

On the light of previous remarks and theorems, we compared the four different algorithms (Sy, Sa, S3, S4) and
summarized their characteristics: Sy is the worst approximation because whenever one of its sub-reductions
or the original sum @7~ (s, ali]) saturates, the result is not “bit-exact”.

The main drawback of S is that it requires the target processor to operate on numbers larger than 32-bit,
for instance 40-bit on most fixed-point DSPs. In that case, the loop iteration count has to be no larger than

28, else strip-mining of the reduction loop is required.
When the target processor is limited to 32-bit arithmetic, or suffers significant performance degradations

when operating at higher precision, the S, or S, approximate techniques should be used to parallelize the
saturated reductions.

12

Condition for Correctness Properties

o case 1 on [§,n]

or MAXE™L afil = S~ ali Needs 40-bit operations.
S =3 1= [l Better than Ss and Sj3.

2 K3
o case 1 on [2,n[A no saturation of @7;%1 (a[i])

MAXS™ L alil = S L 4l 3-1 . Only 32-bit operations.
52 or ali} ZZ:E ali] A eaﬂli(i (s, afi]) > 0 Better than Sy.
or MINE ¢ ai] = 74 afi] A @2 (s,ali)) <0

Spatial locality.

S3 o case 1 on [0, §[A same conditions as S;. Needs 40-bit operations.
Better than Sy.

Spatial locality.

Only 32-bit operations.
Simplest implementation.
Worst approximation.

o case 1 on [0,n|
Sa and neither @fzgl(s,a[2i]) nor @fzgl(a[Zi +1))
saturates

Also, so as to illustrate the non-correctness of several algorithms, we provide counter-examples in Table 1.
In this table, we use the previously introduced notations, in addition to:

Ss = s.saturate (s + @7, (a[n —i]))
Se = \s.saturate (i%:?)l(s, ali]) + Gai%:l(a[n - Z]))
Se = e @7 (ali)

a S || S1 | S2| Sz | Ss|Ss | Se | St
-1 7 5 2 4 1 10 7 2 -2||13| 15|15 |15 |15 |14 | 15| 13
v 7 8 1 -12 -1 13 4 -2 -7| 3 3|2 |55 |5 |36
6 6 5 -2 -10 -1 -5 13 4 -1| 1313|113 |15 | 14| 14| 12| 10
6 7 4 -2 3 5 4 2 3 -1|10|10|10| 13|13 |13 |10 -5
29 -3 3 6 -2 5 7 1 8|10(10| 6 (10| 5 | 4 | 4 |15
12 -1 3 4 3 1 -2 5 3 13|13 |(13|13|13 |13 |13 | 4

Table 1: Counter examples: for the sake of simplicity, the examples are scaled to min32 = —16, max32 = 15,

n =10, and s = 0.

4 Conclusions

This paper addresses the problem of improving the performance of the saturated reductions on fixed-point
Digital Signal Processors (DSPs), under the requirement to implement “bit-exact” variants of the reference
telecommunications algorithms such as the ETSI EFR-5.1.0, the ETST AMR-NB, the ITU G.723.1, and the
ITU G.729. This problem is motivated by the need to exploit the instruction-level parallelism available on

13

the new generation of DSP-MCUs, in particular the Texas Instruments C6200 and C6400 series [8], the
StarCore SC140 [6], and the STMicroelectronics ST120 [7].

On the ETSI ans the ITU reference implementations, several saturated reductions loops can be paral-
lelized by applying unroll-and-jam, that is, unrolling of the outer loop into the inner loop so as to create more
parallel work. When unroll-and-jam is not applicable, the arithmetic properties of the saturation operator
allow to compute two saturated reduction steps per cycle, at the expense of four multiply-accumulate oper-
ations per cycle. Our main technique requires one 40-bit integer accumulation, and three 32-bit saturated
accumulations, per cycle. Then we show how to replace this 40-bit integer accumulation by a 32-bit integer
accumulation.

When the “bit-exact” requirement can be relaxed, more efficient but approximate techniques can be used
to parallelize the saturated reductions. Based on further arithmetic properties of the saturation operator,
we compare the approximate techniques to each other. In particular, the commonly used technique Sy that
computes two interleaved saturated sub-reductions achieves the worst approximation. We find that the most
precise approximate technique S; computes the first half of the reduction in order using 32-bit saturation,
and the second half using 40-bit integer arithmetic.

References

[1] S. CARR, Y. GUAN: Unroll-and-Jam Using Uniformly Generated Sets Proceedings of the 30th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-97), pp. 349-357, Dec. 1997

[2] B. DUPONT DE DINECHIN, F. DE FERRIERE, C. GUILLON, A. STOUTCHININ: Code Generator Optimizations for the ST120
DSP-MCU Core International Conference on Compilers, Architectures, and Synthesis for Embedded Systems — CASES,
Nov. 2000.

[3] B. DuPONT DE DINECHIN, C. MONAT, P. BLOUET, C. BERTIN: DSP-MCU Processor Optimization for Portable Applications
Microelectronic Engineering, Elsevier, vol. 54, no 1-2, Dec. 2000.

[4] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE — ETSI: GSM Technical Activity, SMG11 (Speech) Working
Group, http://www.etsi.org.

[5] INTERNATIONAL TELECOMMUNICATION UNION — ITU: http://www.itu.int.

[6] STARCORE: SC140 DSP Core Reference Manual MNSC140CORE/D, Dec. 1999.

[7] STMICROELECTRONICS: ST120 DSP-MCU CORE Reference Guide http://www.st.com/stonline/st100/.
[8] TEXAS INSTRUMENTS: TMS320C6000 CPU and Instruction Set Reference Guide SPRU189E, Jan 2000.

[9] N. YADAv, J. GLOSSNER, M. SCHULTE: Parallel Saturating Fractional Arithmetic Units Proceedings of the 9th Great Lakes
Symposium on VLSI, pp. 214-217, Mar. 1999.

14

