Fabrice Rastello
email: fabrice.rastello@ens-lyon.fr

Yves Robert
email: yves.robert]@ens-lyon.fr

Loop Partitioning versus Tiling for Cache-based Multiprocessors

Keywords: Compilation technique, hierarchical memory systems, loop partitioning, tiling, cache, data locality, footprint Techniques de compilation, syst emes a m emoire hi erarchis ee, distribution de boucles, pavage, m emoire cache, localit e d e compilation technique, hierarchical memory systems, loop partitioning, tiling, cache, data locality, footprint

In this paper, an e cient algorithm to implement loop partitioning is introduced and evaluated. We improve recent results of Agarwal, Kranz and Natarajan 1] i n s e v eral directions. We g i v e a more accurate estimation of the cumulative footprint, and we d e r i v e a m uch more powerful algorithm to determine the optimal tile shape. We illustrate the superiority of our algorithm on the same examples as in 1] to ensure the fairness of the comparisons.

1 Introduction.

The aim of this paper is to derive an e cient algorithm to implement loop partitioning, a compilation technique to make the best use of hierarchical memory systems when dealing with loop nests computations. This technique clearly applies to cache-based multiprocessors, because data re-use and locality are crucial for such systems. Loop partitioning is also relevant for implementing outof-core algorithms (the tandem `cache{local memory" in the former sentence being replaced by the tandem \local memory{secondary storage").

Loop partitioning amounts to divide an iteration space into hyper-parallelepipeds, whose size and shape are optimized according to some criteria. It is closely related to tiling 11, 1 4 , 2 , 6 , 1 3 , 5, 10], a technique also known as loop blocking 15], whose objective is to increase the granularity of computations, the locality of data references, and the computation-to-communication ratio of fully permutable loop nests. In fact, loop partitioning and tiling have similar objectives: the basic idea of both techniques is to group elemental computation points into tiles that will be viewed as computational units. The larger the tiles, the more e cient the computations performed using stateof-the-art processors with pipelined arithmetic units and a multilevel memory hierarchy (illustrated by recasting numerical linear algebra algorithms in terms of blocked Level 3 BLAS kernels 7, 9]).

But loop partitioning and tiling operate in di erent c o n texts. Tiling is valid only if the loops are fully permutable [START_REF] Choi | ScaLAPACK: A portable linear algebra library for distributed memory computers -design issues and performance[END_REF]12,[START_REF] Schreiber | Automatic blocking of nested loops[END_REF], and the optimization criteria aim at minimizing the communication-tocomputation ratio. Loop partitioning can be applied to any loop nest with a ne dependences, and the optimization criteria is to minimize the number of accessed data. We explicit this di erence in Section 4.1. Still, because tiling and loop partitioning share many c haracteristics, we will be able to make use of recent results on tiling 4] to derive our algorithm for loop partitioning.

Loop partitioning has been studied by Agarwal, Kranz and Natarajan 1]. The central contribution of 1] is a method for deriving an optimal hyper-parallelepiped tiling of iteration spaces, where the optimization criterion is the following: given a xed tile size (typically the fraction of the cache that is available to store program data), determine the tile shape so that the number of accessed data (the so-called cumulative footprint in 1]) is kept minimal.

In this paper we build upon the results of 1], which w e i m p r o ve i n s e v eral directions. We give a more accurate estimation of the cumulative f o o t p r i n t, and, more importantly, w e d e r i v e a p o werful algorithm to determine the optimal tile shape. While the search w as limited to rectangular shapes (which corresponds to searching for diagonal matrices) in 1], we are able to deal with arbitrary parallelepipeds (which corresponds to searching for arbitrary non)singular matrices). We illustrate our algorithm on the same examples as in 1] to ensure the fairness of the comparisons.

The paper is organized as follows: we summarize the approach o f A g a r w al, Kranz and Natarajan 1] in Section 2. We i n troduce the better estimation of the cumulative footprint in Section 3, and we explain how to solve the optimization problem in Section 4. We s h o w s e v eral examples in Section 5. We g i v e some nal remarks in Section 6.

Survey of previous work.

In this section, we summarize the approach of Agarwal, Kranz and Natarajan 1]. We formally state the problem to be solved. After giving some notations, we survey their main results.

Optimal tiling for minimizing communications.

We start with the following example:

Example 1 Consider the following loop nest: Doall (i=0:99, j=0:99) A i,j]=B i,j]+B i+1,j-2]+C 2i,2i+j]+C 2i+1,2i+j]

EndDo

In order to increase the granularity of computation, and the locality of data dependences, loop partitioning may be used. This method consists in grouping neighboring points of the iteration space into a single parallelepiped-shaped tile. Tiles are then considered as atomic and distributed over the processors. For example, the loop nest of Example 1 can be tiled with rectangles of sizes 10 5 as follows:

EndDo EndDo

Of course two di erent tilings do not lead to the same execution time: the volume and the shape of the tiles are important parameters that must be determined. Usually, the tile size is xed: it is chosen so as to fully utilize the cache (or more precisely the fraction of the cache that is available to store data). Given a xed tile size (or volume), the tile shape has a great impact on the amount of loaded data. Determining the best tile shape so as to minimize the number of loaded data is the optimization problem that is dealt with in 1].

Notations.

We need a few notations to formalize the problem of computing (maybe approximately) the number of loaded data during the computation of a tile: 1. The computation \A i,j]=..." is represented by the column vector ; ! = i j 2. As data references are assumed to be a ne, the access during computation ; ! of the data g(; !) can be represented by the expression G ; ! + ; ! a . Hence, in Example 1, the reference to B i,j] can be represented by the couple (G 1 ; ; ! a 1 1) = 1 0 0 1 0 0 B i+1,j-2] can be represented by the couple (G 1 ; ; ! a 1 2) = 1 0 0 1 1 ;2 C 2i,2i+j] can be represented by the couple (G 2 ; ; ! a 2 1) = 2 2 0 1 0 0 3 C 2i+1,2i+j] can be represented by the couple (G 3 ; ; ! a 3 1) = 2 2 0 1 1 0

Iteration space Data space : B Data Sapce : C C [2 i , 2 i + j] C[2i+1,2i+j] B[i,j] B [i + 1 , j -2]
Figure 1: References B i,j] and B i+1,j-2] refer to some common data, which m ust be counted only once. However, references C 2i,2i+j] and C 2i+1,2i+j] do not intersect.

We point out that we g a ve the same name G 1 to the matrix representing reference B i,j] and to the matrix representing reference B i+1,j-2]. This is because the loaded data corresponding to these tow references overlap. On the other hand, we g a ve a di erent matrix name for references C 2i,2i+j] and C 2i+1,2i+j], e v en though they deal with the same array C and the same matrix 2 2 0 1 : this is because the loaded data do not intersect (see Figure 1). 3. The data loaded by a single reference during the execution of one tile is called the footprint of this reference, and the total number of loaded data is called the cumulative footprint. The previous example shows that the cumulative footprint is not the sum of all footprints. In the important case of the same data array being accessed twice, say, one time with the couple (G ; ! a 1) and the other time with the with the couple (G ; ! a 2), where G ;1 (; ! a 2 ; ; ! a 1) has integer components, then both footprints have a signi cantly large intersection, and the computation needs to be re ned. Note this happens each time the same data array is accessed twice with the same unimodular matrix (because G ;1 is integer, G ;1 (; ! a 2 ; ; ! a 1) always has integer components) this is the case for the rst two references of Example 1. In all other cases, di erent footprints have a n e m p t y or negligible intersection 1].

4.

A tile in a n-dimensional box determined by n free vectors ; ! u 1 : : : ; ! u n , where n is the number of loops in the loop nest. See Figure 2 for an example with n = 2. Hence, a tile can be represented by a n n non-singular matrix H, built up from the column vectors ; ! u 1 ::: ; ! u n . The volume of the tile is jdetHj. In fact this matrix H is exactly the inverse of the matrix de ned by Irigoin and Triolet 11] from the normal vectors to the faces of the tile. The rst objective o f A g a r w al, Kranz and Natarajan 1] w as to nd a precise evaluation of the cumulative footprint. Then they x the tile size, and they search for the tile shape that minimizes the expression of the cumulative footprint.

Results.

As already said, the di culty is to correctly estimate the cumulative footprint f o r s e v eral references that make accesses to a common data (cf Figure 3). The solution proposed by A g a r w al, Kranz and Natarajan 1] is the following. Consider the references (G ; ! a 1) ::: (G ; ! a k) where G is unimodular:

Let (; ! x 1 :::: ; ! x n) denote the canonical basis of R n , a n d

; ! a = max 1 j k j ; ! x i : ; ! a j j

1 i n If D = (; ! d 1 ; ! d n)
i s a n n matrix built up with column vectors ; ! d i , l e t det(D j!i) represent the determinant of the matrix D j obtained by replacing ; ! d j in D by ; ! a . Then, as intuitively explained by Figures 3 and4 Using the notations of Figure 3, V calc = jdet(D)j = jdet(H)j (because G is unimodular) is the tile size (or volume), and V com = P n j=1 jdet(D j! ; ! a)j. We use the intuitive name V com because the shadowed area in Figure 3 would correspond to communications in the context of tiling (while indeed they correspond to loads in the context of loop partitioning. With this approximation of the cumulative footprint, Agarwal, Kranz and Natarajan 1] are able to analytically solve the optimization problem. However, they have the very restrictive assumption that the tiles are rectangular, i.e. they limit their search to diagonal matrices H. W e extend their results in two directions: rst, we give a more accurate estimation of the cumulative footprint. Second (and more importantly), we provide a general heuristic to solve the optimization problem for parallelepiped tiles, i.e. for arbitrary matrices H. [START_REF] Boulet | pen)-ultimate tiling? Integration[END_REF] Estimating the cumulative footprint.

To motivate a more precise estimation of the cumulated footprint, consider the following example: ! a 2). If V calc is the volume of the tile, V com the volume of the shadowed part, then the cumulative footprint of those three references is V calc + V com . One must nd a good approximation for the expression of V com . ! d = (d i) 1 i n , d i is obtained by taking the maximum value of j(; ! a k ; ; ! a l): ; ! x i j where ; ! x i is the column vector (ij) 1 j n . With this notation, V com can be approximated by jdet(; ! u 1 ; ! d)j + jdet(; ! u 2 ; ! d)j.

Example 2 Do (i=0:N, j=0:M)

A i,j]=B i,j]+B i+1,j+1] EndDo Suppose we w ant V calc to be equal to 100. Then the tile H that minimizes the expression jdetHj + jdetH 1! ; ! a j + jdetH 2! ; ! a j with ; ! a = 1 1 is the square tile H = 10:I 2 = 1 0 0 1 . This tile (see Figure 5) leads to V com = 19. However, the tile H 0 = 1 p 2 100 1 100 ;1 would lead to V com = 1. Moreover, since H is a non-singular matrix, let E = H ;1 = (; ! e 1 ; ! e n) T be its inverse made up with the row v ectors ; ! e 1 : : : ; ! e n . Then det(H k! ; ! b) = det(H):det(; ! e k T : ; ! b). Hence, minimizing the above expression corresponds to nding a non-singular matrix E such that jdet(E ;1)j = jdet(H)j = V calc and such that

V = V calc + V calc : n X k=1 max j<j 0 ; ! e k T :(; ! b j ; ; ! b j 0) is minimized.
So far we h a ve dealt with the same access matrix G. I f w e h a ve m distinct access matrices G i , let ; ! b i j = G ;1 i ;! a i j and c i j the elements of C i where (C 1 = f ;! b 1 j ; ;;! b 1 j 0 j < j 0 g C i = f ;! b 1 j ; ;;! b 1 j 0 j 6 = j 0 g for i > 1 . The expression to be minimized becomes ; ! e k : ; ! a j :

Again, if A is not square, the problem becomes very di cult.

So to speak, our optimization problem lies somewhere between Problem 1 and Problem 2. We introduce an heuristic that is inspired by the solution of of Problem 2 given in 5]. First, we reduce the problem to the vector subspace generated by t h e s e t o f v ectors f ; ! l g. Second, we c hoose among those l , n 0 of them, where n 0 is the dimension of the generated vector sub-space (usually n 0 is equal to the number of loops n but it can be smaller in degenerate cases). These selected n 0 vectors should be free vectors that give the most accurate representation of all the others. For that purpose, we propose to choose n 0 vectors that (almost) maximize the volume of the polytope that they generate. Then, we s o l v e this problem using the solution of Problem 2 in the considered vector sub-space (we are in the simple case of a square matrix). Finally, for the remaining dimensions, we choose orthogonal vectors of length 1.

Our heuristic.

To formalize the previous discussion: L = (; ! l 1 ; ! l m) is a rectangular matrix made up with m column vectors of size n. H n is the Hadamard matrix of dimension n. If D = (; ! d 1 ; ! d m) is a rectangular matrix made up with m column vectors of size n that generate a n-dimensional vector space of dimension n, then C maxvol (D) i s a n n sub-matrix of D such that jdetCj is maximized. If D is a matrix, then the rank of D is denoted by rank(D). If D is a matrix made up with m n column vectors of dimension n that generate a ndimensional vector space, then O Schmitt (D) i s a n n matrix made up with n column vectors obtained from the Schmitt orthonormalization of (; ! d 1 : : : ; ! d m). If C is a matrix, then up n (C) is the sub-matrix of C made of the n upper rows of C.

Then our solution to the optimization problem (1) is given by the following algorithm:!la Procedure Finds.H.that.minimizes.expression.1(V c a l c L)

O = O Schmitt (L I n) r = rank(D) C = up r (O T L) P = C maxvol (C)H r P = V calc jdetPj 1 r P P = P 0 0 I n;r H = OP Return(H) End 4.
3 An heuristic to nd a subset of vectors of maximum volume.

Given a set of m vectors generating a n-dimensional vector space, nding a subset of n of them whose volume is maximum can be done by comparing the volume of every subset of n vectors. There are m n = m! n!(m;n)! such subsets, so this method is unacceptable if m is large. Hence we use a greedy algorithm: we begin with the largest vector. Then, iteratively, w e add a vector to the constructed set, such that the corresponding volume in the generated subspace is maximized. When the constructed set contains n free vectors, we try to exchange one of those vectors by another one, if it increases the volume. We c o n tinue until no more exchange can increase the volume.

The volume of p vectors of dimension n when p < n can be easily calculated using the Gram matrix: if D is a matrix made up with column vectors (; ! d The algorithm is given in gure 6. In this procedure, we denote by B i the i th column of a matrix B, and by B C] the horizontal concatenation of two matrices B and C. [START_REF] Calland | Precise tiling for uniform loop nests[END_REF] Examples.

To compare our approach with that of Agarwal, Kranz and Natarajan 1], we use two examples from 1]. Beforehand, we p o i n t out that our algorithm does return the optimal solution for Example 2 of Section 3. To e v aluate the quality of our expression of cumulative footprint, we compare the values of the following expressions on each example: P m i=1 P n j=1 jdet(G i H) j! ; ! a j which is the approximation of V com given by 1]

V calc : P n k=1 max ; ! e k T : ; ! l , which is our approximation of V com .

The exact value of V com .

First example

This example is \Example 7" of 1]: Doall (i=1:N, j=1:N, k=1:N) A i,j,k]=B i-1,j,k+1]+B i,j+1,k]+B i+1,j-2,k-3] EndDoall With our notations, there is a single access matrix G 1 = I 2 , a 1 1 = (;1 0 1) T , a 1 2 = (0 1 0) T and a 1 3 = (1 ;2 ;3) T . A s G 1 = I 2 , b 1 j = a 1 j . Consequently, f o r a g i v en value of V calc , the expression to be minimized is V calc 1 + 3 X k=1 max ; j ; ! e k :(;1 ;1 1) T j j ; ! e k :(;2 2 4) T j j ; ! e k :(;1 3 3) T j ! over all matrices E such that jdetEj = 1 V calc . Our algorithm leads to the solution H = E ;1 = 3 p V calc 0 @ ;0:7331 ;0:3656 ;0:8018 0:7331 1:0967 0:2673 1:4622 1:0967 ;0:5345 1 A

In that case, if we t a k e V calc = 1000 (say), we obtain V com = V calc : 3 X k=1 max ; j ; ! e k :(;1 ;1 1) T j j ; ! e k :(;2 2 4) T j j ; ! e k :(;1 3 3) T j = 173

The solution given in 1] i s H = 3 q V calc 24 0 @ 2 0 0 0 3 0 0 0 4 1 A . 1 between our algorithm and that of 1] is due to the fact that, in this example, the vector space generated by the vectors (b i j) i j is a two-dimensional sub-space of R 3 . Our algorithm takes that information into account by rst solving the problem in this sub-space and then generalizing the solution to the entire vector space R 3 .

Second example

This example is \Example 8" in 1]:

Doall (i=1:N, j=1:N, k=1:N) A i,j,k]=B i-2,j]+B i,j-1]+C i+j-1,j]+C i+j+1,j+3]

EndDoall

With our notations, there are two access matrices G 1 = I 2 and G 2 = 1 1 0 1 . W e h a ve a 1 1 = (;2 0) T , a 1 2 = (0 ;1) T , a 2 1 = (;1 0) T and a 2 2 = (1 3) T . H e n c e , b 1 j = a 1 j , b 2 1 = (;1 0) T and b 2 2 = (;2 3) T . N e x t , c 1 1 = (;2 1) T , c 2 1 = (1 ;3) T and c 2 2 = (;1 3) T . Then l 1 = (;1 ;2) and l 2 = (;3 4). The expression to be minimized is V calc 1 + 2 X k=1 max ; j ; ! e k :(;1 ;2) T j j ; ! e k :(;3

Conclusion

In this paper, we h a ve improved the results of Agarwal, Kranz and Natarajan 1] on loop partitioning. We h a ve re ned their estimation of the cumulative footprint, and we h a ve proposed a heuristic to solve the optimization problem without drastically reducing the search space. This heuristic is inspired from recent result in the context of tiling. Several ameliorations can be made to our heuristic, and we need further experimental results (in addition to the examples dealt with in this paper) to fully assess the usefulness of our approach. Still, we believe our new approach t o b e m uch more powerful and e cient than previously published strategies.

Appendix

In this section, we present t h e Matlab programs that we wrote to check the validity of our algorithm and to compute our solution for the same exemples as of 1].

All notations used here are the same as those used in Section 3. For a better understanding, the reader may w ant to compare the programs of Section 7.3 with the corresponding examples guven in Section 5. H=eye(1) elseif n==2

H=eye(2) elseif n==3 H= 1,0,1] 1,1,0] 0,1,1]] end

Doall (I=0: 9 ,

 9 J=0:19) Do (i=0:9,j=0:4) A I*10+i,J*5+j]= B I*10+i,J*5+j]+B I*10+i+1,J*5+j-2] +C 2(I*10+i),2(I*10+i)+J*5+j] +C 2(I*10+i)+1,2(I*10+i)+J*5+j]

Figure 2 :

 2 Figure 2: The tile can be represented by the matrix H = 11 3 0 5 . Its size is jdetHj = 55.

 , the cumulative footprint for the references (G ; ! a 1) ::: (G ; ! a k) can be approximated by jdet(D)j + n X j=1 jdet(D j! ; ! a)j where D = GH:

Figure 3 :

 3 Figure 3: Cumulative footprint for the three references to a common array, (G ; ! a 0), (G ; ! a 1) a n d (G ;! a 2). If V calc is the volume of the tile, V com the volume of the shadowed part, then the cumulative footprint of those three references is V calc + V com . One must nd a good approximation for the expression of V com .

Figure 4 :

 4 Figure 4: If ;! d = (d i) 1 i n , d i is obtained by taking the maximum value of j(; ! a k ; ; ! a l): ; ! x i j where ; ! x i is the column vector (ij) 1 j n . With this notation, V com can be approximated by jdet(; ! u 1 ; ! d)j + jdet(; ! u 2 ; ! d)j.

Figure 5 :

 5 Figure 5: Comparison of the cumulative footprint for the tiles H and H 0 that have the same volume V calc = 100. In the light of this example, we propose a new, more accurate, expression of the cumulative footprint that takes into account the directions of the vectors ;! a i j . Letting ; ! b i = G ;1; ! a i , the expression for the cumulative footprint b e c o m e s

7

 7 be shifted inside the max, at the price of an increase in the number of terms: for i 2 1 m] assume there are d i vectors ;! c i j , 1 j d i . Let : f1 :: mg ;! N i problems.The problem of minimizing the expression (1) is di cult. In fact, we k n o w h o w to minimize the two related expressions:Problem 1 If (; ! a 1 ::: ; ! a m) are m free vectors, and jdetEj = 1V calc , Boulet et al. propose in 2] a solution for minimizing the following expression: k : ; ! a i The solution is simply E = A ;1 if m = n but gets very complex if m 6 = n. Note that the ; ! a i represent dependences in the context of tiling fully permutable loop nests, hence their components are known to be nonnegative. We d o n o t h a ve this property in our loop partitioning problem.Problem 2 Let H n be the Hadamard matrix of size n, i.e. a square matrix of coe cients either 0 or 1 and whose determinant is maximal 3]. If A = (; ! a 1 ; ! a n) is non-singular, then E = H n A ;1 minimizes the following expression (see 5

 1 : : : ; ! d p) then Gram(; ! d 1 ::: ; ! d p) = D T D. Then the volume of the polytope generated by (; ! d 1 : : : ; ! d m) i s p det(D T D).

7. 1

 1 Auxiliary routines inverse set.m function B] = inverse_set(G,A) % function B] = inverse_set(G,A) % G : Set of non-singular matrix. % A : Set of associated offsets. = volume(U) % function V] = volume(U) V=sqrt(det(gram(U))) hadamardPY.m The general algorithm for n > 3 is not implemented here. The reader can nd more information in 3]. function H] = hadamardPY(n) % function H] = hadamardPY(n) if n==1

Table 1 :

 1 Comparing results for Example 7 of 1].In Table1, both approximations of the communication volume of the solution of 1] are equal, because 1] always returns a diagonal matrix. The large di erence in Table

	Our tiling Agarwal et al. tiling	Agarwal et al. approx. Our approx. Exact value 2147 173 173 865 865 756

Table 2 :

 2 Comparing results for Example 8 of 1].

	!
	4) T j

This work was supported by the CNRS{ENS Lyon{INRIA project ReMaP and by the Eureka Project EuroTOPS. 1

Computing the exact value of the volumes

In this section, we explain how to computes the exact volume of a union of several parallelepipeds. Here are a few remarks that will lead to the algorithm: Let f i :T i g 1 i m be a set of non intersecting signed tiles (i 2 f ; 1 1g), and T be a new tile. Then L m i=1 (i :T i) T = L m i=1 (i :T i) + T ; L m i=1 (i :T i \ T).

Consider a set of tiles f(D a i)g i where D is non-singular. Then the cumulative footprint i s V = jdet(G)j :V 0 where V 0 is the cumulative footprint for the references f(I D ;1 a i)g i . Finally, the following algorithm gives the exact value of V .