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Abstract

In this paper� an e�cient algorithm to implement loop partitioning is
introduced and evaluated� We improve recent results of Agarwal� Kranz
and Natarajan ��	 in several directions� We give a more accurate estima�
tion of the cumulative footprint� and we derive a much more powerful
algorithm to determine the optimal tile shape� We illustrate the supe�
riority of our algorithm on the same examples as in ��	 to ensure the
fairness of the comparisons�

Keywords� Compilation technique� hierarchical memory systems� loop partitioning� tiling�
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R�esum�e

Nous pr
esentons dans ce papier une heuristique e�cace permettant de
faire de la distribution de boucles� Nous appuyons notre travail sur un
papier r
ecent de Agarwal� Kranz et Natarajan ��	 que nous am
eliorons
dans de nombreuses directions� Plus pr
ecisement� nous proposons une
estimation des empreintes cumul
ees de tuiles plus pr
ecise � nous propo�
sons une heuristique puissante permettant de minimiser cette empreinte
cumul
ee � en�n� nous montrons la superiorit
e de notre algorithme en
l
appliquant aux exemples donn
es dans ��	 a�n d
assurer l
 
equit
e de
notre comparaison�
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� Introduction�

The aim of this paper is to derive an e�cient algorithm to implement loop partitioning� a compilation
technique to make the best use of hierarchical memory systems when dealing with loop nests
computations� This technique clearly applies to cache�based multiprocessors� because data re�use
and locality are crucial for such systems� Loop partitioning is also relevant for implementing out�
of�core algorithms �the tandem �cache�local memory� in the former sentence being replaced by the
tandem �local memory�secondary storage���

Loop partitioning amounts to divide an iteration space into hyper�parallelepipeds� whose size
and shape are optimized according to some criteria� It is closely related to tiling ���� ��� �� �� ���
�� ��	� a technique also known as loop blocking ���	� whose objective is to increase the granularity
of computations� the locality of data references� and the computation�to�communication ratio of
fully permutable loop nests� In fact� loop partitioning and tiling have similar objectives� the basic
idea of both techniques is to group elemental computation points into tiles that will be viewed as
computational units� The larger the tiles� the more e�cient the computations performed using state�
of�the�art processors with pipelined arithmetic units and a multilevel memory hierarchy �illustrated
by recasting numerical linear algebra algorithms in terms of blocked Level � BLAS kernels ��� �	��

But loop partitioning and tiling operate in di�erent contexts� Tiling is valid only if the loops are
fully permutable ��� ��� ��	� and the optimization criteria aim at minimizing the communication�to�
computation ratio� Loop partitioning can be applied to any loop nest with a�ne dependences� and
the optimization criteria is to minimize the number of accessed data� We explicit this di�erence in
Section ���� Still� because tiling and loop partitioning share many characteristics� we will be able
to make use of recent results on tiling ��	 to derive our algorithm for loop partitioning�

Loop partitioning has been studied by Agarwal� Kranz and Natarajan ��	� The central con�
tribution of ��	 is a method for deriving an optimal hyper�parallelepiped tiling of iteration spaces�
where the optimization criterion is the following� given a �xed tile size �typically the fraction of
the cache that is available to store program data�� determine the tile shape so that the number of
accessed data �the so�called cumulative footprint in ��	� is kept minimal�

In this paper we build upon the results of ��	� which we improve in several directions� We give a
more accurate estimation of the cumulative footprint� and� more importantly� we derive a powerful
algorithm to determine the optimal tile shape� While the search was limited to rectangular shapes
�which corresponds to searching for diagonal matrices� in ��	� we are able to deal with arbitrary
parallelepipeds �which corresponds to searching for arbitrary non�singular matrices�� We illustrate
our algorithm on the same examples as in ��	 to ensure the fairness of the comparisons�

The paper is organized as follows� we summarize the approach of Agarwal� Kranz and Natara�
jan ��	 in Section �� We introduce the better estimation of the cumulative footprint in Section ��
and we explain how to solve the optimization problem in Section �� We show several examples in
Section �� We give some �nal remarks in Section ��

� Survey of previous work�

In this section� we summarize the approach of Agarwal� Kranz and Natarajan ��	� We formally
state the problem to be solved� After giving some notations� we survey their main results�

��� Optimal tiling for minimizing communications�

We start with the following example�
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Example �

Consider the following loop nest�

Doall �i������ j������

A�i�j��B�i�j�	B�i	
�j���	C��i��i	j�	C��i	
��i	j�

EndDo

In order to increase the granularity of computation� and the locality of data dependences� loop
partitioning may be used� This method consists in grouping neighboring points of the iteration
space into a single parallelepiped�shaped tile� Tiles are then considered as atomic and distributed
over the processors� For example� the loop nest of Example � can be tiled with rectangles of sizes
��� � as follows�

Doall �I����� J���
��
Do �i�����j���
�

A�I�
�	i�J��	j�� B�I�
�	i�J��	j�	B�I�
�	i	
�J��	j���

	C���I�
�	i����I�
�	i�	J��	j�

	C���I�
�	i�	
���I�
�	i�	J��	j�
EndDo
EndDo

Of course two di�erent tilings do not lead to the same execution time� the volume and the shape
of the tiles are important parameters that must be determined� Usually� the tile size is �xed� it is
chosen so as to fully utilize the cache �or more precisely the fraction of the cache that is available
to store data�� Given a �xed tile size �or volume�� the tile shape has a great impact on the amount
of loaded data� Determining the best tile shape so as to minimize the number of loaded data is the
optimization problem that is dealt with in ��	�

��� Notations�

We need a few notations to formalize the problem of computing �maybe approximately� the number
of loaded data during the computation of a tile�

�� The computation �A�i�j������ is represented by the column vector ���  

�
i

j

�

�� As data references are assumed to be a�ne� the access during computation ��� of the data
g���� � can be represented by the expression G��� ���a � Hence� in Example �� the reference to

� B�i�j� can be represented by the couple �G��
���a����  

��
� �
� �

�
�

�
�
�

��

� B�i	
�j��� can be represented by the couple �G��
���a����  

��
� �
� �

�
�

�
�
��

��

� C��i��i	j� can be represented by the couple �G��
���a����  

��
� �
� �

�
�

�
�
�

��

�



� C��i	
��i	j� can be represented by the couple �G��
���a����  

��
� �
� �

�
�

�
�
�

��

Iteration space

Data space : B

Data Sapce : C

C[
2i
,2
i+
j]

C[2i+1,2i+j]

B[i,j]

B[
i+
1,
j-
2]

Figure �� References B�i�j� and B�i	
�j��� refer to some common data� which must be counted
only once� However� references C��i��i	j� and C��i	
��i	j� do not intersect�

We point out that we gave the same name G� to the matrix representing reference B�i�j�
and to the matrix representing reference B�i	
�j���� This is because the loaded data cor�
responding to these tow references overlap� On the other hand� we gave a di�erent matrix
name for references C��i��i	j� and C��i	
��i	j�� even though they deal with the same

array C and the same matrix

�
� �
� �

�
� this is because the loaded data do not intersect �see

Figure ���

�� The data loaded by a single reference during the execution of one tile is called the footprint

of this reference� and the total number of loaded data is called the cumulative footprint� The
previous example shows that the cumulative footprint is not the sum of all footprints� In the
important case of the same data array being accessed twice� say� one time with the couple
�G���a�� and the other time with the with the couple �G���a��� where G�����a� ���a�� has integer
components� then both footprints have a signi�cantly large intersection� and the computation
needs to be re�ned� Note this happens each time the same data array is accessed twice
with the same unimodular matrix �because G�� is integer� G�����a� � ��a�� always has integer
components�� this is the case for the �rst two references of Example �� In all other cases�
di�erent footprints have an empty or negligible intersection ��	�

�� A tile in a n�dimensional box determined by n free vectors ��u�� ������un� where n is the number
of loops in the loop nest� See Figure � for an example with n  �� Hence� a tile can be
represented by a n � n non�singular matrix H � built up from the column vectors ��u�� ������un�
The volume of the tile is jdetH j� In fact this matrix H is exactly the inverse of the matrix
de�ned by Irigoin and Triolet ���	 from the normal vectors to the faces of the tile�

The �rst objective of Agarwal� Kranz and Natarajan ��	 was to �nd a precise evaluation of the
cumulative footprint� Then they �x the tile size� and they search for the tile shape that minimizes
the expression of the cumulative footprint�
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u1=(11,0)

Hu2=(3,5)

Figure �� The tile can be represented by the matrix H  

�
�� �
� �

�
� Its size is jdetH j  ���

��� Results�

As already said� the di�culty is to correctly estimate the cumulative footprint for several references
that make accesses to a common data �cf Figure ���

The solution proposed by Agarwal� Kranz and Natarajan ��	 is the following� Consider the
references �G���a��� ���� �G���ak� where G is unimodular�

� Let ���x�� �������xn� denote the canonical basis of R
n� and

��a  

�
max
��j�k

j��xi ���aj j

�
��i�n

� If D  �
��
d� � � �

��
dn� is a n� n matrix built up with column vectors

��
di � let det�Dj�i� represent

the determinant of the matrix Dj obtained by replacing
��
d j in D by ��a �

Then� as intuitively explained by Figures � and �� the cumulative footprint for the references
�G���a��� ���� �G�

��ak� can be approximated by

jdet�D�j�
nX

j��

jdet�D
j���a �j� where D  GH�

Using the notations of Figure �� Vcalc  jdet�D�j  jdet�H�j �because G is unimodular� is the
tile size �or volume�� and Vcom  

Pn
j�� jdet�Dj���a �j� We use the intuitive name Vcom because

the shadowed area in Figure � would correspond to communications in the context of tiling �while
indeed they correspond to loads in the context of loop partitioning�

With this approximation of the cumulative footprint� Agarwal� Kranz and Natarajan ��	 are able
to analytically solve the optimization problem� However� they have the very restrictive assumption
that the tiles are rectangular� i�e� they limit their search to diagonal matrices H � We extend their
results in two directions� �rst� we give a more accurate estimation of the cumulative footprint�
Second �and more importantly�� we provide a general heuristic to solve the optimization problem
for parallelepiped tiles� i�e� for arbitrary matrices H �

� Estimating the cumulative footprint�

To motivate a more precise estimation of the cumulated footprint� consider the following example�
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a1-ao
a2-ao

a2-a1

Figure �� Cumulative footprint for the three references to a common array� �G���a��� �G�
��a�� and

�G���a��� If Vcalc is the volume of the tile� Vcom the volume of the shadowed part� then the cumulative
footprint of those three references is Vcalc � Vcom� One must �nd a good approximation for the
expression of Vcom�

x1

x2

d

d

u
1

u2

Figure �� If
��
d  �di���i�n� di is obtained by taking the maximum value of j���ak ���al ����xi j where ��xi

is the column vector ��ij���j�n� With this notation� Vcom can be approximated by jdet���u��
��
d �j�

jdet���u ��
��
d �j�

�



Example �

Do �i���N� j���M�

A�i�j��B�i�j�	B�i	
�j	
�

EndDo

Suppose we want Vcalc to be equal to ���� Then the tile H that minimizes the expression

jdetH j � jdetH����a j � jdetH����a j with
��a  

�
�
�

�
is the square tile H  ���I�  

�
� �
� �

�
�

This tile �see Figure �� leads to Vcom  ��� However� the tile H
�  �p

�

�
��� �
��� ��

�
would lead to

Vcom  ��

10
0

10

10

Vcom=1

1

Vcom=19

Figure �� Comparison of the cumulative footprint for the tiles H and H � that have the same volume
Vcalc  ����

In the light of this example� we propose a new� more accurate� expression of the cumulative
footprint that takes into account the directions of the vectors ��ai�j �

Letting
��
bi  G����ai � the expression for the cumulative footprint becomes

V  Vcalc �
nX

k��

max
j�j�

����det
�
H

k��
��
bj�

��
bj� 	

����� �
Moreover� since H is a non�singular matrix� let E  H��  ���e� � � ���en�T be its inverse made up with
the row vectors ��e� � ������en� Then det�H

k���b �  det�H��det���ek
T �
��
b �� Hence� minimizing the above

expression corresponds to �nding a non�singular matrix E such that jdet�E���j  jdet�H�j  Vcalc
and such that

V  Vcalc � Vcalc�

nX
k��

max
j�j�

�����ekT ����bj � ��
bj��
���

is minimized�

So far we have dealt with the same access matrix G� If we have m distinct access matrices Gi�

let
��
bi�j  G��

i
��ai�j and ci�j the elements of Ci where

�
C�  f

��
b��j �

���
b��j� � j � j �g

Ci  f
��
b��j �

���
b��j�� j � j�g for i � �

� The

�



expression to be minimized becomes

V  
mX
i��

�
Vcalc � Vcalc�

nX
k��

max
j�j�

�
j��ek

T ��
��
bi�j �

���
bi�j��j

��

 mVcalc � Vcalc�

�
max
j�j�

�����ekT ����b��j ����
b��j��

���� mX
i��

max
j ��j�

�
��ek

T ��
��
bi�j �

���
bi�j�
��

 mVcalc � Vcalc�

�
max
j�j�

�����ekT ���c��j���� mX
i��

max
j

�
��ek

T ���ci�j

��

The sum can be shifted inside the max� at the price of an increase in the number of terms� for
i � ��� m	 assume there are di vectors ��ci�j � � � j � di� Let

� �

�
f�� ��� mg �� N

i ��� � � j � di

�

and by

��
l�  

mX
i��

����ci���i	

Then

V  mVcalc � Vcalc�

nX
k��

max
�

�����ekT ���l� ��� ���

� Solving the optimization problem�

��� Related problems�

The problem of minimizing the expression ��� is di�cult� In fact� we know how to minimize the
two related expressions�

Problem � If ���a�� ������am� are m free vectors� and jdetEj  �
Vcalc

� Boulet et al� propose in ��	 a
solution for minimizing the following expression�

mX
i��

nX
k��

��ek ���ai

The solution is simply E  A�� if m  n but gets very complex if m � n�

Note that the ��ai represent dependences in the context of tiling fully permutable loop nests�
hence their components are known to be nonnegative� We do not have this property in our
loop partitioning problem�

Problem � LetHn be the Hadamard matrix of size n� i�e� a square matrix of coe�cients either � or
� and whose determinant is maximal ��	� If A  ���a� � � ���an� is non�singular� then E  HnA

��

minimizes the following expression �see ��	��

nX
k��

max
��j�n

��ek �
��a j �

�



Again� if A is not square� the problem becomes very di�cult�

So to speak� our optimization problem lies somewhere between Problem � and Problem �� We
introduce an heuristic that is inspired by the solution of of Problem � given in ��	� First� we
reduce the problem to the vector subspace generated by the set of vectors f

��
l� g� Second� we choose

among those l�� n
� of them� where n� is the dimension of the generated vector sub�space �usually

n� is equal to the number of loops n but it can be smaller in degenerate cases�� These selected n�

vectors should be free vectors that give the most accurate representation of all the others� For that
purpose� we propose to choose n� vectors that �almost� maximize the volume of the polytope that
they generate� Then� we solve this problem using the solution of Problem � in the considered vector
sub�space �we are in the simple case of a square matrix�� Finally� for the remaining dimensions� we
choose orthogonal vectors of length ��

��� Our heuristic�

To formalize the previous discussion�

� L  �
��
l� � � �

��
lm� is a rectangular matrix made up with m column vectors of size n�

� Hn is the Hadamard matrix of dimension n�

� If D  �
��
d� � � �

��
dm� is a rectangular matrix made up with m column vectors of size n that

generate a n�dimensional vector space of dimension n� then Cmaxvol�D� is a n�n sub�matrix
of D such that jdetCj is maximized�

� If D is a matrix� then the rank of D is denoted by rank�D��

� If D is a matrix made up with m 	 n column vectors of dimension n that generate a n�
dimensional vector space� then OSchmitt�D� is a n�n matrix made up with n column vectors
obtained from the Schmitt orthonormalization of �

��
d�� ����

��
dm��

� If C is a matrix� then upn�C� is the sub�matrix of C made of the n upper rows of C�

Then our solution to the optimization problem ��� is given by the following algorithm�!la

Procedure Finds�H�that�minimizes�expression�
�Vcalc� L�

O  OSchmitt�L� In�
r  rank�D�
C  upr�O

TL�
P  Cmaxvol�C�Hr

P  Vcalc

jdetP j �r
P

P  

�
P �
� In�r

�
H  OP

Return�H�
End

�



��� An heuristic to �nd a subset of vectors of maximum volume�

Given a set of m vectors generating a n�dimensional vector space� �nding a subset of n of them
whose volume is maximum can be done by comparing the volume of every subset of n vectors�

There are

�
m

n

�
 m


n
�m�n	
 such subsets� so this method is unacceptable if m is large� Hence we

use a greedy algorithm� we begin with the largest vector� Then� iteratively� we add a vector to the
constructed set� such that the corresponding volume in the generated subspace is maximized� When
the constructed set contains n free vectors� we try to exchange one of those vectors by another one�
if it increases the volume� We continue until no more exchange can increase the volume�
The volume of p vectors of dimension n when p � n can be easily calculated using the Gram matrix�
if D is a matrix made up with column vectors �

��
d�� ����

��
dp� then Gram�

��
d�� ����

��
dp�  DTD� Then the

volume of the polytope generated by �
��
d�� ����

��
dm� is

p
det�DTD��

The algorithm is given in �gure �� In this procedure� we denote by Bi the ith column of a matrix
B� and by �B�C	 the horizontal concatenation of two matrices B and C�

� Examples�

To compare our approach with that of Agarwal� Kranz and Natarajan ��	� we use two examples
from ��	� Beforehand� we point out that our algorithm does return the optimal solution for Exam�
ple � of Section �� To evaluate the quality of our expression of cumulative footprint� we compare
the values of the following expressions on each example�

�
Pm

i��

Pn
j�� jdet�GiH�j���a j which is the approximation of Vcom given by ��	

� Vcalc�
Pn

k��max�

�����ekT ���l� ���� which is our approximation of Vcom�
� The exact value of Vcom�

��� First example

This example is �Example �� of ��	�

Doall �i ��N� j ��N� k ��N�
A�i�j�k	 B�i���j�k��	�B�i�j���k	�B�i���j���k��	
EndDoall

With our notations� there is a single access matrix G�  I�� a���  ���� �� ��T � a���  ��� �� ��T

and a���  ���������T � As G�  I�� b��j  a��j� Consequently� for a given value of Vcalc� the
expression to be minimized is

Vcalc

�
� �

�X
k��

max
�
j��ek �������� ��

T j� j��ek ����� �� ��
Tj� j��ek ����� �� ��

T j
	�

over all matrices E such that jdetEj  �
Vcalc

� Our algorithm leads to the solution

H  E��  �

p
Vcalc
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������ ������ �������

�
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Procedure Cmaxvol�U�
B � 	
For i
��n

B � �B�U��
j 
 �
Vmax � V olume�B�
h� m� i� �
For k

�h

Bi � Uk

V � V olume�B�
If V � Vmax

Vmax � V

j � k

EndIf

EndFor

Bi � Uj

Uj � Uh

h� h� �
EndFor

may�increase � True
While may�increase do

E � B��

Vmax 
 �
may�increase � False
For k
��h�i
��n

V 
 jET
i �Ukj

If V � Vmax

Vmax � V

j � k

l� i

may�increase � True
EndIf

EndFor

If may�increase

Bl � Uj

Uj � Um�l��

EndIf

EndWhile

Return�B�
End

Figure �� An heuristic to �nd a subset of vectors of maximum volume�
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In that case� if we take Vcalc  ���� �say�� we obtain

Vcom  Vcalc�

�X
k��

max
�
j��ek �������� ��

Tj� j��ek ����� �� ��
T j� j��ek ����� �� ��

Tj
	

 ���

The solution given in ��	 is H  �

q
Vcalc
��



� � � �
� � �
� � �

�
A�

Agarwal et al� approx� Our approx� Exact value

Our tiling ���� ��� ���

Agarwal et al� tiling ��� ��� ���

Table �� Comparing results for Example � of ��	�

In Table �� both approximations of the communication volume of the solution of ��	 are equal�
because ��	 always returns a diagonal matrix� The large di�erence in Table � between our algorithm
and that of ��	 is due to the fact that� in this example� the vector space generated by the vectors
�bi�j�i�j is a two�dimensional sub�space of R

�� Our algorithm takes that information into account
by �rst solving the problem in this sub�space and then generalizing the solution to the entire vector
space R��

��� Second example

This example is �Example �� in ��	�

Doall �i ��N� j ��N� k ��N�
A�i�j�k	 B�i���j	�B�i�j��	�C�i�j���j	�C�i�j���j��	
EndDoall

With our notations� there are two access matrices G�  I� and G�  

�
� �
� �

�
� We have a���  

���� ��T � a���  ������T � a���  ���� ��T and a���  ��� ��T � Hence� b��j  a��j � b���  ���� ��T and
b���  ���� ��

T � Next� c���  ���� ��
T � c���  ������

T and c���  ���� ��
T � Then l�  ������� and

l�  ���� ��� The expression to be minimized is

Vcalc

�
� �

�X
k��

max
�
j��ek ��������

T j� j��ek ����� ��
T j
	�

To that problem� our algorithm gives the solution�

H  �

p
Vcalc�

�
������� �������
������ �������

�

In that case� if we take Vcalc  ����� then Vcom  ���� The solution given by Agarwal et al� is

H  
�

r
Vcalc

��
�

�
� �
� �

�

which leads to Vcom  ��� for the same value of Vcalc  �����

��
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Table �� Comparing results for Example � of ��	�

� Conclusion

In this paper� we have improved the results of Agarwal� Kranz and Natarajan ��	 on loop partition�
ing� We have re�ned their estimation of the cumulative footprint� and we have proposed a heuristic
to solve the optimization problem without drastically reducing the search space� This heuristic is
inspired from recent result in the context of tiling�

Several ameliorations can be made to our heuristic� and we need further experimental results
�in addition to the examples dealt with in this paper� to fully assess the usefulness of our approach�
Still� we believe our new approach to be much more powerful and e�cient than previously published
strategies�

� Appendix

In this section� we present theMatlab programs that we wrote to check the validity of our algorithm
and to compute our solution for the same exemples as of ��	�

All notations used here are the same as those used in Section �� For a better understanding� the
reader may want to compare the programs of Section ��� with the corresponding examples guven
in Section ��

��� Auxiliary routines

inverse set�m

function �B� � inverse�set�G�A�

� function �B� � inverse�set�G�A�

� G � Set of non	singular matrix


� A � Set of associated offsets


p�size�A����

B�A�

for i���p

B
i��inv�G
i���A
i��

end

��



di�erences�m

function �D� � differences�N�

� function �D� � differences�N�

� N � Offsets


� D � all possible differences of offsets


n�size�N����

D����

for i���n	��

for j�i���n�

D��D�N���i�	N���j���

end

end

di�erences set�m

function �C� � differences�set�B�

� function �C� � differences�set�B�

� B � set of offsets


� C � set of the �differences� for each offsets B
i�


p�size�B����

C�
differences�B
�����

for i���p

m�size�B
i�����

C�
C
��size�C�����differences�B
i�����

C
i���C
i��	C
i���

end

sums�m

function �L� � sums�C�

� function �L� � sums�C�

� C � set of offsets


� L � offsets made from all possible sums


p�size�C����

if p���

L�C
���

else

K�sums�
C
��p�����

m�size�C
������

l�size�K����

L����

for j���m

for k���l

L��L�C
�����j��K���k���

end

end

end

��



��� The algorithm itself

gram�m

function �G� � gram�U�

� function �G� � gram�U�

G�U��U�

volume�m

function �V� � volume�U�

� function �V� � volume�U�

V�sqrt�det�gram�U����

hadamardPY�m

The general algorithm for n � � is not implemented here� The reader can �nd more information
in ��	�

function �H� � hadamardPY�n�

� function �H� � hadamardPY�n�

if n���

H�eye����

elseif n���

H�eye����

elseif n���

H���������������������������

end�

��



maxvolume�m

function �B� � maxvolume��U�

� function �B� � maxvolume��U�

� U � offsets


� B � offsets bases that maximizes the corresponding volume


m�size�U����

n�size�U����

h�n�

B����

for i���m�

B���B���U��������

j���

vmax�volume�B��

h�n	i���

for k���h�

B���i��U���k��

v�volume�B��

if v�vmax

vmax�v�

j�k�

end

end

B���i��U���j��

U���j��U���h��

U���h��B���i��

h�h	��

end

mayincrease���

while mayincrease

E�inv�B���

vmax���

mayincrease���

for k���h

for i���m

V�abs�dot�E���i��U���k����

if V�vmax

vmax�V�

j�k�

l�i�

mayincrease���

end

end

end

if mayincrease

B���l��U���j��

U���j��U���n	l����

U���n	l����B���l��

end

end

��



homothetize�m

function �B� � homothetize�A�vol�

� function �B� � homothetize�A�vol�

� A must be non	singular�

� B�u
A such that det�B��vol

B��vol�abs�det�A�������size�A�����A�

solution�m

function �H� � solution�D�vol�

� function �H� � solution�D�vol�

� D � offsets


� H � matrix of determinant vol that minimizes function

� eval��H�
D��

O�orth��D�eye�size�D�������

C�O��D�

C�C���rank�D�����

H�eye�size�D�����

P�homothetize�maxvolume�C��inv�hadamardPY�size�C������vol��

H���rank�D����rank�D���P�

H�O�H�

��� Implementation of the examples

ours��m

function �sol��ours��vol�

� function �sol��ours��vol�

� Our solution to the problem of example � for a given volume

� of tile equal to vol

�

� B���	������������������	��	����

B�
��	������������������	��	�����

C�differences�set�B��

L�sums�C��

sol�solution�L�vol��

theirs��m

function �sol�� theirs��vol�

� function �sol�� theirs��vol�

� Agarwal et al
�s solution to the problem of example �

� for a given volume of tile equal to vol


I���������������������������

sol�homothetize����det�I���������I�vol��

��



ours��m

function �H� � ours��vol�

� function �H� � ours��vol�

� Our solution to the problem of example � for a given volume

� of tile equal to vol

�

� A�
��	��������	������	�������������

� G�
eye�������������������

� B�inverse�set�G�A��

A�
��	��������	������	�������������

G�
eye�������������������

B�inverse�set�G�A��

C�differences�set�B��

L�sums�C��

H�solution�L�vol��

theirs��m

function �sol�� theirs��vol�

� function �sol�� theirs��vol�

� Agarwal et al
�s solution to the problem of example �

� for a given volume of tile equal to vol


I���������������

sol�homothetize����det�I���������I�vol��

��� Evaluation of the solutions

eval��m

Following is the implementation of our approximation of V �see the end of Section � and the be�
ginning of Section ���

function �vol� � eval��H�B�

� function �vol� � eval��H�B�

� H � tile


� B � Set of references offsets


m�size�B����

E�inv�H��

vol���

for i���m

vol�vol���sum�max�abs�E�differences�B
i�����������

end

vol�vol�abs�det�H���

��



eval	�m

Following is the implementation of the approximation given in ��	 �see the beginning of Section ���

function �vol� � eval��H�G�A�

� function �vol� � eval��H�G�A�

� H � tile


� G�A � set of references�offsets


� vol � approximated volume � Agarwal�s expression


p�size�A����

vol���

for i���p

D�G
i��H�

E�inv�D��

a�max�abs�differences�A
i����������

vol�vol���abs�det�G
i����abs�det�D������sum�abs�E�a����

end

��� Computing the exact value of the volumes

In this section� we explain how to computes the exact volume of a union of several parallelepipeds�
Here are a few remarks that will lead to the algorithm�

� Let f�i�Tig��i�m be a set of non intersecting signed tiles ��i � f��� �g�� and T be a new tile�
Then

Lm
i�� ��i�Ti� 
 T  

Lm
i�� ��i�Ti� � T �

Lm
i�� ��i�Ti � T ��

� Consider a set of tiles f�D� ai�gi where D is non�singular� Then the cumulative footprint is
V  jdet�G�j �V � where V � is the cumulative footprint for the references f�I�D��ai�gi�

� Since a rectangular tile is represented by a couple



BBB�


BBB�

d� � � � � �
� d� �
���

� � �
���

� � � � � dn

�
CCCA ���a

�
CCCA� it can be

represented by a couple of vectors ��d�� d�� ���� dn�
T ���a ��

Hence� to compute the exact value of V � we �rst need to compute the intersection of two tiles�
This is done by the following program�

intersection�m

function �I� � intersection�A�B�

� function �I� � intersection�A�B�

� A�B � Tile ie 
Diagonal�Offset�

� I � Tile


n�size�A
������

O�max�A
���B
����

G�min�A
���A
���B
���B
����

I�
max�zeros�n����G	O��O��

��



eval��m

Finally� the following algorithm gives the exact value of V �

function �vol� � eval��H�B�

� function �vol� � eval��H�B�

� H � tile


� B � Set of references offsets


m�size�B����

n�size�H����

E�inv�H��

vol���

for i���m

F�E�B
i��

D���� O���� s����

p�size�B
i�����

for j���p

d�ones�n���� o�F���j��

l�size�D����

D��D�d�� O��O�o�� s��s����

for k���l

I�intersection�
D���k��O���k���
d�o���

if prod�I
��������

D��D�I
���� O��O�I
���� s��s�	s�k���

end

end

end

vol�vol�prod�D����s��

end

vol�vol�abs�det�H���
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