
HAL Id: hal-02101823
https://hal-lara.archives-ouvertes.fr/hal-02101823

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Loop Partitioning versus Tiling for Cache-based
Multiprocessors.

Fabrice Rastello, Yves Robert

To cite this version:
Fabrice Rastello, Yves Robert. Loop Partitioning versus Tiling for Cache-based Multiprocessors..
[Research Report] LIP RR-1998-13, Laboratoire de l’informatique du parallélisme. 1998, 2+21p. �hal-
02101823�

https://hal-lara.archives-ouvertes.fr/hal-02101823
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

�Ecole Normale Sup�erieure de Lyon
Unit�e de recherche associ�ee au CNRS no ����

SPI

Loop Partitioning versus Tiling for

Cache�based Multiprocessors

Fabrice RASTELLO

Yves ROBERT
February ����

Research Report No �����

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.00
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip�ens�lyon�fr

Loop Partitioning versus Tiling for Cache�based Multiprocessors

Fabrice RASTELLO

Yves ROBERT

February ����

Abstract

In this paper� an e�cient algorithm to implement loop partitioning is
introduced and evaluated� We improve recent results of Agarwal� Kranz
and Natarajan ��	 in several directions� We give a more accurate estima�
tion of the cumulative footprint� and we derive a much more powerful
algorithm to determine the optimal tile shape� We illustrate the supe�
riority of our algorithm on the same examples as in ��	 to ensure the
fairness of the comparisons�

Keywords� Compilation technique� hierarchical memory systems� loop partitioning� tiling�
cache� data locality� footprint�

R�esum�e

Nous pr
esentons dans ce papier une heuristique e�cace permettant de
faire de la distribution de boucles� Nous appuyons notre travail sur un
papier r
ecent de Agarwal� Kranz et Natarajan ��	 que nous am
eliorons
dans de nombreuses directions� Plus pr
ecisement� nous proposons une
estimation des empreintes cumul
ees de tuiles plus pr
ecise � nous propo�
sons une heuristique puissante permettant de minimiser cette empreinte
cumul
ee � en�n� nous montrons la superiorit
e de notre algorithme en
l
appliquant aux exemples donn
es dans ��	 a�n d
assurer l

equit
e de
notre comparaison�

Mots�cl�es� Techniques de compilation� syst�emes �a m
emoire hi
erarchis
ee� distribution de
boucles� pavage� m
emoire cache� localit
e de donn
ees� empreintes de tuiles�

Loop Partitioning versus Tiling for Cache�based Multiprocessors�

Fabrice Rastello and Yves Robert

LIP� Ecole Normale Sup�erieure de Lyon� ����� Lyon Cedex �	� France

e�mail� �Fabrice�Rastello� Yves�Robert��ens�lyon�fr

February ����

Abstract

In this paper� an e�cient algorithm to implement loop partitioning is introduced and eval�
uated� We improve recent results of Agarwal� Kranz and Natarajan ��� in several directions�
We give a more accurate estimation of the cumulative footprint� and we derive a much more
powerful algorithm to determine the optimal tile shape� We illustrate the superiority of our
algorithm on the same examples as in ��� to ensure the fairness of the comparisons�

Key words� compilation technique� hierarchical memory systems� loop partitioning� tiling�
cache� data locality� footprint�

Corresponding author� Yves Robert
LIP� Ecole Normale Sup
erieure de Lyon� ����� Lyon Cedex ��� France
Phone� � �� � �� �� �� ��� Fax� � �� � �� �� �� ��
E�mail� Yves�Robert�ens�lyon�fr

�This work was supported by the CNRS�ENS Lyon�INRIA project ReMaP and by the Eureka Project EuroTOPS�

�

� Introduction�

The aim of this paper is to derive an e�cient algorithm to implement loop partitioning� a compilation
technique to make the best use of hierarchical memory systems when dealing with loop nests
computations� This technique clearly applies to cache�based multiprocessors� because data re�use
and locality are crucial for such systems� Loop partitioning is also relevant for implementing out�
of�core algorithms �the tandem �cache�local memory� in the former sentence being replaced by the
tandem �local memory�secondary storage���

Loop partitioning amounts to divide an iteration space into hyper�parallelepipeds� whose size
and shape are optimized according to some criteria� It is closely related to tiling ���� ��� �� �� ���
�� ��	� a technique also known as loop blocking ���	� whose objective is to increase the granularity
of computations� the locality of data references� and the computation�to�communication ratio of
fully permutable loop nests� In fact� loop partitioning and tiling have similar objectives� the basic
idea of both techniques is to group elemental computation points into tiles that will be viewed as
computational units� The larger the tiles� the more e�cient the computations performed using state�
of�the�art processors with pipelined arithmetic units and a multilevel memory hierarchy �illustrated
by recasting numerical linear algebra algorithms in terms of blocked Level � BLAS kernels ��� �	��

But loop partitioning and tiling operate in di�erent contexts� Tiling is valid only if the loops are
fully permutable ��� ��� ��	� and the optimization criteria aim at minimizing the communication�to�
computation ratio� Loop partitioning can be applied to any loop nest with a�ne dependences� and
the optimization criteria is to minimize the number of accessed data� We explicit this di�erence in
Section ���� Still� because tiling and loop partitioning share many characteristics� we will be able
to make use of recent results on tiling ��	 to derive our algorithm for loop partitioning�

Loop partitioning has been studied by Agarwal� Kranz and Natarajan ��	� The central con�
tribution of ��	 is a method for deriving an optimal hyper�parallelepiped tiling of iteration spaces�
where the optimization criterion is the following� given a �xed tile size �typically the fraction of
the cache that is available to store program data�� determine the tile shape so that the number of
accessed data �the so�called cumulative footprint in ��	� is kept minimal�

In this paper we build upon the results of ��	� which we improve in several directions� We give a
more accurate estimation of the cumulative footprint� and� more importantly� we derive a powerful
algorithm to determine the optimal tile shape� While the search was limited to rectangular shapes
�which corresponds to searching for diagonal matrices� in ��	� we are able to deal with arbitrary
parallelepipeds �which corresponds to searching for arbitrary non�singular matrices�� We illustrate
our algorithm on the same examples as in ��	 to ensure the fairness of the comparisons�

The paper is organized as follows� we summarize the approach of Agarwal� Kranz and Natara�
jan ��	 in Section �� We introduce the better estimation of the cumulative footprint in Section ��
and we explain how to solve the optimization problem in Section �� We show several examples in
Section �� We give some �nal remarks in Section ��

� Survey of previous work�

In this section� we summarize the approach of Agarwal� Kranz and Natarajan ��	� We formally
state the problem to be solved� After giving some notations� we survey their main results�

��� Optimal tiling for minimizing communications�

We start with the following example�

�

Example �

Consider the following loop nest�

Doall �i������ j������

A�i�j��B�i�j�	B�i	
�j���	C��i��i	j�	C��i	
��i	j�

EndDo

In order to increase the granularity of computation� and the locality of data dependences� loop
partitioning may be used� This method consists in grouping neighboring points of the iteration
space into a single parallelepiped�shaped tile� Tiles are then considered as atomic and distributed
over the processors� For example� the loop nest of Example � can be tiled with rectangles of sizes
��� � as follows�

Doall �I����� J���
��
Do �i�����j���
�

A�I�
�	i�J��	j�� B�I�
�	i�J��	j�	B�I�
�	i	
�J��	j���

	C���I�
�	i����I�
�	i�	J��	j�

	C���I�
�	i�	
���I�
�	i�	J��	j�
EndDo
EndDo

Of course two di�erent tilings do not lead to the same execution time� the volume and the shape
of the tiles are important parameters that must be determined� Usually� the tile size is �xed� it is
chosen so as to fully utilize the cache �or more precisely the fraction of the cache that is available
to store data�� Given a �xed tile size �or volume�� the tile shape has a great impact on the amount
of loaded data� Determining the best tile shape so as to minimize the number of loaded data is the
optimization problem that is dealt with in ��	�

��� Notations�

We need a few notations to formalize the problem of computing �maybe approximately� the number
of loaded data during the computation of a tile�

�� The computation �A�i�j������ is represented by the column vector ���

�
i

j

�

�� As data references are assumed to be a�ne� the access during computation ��� of the data
g���� � can be represented by the expression G��� ���a � Hence� in Example �� the reference to

� B�i�j� can be represented by the couple �G��
���a����

��
� �
� �

�
�

�
�
�

��

� B�i	
�j��� can be represented by the couple �G��
���a����

��
� �
� �

�
�

�
�
��

��

� C��i��i	j� can be represented by the couple �G��
���a����

��
� �
� �

�
�

�
�
�

��

�

� C��i	
��i	j� can be represented by the couple �G��
���a����

��
� �
� �

�
�

�
�
�

��

Iteration space

Data space : B

Data Sapce : C

C[
2i
,2
i+
j]

C[2i+1,2i+j]

B[i,j]

B[
i+
1,
j-
2]

Figure �� References B�i�j� and B�i	
�j��� refer to some common data� which must be counted
only once� However� references C��i��i	j� and C��i	
��i	j� do not intersect�

We point out that we gave the same name G� to the matrix representing reference B�i�j�
and to the matrix representing reference B�i	
�j���� This is because the loaded data cor�
responding to these tow references overlap� On the other hand� we gave a di�erent matrix
name for references C��i��i	j� and C��i	
��i	j�� even though they deal with the same

array C and the same matrix

�
� �
� �

�
� this is because the loaded data do not intersect �see

Figure ���

�� The data loaded by a single reference during the execution of one tile is called the footprint

of this reference� and the total number of loaded data is called the cumulative footprint� The
previous example shows that the cumulative footprint is not the sum of all footprints� In the
important case of the same data array being accessed twice� say� one time with the couple
�G���a�� and the other time with the with the couple �G���a��� where G�����a� ���a�� has integer
components� then both footprints have a signi�cantly large intersection� and the computation
needs to be re�ned� Note this happens each time the same data array is accessed twice
with the same unimodular matrix �because G�� is integer� G�����a� � ��a�� always has integer
components�� this is the case for the �rst two references of Example �� In all other cases�
di�erent footprints have an empty or negligible intersection ��	�

�� A tile in a n�dimensional box determined by n free vectors ��u�� ������un� where n is the number
of loops in the loop nest� See Figure � for an example with n �� Hence� a tile can be
represented by a n � n non�singular matrix H � built up from the column vectors ��u�� ������un�
The volume of the tile is jdetH j� In fact this matrix H is exactly the inverse of the matrix
de�ned by Irigoin and Triolet ���	 from the normal vectors to the faces of the tile�

The �rst objective of Agarwal� Kranz and Natarajan ��	 was to �nd a precise evaluation of the
cumulative footprint� Then they �x the tile size� and they search for the tile shape that minimizes
the expression of the cumulative footprint�

�

u1=(11,0)

Hu2=(3,5)

Figure �� The tile can be represented by the matrix H

�
�� �
� �

�
� Its size is jdetH j ���

��� Results�

As already said� the di�culty is to correctly estimate the cumulative footprint for several references
that make accesses to a common data �cf Figure ���

The solution proposed by Agarwal� Kranz and Natarajan ��	 is the following� Consider the
references �G���a��� ���� �G���ak� where G is unimodular�

� Let ���x�� �������xn� denote the canonical basis of R
n� and

��a

�
max
��j�k

j��xi ���aj j

�
��i�n

� If D �
��
d� � � �

��
dn� is a n� n matrix built up with column vectors

��
di � let det�Dj�i� represent

the determinant of the matrix Dj obtained by replacing
��
d j in D by ��a �

Then� as intuitively explained by Figures � and �� the cumulative footprint for the references
�G���a��� ���� �G�

��ak� can be approximated by

jdet�D�j�
nX

j��

jdet�D
j���a �j� where D GH�

Using the notations of Figure �� Vcalc jdet�D�j jdet�H�j �because G is unimodular� is the
tile size �or volume�� and Vcom

Pn
j�� jdet�Dj���a �j� We use the intuitive name Vcom because

the shadowed area in Figure � would correspond to communications in the context of tiling �while
indeed they correspond to loads in the context of loop partitioning�

With this approximation of the cumulative footprint� Agarwal� Kranz and Natarajan ��	 are able
to analytically solve the optimization problem� However� they have the very restrictive assumption
that the tiles are rectangular� i�e� they limit their search to diagonal matrices H � We extend their
results in two directions� �rst� we give a more accurate estimation of the cumulative footprint�
Second �and more importantly�� we provide a general heuristic to solve the optimization problem
for parallelepiped tiles� i�e� for arbitrary matrices H �

� Estimating the cumulative footprint�

To motivate a more precise estimation of the cumulated footprint� consider the following example�

�

a1-ao
a2-ao

a2-a1

Figure �� Cumulative footprint for the three references to a common array� �G���a��� �G�
��a�� and

�G���a��� If Vcalc is the volume of the tile� Vcom the volume of the shadowed part� then the cumulative
footprint of those three references is Vcalc � Vcom� One must �nd a good approximation for the
expression of Vcom�

x1

x2

d

d

u
1

u2

Figure �� If
��
d �di���i�n� di is obtained by taking the maximum value of j���ak ���al ����xi j where ��xi

is the column vector ��ij���j�n� With this notation� Vcom can be approximated by jdet���u��
��
d �j�

jdet���u ��
��
d �j�

�

Example �

Do �i���N� j���M�

A�i�j��B�i�j�	B�i	
�j	
�

EndDo

Suppose we want Vcalc to be equal to ���� Then the tile H that minimizes the expression

jdetH j � jdetH����a j � jdetH����a j with
��a

�
�
�

�
is the square tile H ���I�

�
� �
� �

�
�

This tile �see Figure �� leads to Vcom ��� However� the tile H
� �p

�

�
��� �
��� ��

�
would lead to

Vcom ��

10
0

10

10

Vcom=1

1

Vcom=19

Figure �� Comparison of the cumulative footprint for the tiles H and H � that have the same volume
Vcalc ����

In the light of this example� we propose a new� more accurate� expression of the cumulative
footprint that takes into account the directions of the vectors ��ai�j �

Letting
��
bi G����ai � the expression for the cumulative footprint becomes

V Vcalc �
nX

k��

max
j�j�

����det
�
H

k��
��
bj�

��
bj� 	

����� �
Moreover� since H is a non�singular matrix� let E H�� ���e� � � ���en�T be its inverse made up with
the row vectors ��e� � ������en� Then det�H

k���b � det�H��det���ek
T �
��
b �� Hence� minimizing the above

expression corresponds to �nding a non�singular matrix E such that jdet�E���j jdet�H�j Vcalc
and such that

V Vcalc � Vcalc�

nX
k��

max
j�j�

�����ekT ����bj � ��
bj��
���

is minimized�

So far we have dealt with the same access matrix G� If we have m distinct access matrices Gi�

let
��
bi�j G��

i
��ai�j and ci�j the elements of Ci where

�
C� f

��
b��j �

���
b��j� � j � j �g

Ci f
��
b��j �

���
b��j�� j � j�g for i � �

� The

�

expression to be minimized becomes

V
mX
i��

�
Vcalc � Vcalc�

nX
k��

max
j�j�

�
j��ek

T ��
��
bi�j �

���
bi�j��j

��

 mVcalc � Vcalc�

�
max
j�j�

�����ekT ����b��j ����
b��j��

���� mX
i��

max
j ��j�

�
��ek

T ��
��
bi�j �

���
bi�j�
��

 mVcalc � Vcalc�

�
max
j�j�

�����ekT ���c��j���� mX
i��

max
j

�
��ek

T ���ci�j

��

The sum can be shifted inside the max� at the price of an increase in the number of terms� for
i � ��� m	 assume there are di vectors ��ci�j � � � j � di� Let

� �

�
f�� ��� mg �� N

i ��� � � j � di

�

and by

��
l�

mX
i��

����ci���i	

Then

V mVcalc � Vcalc�

nX
k��

max
�

�����ekT ���l� ��� ���

� Solving the optimization problem�

��� Related problems�

The problem of minimizing the expression ��� is di�cult� In fact� we know how to minimize the
two related expressions�

Problem � If ���a�� ������am� are m free vectors� and jdetEj �
Vcalc

� Boulet et al� propose in ��	 a
solution for minimizing the following expression�

mX
i��

nX
k��

��ek ���ai

The solution is simply E A�� if m n but gets very complex if m � n�

Note that the ��ai represent dependences in the context of tiling fully permutable loop nests�
hence their components are known to be nonnegative� We do not have this property in our
loop partitioning problem�

Problem � LetHn be the Hadamard matrix of size n� i�e� a square matrix of coe�cients either � or
� and whose determinant is maximal ��	� If A ���a� � � ���an� is non�singular� then E HnA

��

minimizes the following expression �see ��	��

nX
k��

max
��j�n

��ek �
��a j �

�

Again� if A is not square� the problem becomes very di�cult�

So to speak� our optimization problem lies somewhere between Problem � and Problem �� We
introduce an heuristic that is inspired by the solution of of Problem � given in ��	� First� we
reduce the problem to the vector subspace generated by the set of vectors f

��
l� g� Second� we choose

among those l�� n
� of them� where n� is the dimension of the generated vector sub�space �usually

n� is equal to the number of loops n but it can be smaller in degenerate cases�� These selected n�

vectors should be free vectors that give the most accurate representation of all the others� For that
purpose� we propose to choose n� vectors that �almost� maximize the volume of the polytope that
they generate� Then� we solve this problem using the solution of Problem � in the considered vector
sub�space �we are in the simple case of a square matrix�� Finally� for the remaining dimensions� we
choose orthogonal vectors of length ��

��� Our heuristic�

To formalize the previous discussion�

� L �
��
l� � � �

��
lm� is a rectangular matrix made up with m column vectors of size n�

� Hn is the Hadamard matrix of dimension n�

� If D �
��
d� � � �

��
dm� is a rectangular matrix made up with m column vectors of size n that

generate a n�dimensional vector space of dimension n� then Cmaxvol�D� is a n�n sub�matrix
of D such that jdetCj is maximized�

� If D is a matrix� then the rank of D is denoted by rank�D��

� If D is a matrix made up with m 	 n column vectors of dimension n that generate a n�
dimensional vector space� then OSchmitt�D� is a n�n matrix made up with n column vectors
obtained from the Schmitt orthonormalization of �

��
d�� ����

��
dm��

� If C is a matrix� then upn�C� is the sub�matrix of C made of the n upper rows of C�

Then our solution to the optimization problem ��� is given by the following algorithm�!la

Procedure Finds�H�that�minimizes�expression�
�Vcalc� L�

O OSchmitt�L� In�
r rank�D�
C upr�O

TL�
P Cmaxvol�C�Hr

P Vcalc

jdetP j �r
P

P

�
P �
� In�r

�
H OP

Return�H�
End

�

��� An heuristic to �nd a subset of vectors of maximum volume�

Given a set of m vectors generating a n�dimensional vector space� �nding a subset of n of them
whose volume is maximum can be done by comparing the volume of every subset of n vectors�

There are

�
m

n

�
 m

n
�m�n	
 such subsets� so this method is unacceptable if m is large� Hence we

use a greedy algorithm� we begin with the largest vector� Then� iteratively� we add a vector to the
constructed set� such that the corresponding volume in the generated subspace is maximized� When
the constructed set contains n free vectors� we try to exchange one of those vectors by another one�
if it increases the volume� We continue until no more exchange can increase the volume�
The volume of p vectors of dimension n when p � n can be easily calculated using the Gram matrix�
if D is a matrix made up with column vectors �

��
d�� ����

��
dp� then Gram�

��
d�� ����

��
dp� DTD� Then the

volume of the polytope generated by �
��
d�� ����

��
dm� is

p
det�DTD��

The algorithm is given in �gure �� In this procedure� we denote by Bi the ith column of a matrix
B� and by �B�C	 the horizontal concatenation of two matrices B and C�

� Examples�

To compare our approach with that of Agarwal� Kranz and Natarajan ��	� we use two examples
from ��	� Beforehand� we point out that our algorithm does return the optimal solution for Exam�
ple � of Section �� To evaluate the quality of our expression of cumulative footprint� we compare
the values of the following expressions on each example�

�
Pm

i��

Pn
j�� jdet�GiH�j���a j which is the approximation of Vcom given by ��	

� Vcalc�
Pn

k��max�

�����ekT ���l� ���� which is our approximation of Vcom�
� The exact value of Vcom�

��� First example

This example is �Example �� of ��	�

Doall �i ��N� j ��N� k ��N�
A�i�j�k	 B�i���j�k��	�B�i�j���k	�B�i���j���k��	
EndDoall

With our notations� there is a single access matrix G� I�� a��� ���� �� ��T � a��� ��� �� ��T

and a��� ���������T � As G� I�� b��j a��j� Consequently� for a given value of Vcalc� the
expression to be minimized is

Vcalc

�
� �

�X
k��

max
�
j��ek �������� ��

T j� j��ek ����� �� ��
Tj� j��ek ����� �� ��

T j
	�

over all matrices E such that jdetEj �
Vcalc

� Our algorithm leads to the solution

H E�� �

p
Vcalc

� ������� ������� �������

������ ������ ������
������ ������ �������

�
A

��

Procedure Cmaxvol�U�
B � 	
For i
��n

B � �B�U��
j
 �
Vmax � V olume�B�
h� m� i� �
For k

�h

Bi � Uk

V � V olume�B�
If V � Vmax

Vmax � V

j � k

EndIf

EndFor

Bi � Uj

Uj � Uh

h� h� �
EndFor

may�increase � True
While may�increase do

E � B��

Vmax
 �
may�increase � False
For k
��h�i
��n

V
 jET
i �Ukj

If V � Vmax

Vmax � V

j � k

l� i

may�increase � True
EndIf

EndFor

If may�increase

Bl � Uj

Uj � Um�l��

EndIf

EndWhile

Return�B�
End

Figure �� An heuristic to �nd a subset of vectors of maximum volume�

��

In that case� if we take Vcalc ���� �say�� we obtain

Vcom Vcalc�

�X
k��

max
�
j��ek �������� ��

Tj� j��ek ����� �� ��
T j� j��ek ����� �� ��

Tj
	

 ���

The solution given in ��	 is H �

q
Vcalc
��

� � � �
� � �
� � �

�
A�

Agarwal et al� approx� Our approx� Exact value

Our tiling ���� ��� ���

Agarwal et al� tiling ��� ��� ���

Table �� Comparing results for Example � of ��	�

In Table �� both approximations of the communication volume of the solution of ��	 are equal�
because ��	 always returns a diagonal matrix� The large di�erence in Table � between our algorithm
and that of ��	 is due to the fact that� in this example� the vector space generated by the vectors
�bi�j�i�j is a two�dimensional sub�space of R

�� Our algorithm takes that information into account
by �rst solving the problem in this sub�space and then generalizing the solution to the entire vector
space R��

��� Second example

This example is �Example �� in ��	�

Doall �i ��N� j ��N� k ��N�
A�i�j�k	 B�i���j	�B�i�j��	�C�i�j���j	�C�i�j���j��	
EndDoall

With our notations� there are two access matrices G� I� and G�

�
� �
� �

�
� We have a���

���� ��T � a��� ������T � a��� ���� ��T and a��� ��� ��T � Hence� b��j a��j � b��� ���� ��T and
b��� ���� ��

T � Next� c��� ���� ��
T � c��� ������

T and c��� ���� ��
T � Then l� ������� and

l� ���� ��� The expression to be minimized is

Vcalc

�
� �

�X
k��

max
�
j��ek ��������

T j� j��ek ����� ��
T j
	�

To that problem� our algorithm gives the solution�

H �

p
Vcalc�

�
������� �������
������ �������

�

In that case� if we take Vcalc ����� then Vcom ���� The solution given by Agarwal et al� is

H
�

r
Vcalc

��
�

�
� �
� �

�

which leads to Vcom ��� for the same value of Vcalc �����

��

Agarwal et al� approx� Our approx� Exact value

Our tiling ��� ��� ���

Agarwal et al� tiling ��� ��� ���

Table �� Comparing results for Example � of ��	�

� Conclusion

In this paper� we have improved the results of Agarwal� Kranz and Natarajan ��	 on loop partition�
ing� We have re�ned their estimation of the cumulative footprint� and we have proposed a heuristic
to solve the optimization problem without drastically reducing the search space� This heuristic is
inspired from recent result in the context of tiling�

Several ameliorations can be made to our heuristic� and we need further experimental results
�in addition to the examples dealt with in this paper� to fully assess the usefulness of our approach�
Still� we believe our new approach to be much more powerful and e�cient than previously published
strategies�

� Appendix

In this section� we present theMatlab programs that we wrote to check the validity of our algorithm
and to compute our solution for the same exemples as of ��	�

All notations used here are the same as those used in Section �� For a better understanding� the
reader may want to compare the programs of Section ��� with the corresponding examples guven
in Section ��

��� Auxiliary routines

inverse set�m

function �B� � inverse�set�G�A�

� function �B� � inverse�set�G�A�

� G � Set of non	singular matrix

� A � Set of associated offsets

p�size�A����

B�A�

for i���p

B
i��inv�G
i���A
i��

end

��

di�erences�m

function �D� � differences�N�

� function �D� � differences�N�

� N � Offsets

� D � all possible differences of offsets

n�size�N����

D����

for i���n	��

for j�i���n�

D��D�N���i�	N���j���

end

end

di�erences set�m

function �C� � differences�set�B�

� function �C� � differences�set�B�

� B � set of offsets

� C � set of the �differences� for each offsets B
i�

p�size�B����

C�
differences�B
�����

for i���p

m�size�B
i�����

C�
C
��size�C�����differences�B
i�����

C
i���C
i��	C
i���

end

sums�m

function �L� � sums�C�

� function �L� � sums�C�

� C � set of offsets

� L � offsets made from all possible sums

p�size�C����

if p���

L�C
���

else

K�sums�
C
��p�����

m�size�C
������

l�size�K����

L����

for j���m

for k���l

L��L�C
�����j��K���k���

end

end

end

��

��� The algorithm itself

gram�m

function �G� � gram�U�

� function �G� � gram�U�

G�U��U�

volume�m

function �V� � volume�U�

� function �V� � volume�U�

V�sqrt�det�gram�U����

hadamardPY�m

The general algorithm for n � � is not implemented here� The reader can �nd more information
in ��	�

function �H� � hadamardPY�n�

� function �H� � hadamardPY�n�

if n���

H�eye����

elseif n���

H�eye����

elseif n���

H���������������������������

end�

��

maxvolume�m

function �B� � maxvolume��U�

� function �B� � maxvolume��U�

� U � offsets

� B � offsets bases that maximizes the corresponding volume

m�size�U����

n�size�U����

h�n�

B����

for i���m�

B���B���U��������

j���

vmax�volume�B��

h�n	i���

for k���h�

B���i��U���k��

v�volume�B��

if v�vmax

vmax�v�

j�k�

end

end

B���i��U���j��

U���j��U���h��

U���h��B���i��

h�h	��

end

mayincrease���

while mayincrease

E�inv�B���

vmax���

mayincrease���

for k���h

for i���m

V�abs�dot�E���i��U���k����

if V�vmax

vmax�V�

j�k�

l�i�

mayincrease���

end

end

end

if mayincrease

B���l��U���j��

U���j��U���n	l����

U���n	l����B���l��

end

end

��

homothetize�m

function �B� � homothetize�A�vol�

� function �B� � homothetize�A�vol�

� A must be non	singular�

� B�u
A such that det�B��vol

B��vol�abs�det�A�������size�A�����A�

solution�m

function �H� � solution�D�vol�

� function �H� � solution�D�vol�

� D � offsets

� H � matrix of determinant vol that minimizes function

� eval��H�
D��

O�orth��D�eye�size�D�������

C�O��D�

C�C���rank�D�����

H�eye�size�D�����

P�homothetize�maxvolume�C��inv�hadamardPY�size�C������vol��

H���rank�D����rank�D���P�

H�O�H�

��� Implementation of the examples

ours��m

function �sol��ours��vol�

� function �sol��ours��vol�

� Our solution to the problem of example � for a given volume

� of tile equal to vol

�

� B���	������������������	��	����

B�
��	������������������	��	�����

C�differences�set�B��

L�sums�C��

sol�solution�L�vol��

theirs��m

function �sol�� theirs��vol�

� function �sol�� theirs��vol�

� Agarwal et al
�s solution to the problem of example �

� for a given volume of tile equal to vol

I���������������������������

sol�homothetize����det�I���������I�vol��

��

ours��m

function �H� � ours��vol�

� function �H� � ours��vol�

� Our solution to the problem of example � for a given volume

� of tile equal to vol

�

� A�
��	��������	������	�������������

� G�
eye�������������������

� B�inverse�set�G�A��

A�
��	��������	������	�������������

G�
eye�������������������

B�inverse�set�G�A��

C�differences�set�B��

L�sums�C��

H�solution�L�vol��

theirs��m

function �sol�� theirs��vol�

� function �sol�� theirs��vol�

� Agarwal et al
�s solution to the problem of example �

� for a given volume of tile equal to vol

I���������������

sol�homothetize����det�I���������I�vol��

��� Evaluation of the solutions

eval��m

Following is the implementation of our approximation of V �see the end of Section � and the be�
ginning of Section ���

function �vol� � eval��H�B�

� function �vol� � eval��H�B�

� H � tile

� B � Set of references offsets

m�size�B����

E�inv�H��

vol���

for i���m

vol�vol���sum�max�abs�E�differences�B
i�����������

end

vol�vol�abs�det�H���

��

eval	�m

Following is the implementation of the approximation given in ��	 �see the beginning of Section ���

function �vol� � eval��H�G�A�

� function �vol� � eval��H�G�A�

� H � tile

� G�A � set of references�offsets

� vol � approximated volume � Agarwal�s expression

p�size�A����

vol���

for i���p

D�G
i��H�

E�inv�D��

a�max�abs�differences�A
i����������

vol�vol���abs�det�G
i����abs�det�D������sum�abs�E�a����

end

��� Computing the exact value of the volumes

In this section� we explain how to computes the exact volume of a union of several parallelepipeds�
Here are a few remarks that will lead to the algorithm�

� Let f�i�Tig��i�m be a set of non intersecting signed tiles ��i � f��� �g�� and T be a new tile�
Then

Lm
i�� ��i�Ti�
 T

Lm
i�� ��i�Ti� � T �

Lm
i�� ��i�Ti � T ��

� Consider a set of tiles f�D� ai�gi where D is non�singular� Then the cumulative footprint is
V jdet�G�j �V � where V � is the cumulative footprint for the references f�I�D��ai�gi�

� Since a rectangular tile is represented by a couple

BBB�

BBB�

d� � � � � �
� d� �
���

� � �
���

� � � � � dn

�
CCCA ���a

�
CCCA� it can be

represented by a couple of vectors ��d�� d�� ���� dn�
T ���a ��

Hence� to compute the exact value of V � we �rst need to compute the intersection of two tiles�
This is done by the following program�

intersection�m

function �I� � intersection�A�B�

� function �I� � intersection�A�B�

� A�B � Tile ie
Diagonal�Offset�

� I � Tile

n�size�A
������

O�max�A
���B
����

G�min�A
���A
���B
���B
����

I�
max�zeros�n����G	O��O��

��

eval��m

Finally� the following algorithm gives the exact value of V �

function �vol� � eval��H�B�

� function �vol� � eval��H�B�

� H � tile

� B � Set of references offsets

m�size�B����

n�size�H����

E�inv�H��

vol���

for i���m

F�E�B
i��

D���� O���� s����

p�size�B
i�����

for j���p

d�ones�n���� o�F���j��

l�size�D����

D��D�d�� O��O�o�� s��s����

for k���l

I�intersection�
D���k��O���k���
d�o���

if prod�I
��������

D��D�I
���� O��O�I
���� s��s�	s�k���

end

end

end

vol�vol�prod�D����s��

end

vol�vol�abs�det�H���

References

��	 A� Agarwal� D�A� Kranz� and V� Natarajan� Automatic partitioning of parallel loops and
data arrays for distributed shared�memory multiprocessors� IEEE Trans� Parallel Distributed

Systems� ������������� �����

��	 Pierre Boulet� Alain Darte� Tanguy Risset� and Yves Robert� �pen��ultimate tiling" Integra�

tion� the VLSI Journal� ��������� �����

��	 J� Brenner and L� Cummings� The Hadamard maximum determinant problem� Amer� Math�

Monthly� ����������� �����

��	 Pierre�Yves Calland and Tanguy Risset� Precise tiling for uniform loop nests� In P� Cappello
et al�� editors� Application Speci�c Array Processors ASAP ��� pages �������� IEEE Computer
Society Press� �����

��

��	 P�Y� Calland� J� Dongarra� and Y� Robert� Tiling with limited resources� In L� Thiele� J� Fortes�
K� Vissers� V� Taylor� T� Noll� and J� Teich� editors� Application Speci�c Systems� Achitectures�

and Processors� ASAP���� pages �������� IEEE Computer Society Press� ����� Extended
version available on the WEB at http�##www�ens�lyon�fr#�yrobert�

��	 Y�S� Chen� S�D� Wang� and C�M� Wang� Tiling nested loops into maximal rectangular blocks�
Journal of Parallel and Distributed Computing� ������������� �����

��	 J� Choi� J� Demmel� I� Dhillon� J� Dongarra� S� Ostrouchov� A� Petitet� K� Stanley� D� Walker�
and R� C� Whaley� ScaLAPACK� A portable linear algebra library for distributed memory
computers � design issues and performance� Computer Physics Communications� �������� �����
�also LAPACK Working Note $����

��	 Alain Darte� Georges�Andr
e Silber� and Fr
ed
eric Vivien� Combining retiming and scheduling
techniques for loop parallelization and loop tiling� Parallel Processing Letters� �������������
�����

��	 J� J� Dongarra and D� W� Walker� Software libraries for linear algebra computations on high
performance computers� SIAM Review� �������������� �����

���	 K� H%ogstedt� L� Carter� and J� Ferrante� Determining the idle time of a tiling� In Principles

of Programming Languages� pages �������� ACM Press� ����� Extended version available as
Technical Report UCSD�CS������� and on the WEB at http�##www�cse�ucsd�edu#�carter�

���	 Fran&cois Irigoin and R
emy Triolet� Supernode partitioning� In Proc� ��th Annual ACM Symp�

Principles of Programming Languages� pages �������� San Diego� CA� January �����

���	 AmyW� Lim and Monica S� Lam� Maximizing parallelism and minimizing synchronization with
a�ne transforms� In Proceedings of the 	
th Annual ACM SIGPLAN�SIGACT Symposium on

Principles of Programming Languages� pages �������� ACM Press� January �����

���	 Naraig Manjikian and Tarek S� Abdelrahman� Scheduling of wavefront parallelism on scalable
shared memory multiprocessor� In Proceedings of the International Conference on Parallel

Processing ICPP ��� CRC Press� �����

���	 J� Ramanujam and P� Sadayappan� Tiling multidimensional iteration spaces for multicomput�
ers� Journal of Parallel and Distributed Computing� �������������� �����

���	 Robert Schreiber and Jack J� Dongarra� Automatic blocking of nested loops� Technical Report
������ The University of Tennessee� Knoxville� TN� August �����

���	 Michael E� Wolf and Monica S� Lam� A loop transformation theory and an algorithm to
maximize parallelism� IEEE Trans� Parallel Distributed Systems� ������������� October �����

��

