N

N

Some Modular Adders and Multipliers for Field
Programmable Gate Arrays

Jean-Luc Beuchat

» To cite this version:

Jean-Luc Beuchat. Some Modular Adders and Multipliers for Field Programmable Gate Arrays.
[Research Report] LIP RR-2002-37, Laboratoire de 'informatique du parallélisme. 2002, 2+10p. hal-
02101822

HAL Id: hal-02101822
https://hal-lara.archives-ouvertes.fr /hal-02101822
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101822
https://hal.archives-ouvertes.fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

) Laboratoire de I’ nformatique du Parallélisme %

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON 5668

Some Modular Adders and Multipliers for
Field Programmable Gate Arrays

Jean-Luc Beuchat October 2002

Research Report N° 2002-37

Ecole Normale Supérieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07, France
I“ Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquelip@ens-lyon.fr

B INRIA

Some Modular Adders and Multipliers for Field Programmable Gate
Arrays

Jean-Luc Beuchat

October 2002

Abstract

This paper is devoted to the study of number representations and algorithms
leading to efficient implementations of modular adders and multipliers on re-
cent Field Programmable Arrays. Our hardware operators take advantage of
the building blocks available in such devices: carry-propagate adders, mem-
ory blocks, and sometimes embedded multipliers. The first part of the paper
describes three basic methodologies to carry out a modulo m addition and
presents in more details the design of modulo (2" + 1) adders. The major
result is a new modulo (2" + 1) addition algorithm leading to an area-time
efficient implementation of this arithmetic operation on FPGAs. The second
part describes a modulo m multiplication algorithm involving small multipliers
and memory blocks, and modulo (2" + 1) multipliers based on Ma’s algorithm.
We also suggest some improvements of this operator in order to perform a
multiplication in the group (Z3.,,-).

Keywords: Computer arithmetic, modulo m addition, modulo m multiplication, FPGA

Résumé

Cet article est consacré & I’étude de systémes de représentation des nombres
et d’algorithmes conduisant & des implantations efficaces d’additionneurs et de
multiplieurs modulo m sur les FPGA actuels. Nos opérateurs matériels tirent
parti des briques de base disponibles dans de tels circuits : additionneurs a
retenue propageée, blocs de mémoire et petits multiplieurs. La premiére partie
de l'article décrit trois méthodes de conception d’additionneurs modulo m et
présente plus particuliérement des additionneurs modulo (2™ +1). Le principal
résultat est un nouvel additionneur modulo (2" + 1) conduisant & un opéra-
teur compact et rapide sur FPGA. La seconde partie propose un algorithme
de multiplication modulo m requérant des petits multiplieurs et des blocs de
mémoire. Nous présentons également un multiplieur modulo (2" + 1) basé sur
I’algorithme de Ma et suggérons quelques modifications afin d’effectuer la mul-
tiplication dans le groupe (Z3n 1, -).

Mots-clés: Arithmétique des ordinateurs, addition modulo m, multiplication modulo m, FPGA

Some Modular Adders and Multipliers for Field Programmable Gate Arrays 1

1 Introduction

Modular arithmetic plays a crucial role in various fields such as residue number system arithmetic or cryptography.
Several algorithms for modular addition and multiplication have been proposed and numerous papers describe both
theoretical and practical results (see for instance [4, 6, 7]). Those algorithms are generally designed for standard
integrated circuits and are based on very low-level basic elements such as NAND or XOR gates. However, recent, Field
Programmable Gate Arrays (FPGA) embed dedicated carry logic, memory blocks, and sometimes small multipliers.
Arithmetic operators taking advantage of these new building blocks could outperform classic architectures. A recent
study of unsigned multiplication and division on Virtex-II devices has already shown that embedded multipliers allow
significant speed improvements compared to standard solutions only based on Configurable Logic Blocks (CLB) [2].

This paper is devoted to the study of number representations and algorithms leading to efficient implementations of
modular adders (Section 2) and multipliers (Section 3) on Virtex-E and Virtex-II devices. Virtex-E and Virtex-II CLBs
provide functional elements for synchronous and combinatorial logic. Each CLB includes respectively two (Virtex-E) or
four (Virtex-II) slices containing basically two 4-input look-up tables (LUT), two storage elements, and fast carry logic
dedicated to addition and subtraction. Furthermore, Virtex-E FPGAs incorporate large memory blocks organized in
columns. Each block is a fully synchronous dual-ported 4096-bit RAM whose data width can be configured (1, 2, 4, 8 or
16 bits). A Virtex-II device embeds many 18-bit x 18-bit multipliers supporting two independent dynamic data input
ports: 18-bit signed or 17-bit unsigned. 18-Kbit true dual-port RAM blocks (called block SelectRAM resources) accepting
various data/address aspect ratios are also available. Arithmetic operators dedicated to FPGAs should therefore involve
such building blocks.

2 Modular Addition

The modulo m addition of two numbers z and y belonging to {0,...,m — 1} is defined by

Tty if x +y <m,

(x + y)modm = { (1)

r4+y—m ifx+y>m,

and can be straightforwardly implemented by an adder, a comparator, and a subtracter. The comparison is however
expensive, both in terms of area and delay. The algorithms studied in this section allow to get rid of it and lead to
more efficient hardware operators. In this paper, £k = |[log, m| 4+ 1 denotes the number of bits which are required to
encode both inputs and output of a modulo m arithmetic operator. There are basically three methodologies to carry
out a modulo m addition [3]:

e Table Based Operators. This solution consists in storing in a table the values (z 4+ y) mod m for each pair of
inputs = and y (Figure 1a). Its main drawback lies in the exponential growth of the required memory size (k - 22%
bits).

e Hybrid Operators. Figure 1b describes a modulo m adder involving a standard binary adder followed by a
ROM which corrects the sum. This architecture reduces the memory requirements from k - 2% bits to k- 281 bits.

e Adder Based Operators. Another way to implement Equation (1) is described by Algorithm 1 and leads to
the circuit of Figure 1c. Reference [3] provides for instance a proof a correctness of this method. This architecture
requires only two carry-propagate adders and a multiplexer and is therefore well suited for FPGAs.

Example 1 (Modulo 13 addition)
Let us illustrate the behavior of the adder based operator for m = 13. We choose j = 4 (23 < 13 < 2%), consequently
2/ —m =3.

e Forx =3 and y = 4, we have so = 7 and s1 = 10. Since the carry-out signal of both adders is equal to zero,

(z + y) modm = somod 2¢ = 7.

e Forx =12 and y =1, we obtain sg = 13 and s;1 = 16. The carry-out signal of the second adder is therefore equal
to one and (z +y) modm = s; mod 2* = 0.

e Forx =10 andy = 7, so = 17 and s1 = (somod2%) + 3 = 4. Since the carry-out bit of so is equal to one,
(r 4+ y)modm = s; mod 24 = 4,

2.1 Modulo (2" £ 1) Addition

Some improvements of the adder based operator previously described are possible for specific values of m. For instance,
modulo (2" — 1) addition, or one’s complement addition, is defined by [10]:

(x+y+1)mod2™ ifx+y+1>2"

: " (2)
x+y ife+y+1<2™

(m+y)mod(2”1){

2 Jean-Luc Beuchat

Algorithm 1 Modulo m addition.

Choose j such that 277! < m < 27

So—x+y

51 « (somod 29) + 2/ —m

if the carry-out bit of sy or s; is one then
(r +y) modm « s; mod 27

else
(x +y) modm «— s mod 27

end if

Figure 1d depicts the architecture of the corresponding hardware operator. Due to the condition x +y + 1 > 2™, we
perform two additions in parallel and select the correct result with a multiplexer. Remember that zero has a double
representation in one’s complement, namely “0...0” and “1...1” (i.e. 0 is congruent to 2" — 1 (modulo 2™ —1)). If the
computation path accommodates the second encoding of zero, Equation (2) can be rewritten as follows:

(r+y+1)mod2™ ifx+y >27,
T4y if v +y<2m.

(z +y)mod (2" —1) = { (3)

Note that the carry-out coyt from the sum x + y indicates whether the incrementation must be performed. It is still
possible to evaluate x + y and = + y + 1 in parallel, and to choose the correct result according to cout (Figure le). An
alternate architecture, illustrated on Figure 1f, simply adds coug to the x + y.

Optional pipeline stage Single representation of zero Double representation of zero
XY Cx oy Xy Xy
VvV ¥ : boob
X y
b 2~ m +] [+]
ROM } v
0 1
V
(x+y) mod m (x+y)modm (x+y) mod m
(x+y) mod m
| (x+y)mod m | () ©) 0
(a) Table based: (b) Hybrid operator (c) Adder based operator Modulo (zn -1) operators
,,,,,,, DT OT
Modulo (2n +1) operators Modulo (2n +1) operators
(diminished—one number system) (numbers in normal representation)

XY n+1bits

Most significant bit

Most significant bit

@)

V
(xX'+y'+1) mod m

(h)

(x+y+1) mod m

(x+y+1) mod m
@ (x+y+1) mod m ®)
0]

Figure 1: Several architectures of modulo m adders.

Designing a modulo (2" + 1) adder is a little bit trickier. Such an operator is however useful in a wider range of
application including for instance the modulo (2" + 1) multiplier of the IDEA block cipher [8]. This arithmetic operation
is often performed in the diminished-one number system, where a z is represented by ' = z — 1 and the number 0 is
not used or treated as a special case [10]:

'+ if o+ > on
@4y +)mod (@ +1)=4" "V LY
(' +y +1)mod2™ if 2’ +y < 2™

(o 4+ Con) mod 27, (1)

Some Modular Adders and Multipliers for Field Programmable Gate Arrays 3

Figure 1g and Figure 1h depict two hardware operators performing the modulo (2" + 1) addition according to this
algorithm. The principle of these architectures is the same as for the modulo (2" — 1) adder.

Example 2 (Modulo (2% + 1) addition in the diminished-one number system)
Let us describe the behavior of a modulo (28 + 1) adder based on Equation (4) for some evamples:

o Forx =28 and y = 28, we deduce that ' =28 — 1,y =2% — 1, and (2/ + 3y + 1)mod (28 + 1) = 28 — 2. This
number is the diminished-one representation of (z +y)mod (28 + 1) = 28 — 1.

e Forz =13 and y = 4, we obtain (z'+y'+1)mod (28+1) = (12+ 3+ Cous) mod 28 = 16, which is the diminished-one
representation of 17.

Let us study the modulo (2" + 1) addition of two numbers in normal representation. The algorithms described in
this paper returns the desired result increased by one. Nevertheless, this property facilitates the design of the circuit
and can be dealt with in many applications. The modulo (2™ + 1) addition is now defined by:

2n if x = 2" and y = 27,
(x+y+1)mod(2"+1)=<Cz+y+1 ifz+y<2,
x4y —2" if2" <gz4y<2nt!
_j2n if x =2" and y = 27, 5)
N (r +y)mod 2™ + Couy if 0 <z +y <27t
Two direct implementations of Equation (5) are illustrated by Figure 1i and Figure 1j [5]. Their main drawback lies in
the multiplexer handling the special case where both operands are equal to 2.

Example 3 (Modulo (2% + 1) addition)
We consider again the modulo (28 + 1) addition to show how the operator illustrated by Figure 1j works.

o For x = 2% and y = 28, both inputs of the AND gate are equal to one and the multiplezer selects 28. Since
(28 4+ 2%)mod (28 + 1) = 28 — 1, the circuit returns the sum increased by one.

e Forx =13 and y = 4, we have (v + y) mod 28 = 17 and ¢ou = 1. The multiplezer selects now the output of the
adder. Consequently, the output is 18 = (13 + 4 + 1) mod (2% + 1).

o Forz=1 andy =28 — 2, we obtain (v +y)mod 2% = 2% — 1 and ¢,,; = 1. Since the multiplexer selects again the
output of the adder, the result is (x +y + 1) mod (28 + 1) = 25.

We suggest here an alternative architecture suppressing the multiplexer. Let us define the (n + 2)-bit integer s =
Sn418n - - 80 = & +y. The modulo (2™ + 1) addition can be expressed as:

(x4+y+1)mod (2" +1) = (x 4+ y) mod 2™ + 8,,112" + Snt1 V Sn. (6)

A proof of correctness of this algorithm is provided in Annex A. Figure 1k depicts the resulting hardware operator
which requires only two carry-propagate adders and a NOR gate. On Virtex-E or Virtex-II devices, this logic gate is
implemented within the carry chain (Figure 2) and the modulo (2" + 1) adder fits into a single CLB column. Note that
this operator also deals with numbers in diminished-one representation, while eliminating the constraint x,y # 0. The
conversion from normal representation to diminished-one number system is now defined by £ = (z — 1) mod (2" + 1):
the number (0 — 1) is congruent to 2" (modulo (2" + 1)).

i Carry chain

MUXCY 5 RNMUXCY
LUT | LUT “
A | A |
S. S. 1
! [

|

I

|

|

| 1 e
<ZY> xor

Lot 7o T\MUX nel | LoT)
0] h)§>—> SS‘\T %D J/

S LuT /
s n 7j>o Slice of a Virtex-Il FPGA
n+l ——

Figure 2: Two implementations of the new modulo (2" 4 1) adder on Virtex-E or Virtex-II devices (detail).

4 Jean-Luc Beuchat

2.2 Implementation Results

We have written a C program which generates the synthesizable VHDL code of each circuit illustrated on Figure 1.
Three parameters allow to choose one of the modulo adders, to specify the modulo m, and to insert an optional pipeline
stage. We have then conducted a series of experiments with this tool' in order to evaluate the area and the delay of
each modular adder according to m.

Our first experiment aims to compare four architectures of a modulo (2" —1) adder (Table 1). The operators depicted
by Figure 3d and Figure 3e do not significantly improve the adder based operator defined by Algorithm 1. The last
modulo (2" — 1) adder described in this paper (Figure 3)f does not require a multiplexer and is therefore smaller. The
delay of the four circuits is comparable. This experiment illustrates that a peculiar number encoding (i.e. the double
representation of zero) can sometimes lead to a better hardware implementation of an arithmetic operator.

Table 1: Comparison of some modulo (2" — 1) adders on a XCV50E-6 device.

| || n=4 | n=3~8 | n =12 | n =16 | n = 20 | n =24 | n = 28 | n =32 |

. 6 slices | 13 slices | 19 slices | 25 slices | 31 slices | 37 slices | 43 slices | 49 slices
Fig-1¢ | 94 ns | 11.5ns | 123ns | 13.4ns | 13.7ns | 143ns | 145ns | 14.9 ns
Fig. 1d 6 slices | 12 slices | 18 slices | 24 slices | 30 slices | 36 slices | 42 slices | 48 slices

8.1 ns 9.0 ns 9.4 ns 10.2 ns 10.9 ns 11.1 ns 12.6 ns 13.3 ns
Fie. 1 6 slices | 12 slices | 18 slices | 24 slices | 30 slices | 36 slices | 42 slices | 48 slices

'8¢ 1l 8.0ns | 86mns 9.4 ns 9.7ns | 109ns | 11.5ns | 12.3ns | 13.1ns

Fig. 1f 5 slices 8 slices 12 slices | 16 slices | 20 slices | 24 slices | 28 slices | 32 slices
8.4 ns 8.8 ns 9.4 ns 10.7 ns 14.8 ns 13.7 ns 15.5 ns 14.2 ns

Table 2 describes the main specificities of some modulo (2" + 1) adders on a Virtex-E device. Due to the required
memory size, the hybrid operator (Figure 1b) is rather unattractive and is limited to small moduli (n < 8). Note that
the table based method works only if n < 5. For n = 4, the operator requires for instance two 4096-bit RAM blocks
and four slices, and its delay is equal to 4.3 ns. For n = 7, 5219 slices are needed and the delay is then equal to 44.5 ns.
This experiment also shows that our new modulo (2" + 1) addition algorithm leads to the smallest circuits.

Table 2: Comparison of some modulo (2" + 1) adders on a XCV50E-6 device.

| | n=4] n=8 [n=12] n=16 [n=20 [n=24 | n=28 | n=32 |

. 10 slices | 20 slices - -
Fig- 1611 102 ns | 12,5 ns - - - - - -

Fig. 1c 7 slices 15 slices | 21 slices | 27 slices | 33 slices | 39 slices | 45 slices | 51 slices

9.4 ns 10.8 ns 12.2 ns 13.0 ns 13.3 ns 13.6 ns 14.3 ns 16.9 ns

Fig. 1] 6 slices 13 slices | 19 slices | 25 slices | 31 slices | 37 slices | 43 slices | 49 slices

: 8.7 ns 11.6 ns 12.2 ns 13.6 ns 14.4 ns 14.9 ns 15.7 ns 18.7 ns

Fig. 1k 6 slices 11 slices | 15 slices | 19 slices | 23 slices | 27 slices | 31 slices | 35 slices

7.8 ns 11.6 ns 11.6 ns 13.4 ns 14.5 ns 13.8 ns 14.7 ns 19.2 ns

3 Modular Multiplication

A basic modulo m multiplication algorithm consists in computing w = zy, where 0 < z,y < m, and dividing this product
by m. Since division is hard to perform, several algorithms have been proposed to overcome this problem. Reference [6]
provides a good bibliography on this subject. All these solutions are however dedicated to VLSI implementations; con-
sequently, we propose here a study of some modular multipliers based on the building blocks available in recent FPGAs.
Analogously to addition, modulo m multiplication can be implemented by means of tables (Figure 3a). This approach
is however limited to small moduli due to the exponential growth of the required memory, and other architectures must
be investigated.

3.1 Multiplication with Subsequent Modulo Correction

This modulo m multiplication scheme is dedicated to FPGAs embedding small multipliers and memory blocks. The
principle consists in computing the 2k-bit wide product zy and then performing a modulo correction by means of a

LAll experiments described in this paper were performed on a Sun Microsystems Ultra-10 workstation (440 MHz, 1 GB of memory). All
input and output signals were routed through the D-type flip-flops available in the Input/Output blocks of Virtex-E or Virtex-II devices.
The optional pipeline stage has not been used. The automatically generated VHDL code was synthesized using Synplify Pro 7.0.3 and
implemented on Virtex-E and Virtex-1I devices employing Xilinx Alliance Series 4.1.03i. No specific constraints were given to the synthesis
tools and it should be therefore possible to improve the results.

Some Modular Adders and Multipliers for Field Programmable Gate Arrays 5

table and a modulo m addition. Given a number 27, the algorithm is described as follows:

(zy)modm = ((zy)mod 27 + 27 - (zy) div 2/) mod m

_ {((:cy) mod 27 — (m — 23) (zy)div2/)modm if m > 27,
(((2) = m)
(ot + (2 @

zy)mod 27 + (27 —m) - (zy)div2/)modm if m < 2J

The case where m = 27 is straightforward and will not be addressed in this paper. This scheme requires an unsigned
multiplier, a memory to store all possible values of (—(m — 27) - (zy) div2/)modm or ((2/ — m) - (zy) div 2?) mod m,
and a modulo m adder. Let us define py = (xy) mod 2/ and p; = (—(m — 27) - (zy) div2?) modm (or p; = ((29 —m) -
(zy) div27) mod m). We have now to distinguish the two following cases:

)
zy)mod 27 + (—(m — 27) - (zy) div2?) mod m) modm if m > 27,
zy)mod 27 + ((27 —m) - (xy) div2/) mod m) modm if m < 27,

e For m > 27, 0 < pg,p1 < m — 1 and we deduce that 0 < pg + p1 < 2m — 2. The final addition can therefore be
performed with the modulo m adder described in section 2 (Figure 3b).

e Form < 27, we have 0 < py < 27,0 < p; <m, and 0 < pg + p1 < 2/ +m — 2. The architecture of the modulo m
multiplier depends on 27 +m — 2. If this value is strictly smaller than 2m, the operator is defined by:

(zy) modm = { ° T if po +p1 <m, ®
po+p1—m if m<pyg+p <2m.

From 27 +m — 2 < 2m, we deduce that 2/ < m + 1. Since m < 27, Equation (8) holds iff 2/ = m + 1. For other
values of 27, the modulo m multiplication is formulated as:

po + p1 if po +p1 <m,
(zy)modm =< pg+p1 —m if m <py+p1 <2m,
po+p1—2m if po+p1 > 2m.

Figure 3c illustrates the corresponding hardware operator.

Example 4 (Modulo (2" — 1) multiplication)
Let us study the design of a modulo (2™ —1) multiplier according to this algorithm. We choose j = n; sincem = 2"—1 < 2™
we obtain

(zy) mod (2" — 1) = ((zy) mod 2" + (zy) div2™) mod (2" — 1).

We are in the special case where m = 27 + 1 and the final modular addition can be performed with one of the modulo
adder described in Section 2.

Modulo m adder ‘ Modulo m adder

(x*y) mod m

(a) Table based(b) Multlpllcatlon W|th subsequent modulo correctlo(r:) Multlpllcatlon with subsequent modulo correction
operator (m>2) : (m<2)

Figure 3: Three architectures of modulo m multipliers.

3.2 Modulo (2" + 1) Multiplication

Modulo (2™ + 1) multiplication can be performed according to Equation (7). If the target FPGA does not embed
small multipliers, the implementation of this scheme is however expensive. We propose an alternate architecture based
on the algorithm described by Ma in [9]. Assume that ¢ = ¥, ... is the diminished-one representation of y, i.e.
1 = (y — 1)mod (2" 4+ 1). When n is even, Ma has proved that

n
1

rymod (2" +1) = (Z (221 (=242 + i1 + ai1)w — 1) + g) mod (2" + 1), 9)

=0 P,

6 Jean-Luc Beuchat

where ¢¥_; = (¢, A ¥,_1)mod (2" + 1). Each partial product P; can be easily computed from the diminished-one
representation of z (see annex B). When n is odd, the product xy mod (2™ + 1) is given by

Pn—l

2

zymod (2" + 1) = <(2”_1(1ﬁn_1 + Pp_o)x — 1)+

n—1
5 —1

(221'(*21/,21. + oip1 +oi—1)r — 1) + <nTl + 1>) mod (2" + 1), (10)

i

=0

where 9)_; = 1,, mod (2" + 1). Ma computes the sum of the partial products and the constant with a carry-save adder,
then performs a modulo (2" + 1) reduction with two modulo (2" + 1) carry-save adders and one modulo (2™ + 1) carry-
propagate adder [9]. This architecture does not take advantage of the fast carry logic available in FPGAs and we suggest
here an implementation of Equations (9) and (10) based on our new modulo (2" + 1) adder described in Section 2. Both
equations imply to sum up [n/2] partial products P; and the constant [n/2]. Remember that our modulo (2" +1) adder
returns the sum of its two operands increased by one. Consequently, if we compute the sum Z{Zéﬂ P; with ([n/2]—1)
such adders, we obtain (Z{Zéﬂ P;+[n/2] —1)mod (2" + 1), which is the diminished-one representation of the product.
Figure 4a depicts the corresponding hardware operator which takes as inputs the diminished-one representations of x and
y, and returns (zy—1) mod (2" +1). Since (z+(2"—1)+1)mod (2" +1) = (x—1) mod (2" +1), conversion from unsigned
integer to diminished-one number system can be achieved with our modulo (2" + 1) adder. The inverse conversion is
performed with a carry-propagate adder (Figure 4a): it is easy to verify that (¢ + 1)mod (2" + 1) = Z?;OI a;2" + ay,
when a € {0,...,2"}.

(x-1)mod(Z' +1) (y-1)mod(Z' +1) (x-1)mod ' (y-1)mod '
a :
= - : n+1 bits i a b : .

+ ‘ Partial Product Generatlorﬁ a & : }, M+ bits ‘ Partial Product Generatlorﬁ
H]
g & : o)
: . - g
: I 1 :
1S : ©
S : n bits =
¥) [}
o y n+1 bits 2
¥ [}
S (a+1)mod(é1 +1) =
Conversion from diminished— g
one representation to normal: 8
representation : y N bits 3 o)

V '| (a+b+2) mod (2 +1 V
(ZP+n2-)mod (I +1) : (arb2) mod (2 +3) (Z P +n2)mod (2" +1)
(a) Diminished—one number system (b) Multiplication in Z;n+1

Figure 4: Architectures of a modulo (2" + 1) multiplier based on Ma’s algorithm.

Let us consider the multiplication in Z3. ., = {a € Zony1 | ged(a,2™ + 1) = 1} (i.e. the multiplicative group of
Zon41). Since (Z3nq,-) is a group, we know that (zy)mod (2" + 1) # 0 and it is therefore possible to represent the
number 2" by 0. This trick saves one bit and allows two improvements of the multiplier based on Ma’s algorithm:

e Due to the special encoding of 27, the diminished-one representation of a number x € Z3, | ; is (x — 1) mod 2". We
obtain for instance (0 — 1) mod 2™ = 2" — 1, which is the diminished-one representation of 2". It is easy to check
that (z —1)mod (2" + 1) = (r — 1) mod 2" when 1 <z < 2™ — 1.

e The conversion from diminished-one number system to unsigned integer does not require an additional stage
anymore (Figure 4b). It is indeed possible to modify the last adder of the tree in order to compute (a + b +
2)mod (2" + 1) according to

n—1
(a+b+2)mod (2" +1) = <Z 528 + 511 V5n> mod 2", (11)
i=0

where s = 84185 ...80 = a+ b+ 1. A proof of correctness of this algorithm is provided in Annex C.

Multiplication in Z3,, is for instance the critical operation of the IDEA block cipher [8]. Several modulo (2" + 1)
multipliers have consequently been investigated over the past years (see for instance [1, 4, 10]). Another implementation
of Ma’s algorithm has been proposed by H&méldinen et al. in [5]. This architecture is also based on carry-propagate
adders. However, modulo (2" + 1) additions are carried out by the circuit of Figure 1j, and an additional stage performs
the conversion. This modular multiplier is therefore larger and slower than ours.

Some Modular Adders and Multipliers for Field Programmable Gate Arrays 7

Another way to implement Equation (9) or Equation (10) consists in computing the sum s = Z{Zéﬂ P,+[n/2] -1
with a carry-propagate adder tree, then in performing a modulo (2™ + 1) correction. We assume that n is even and
define sy = smod 2™ and s; = sdiv2™. Since 0 < 59 < 2" — 1 and 0 < s; < n/2, we obtain:

smod (2" 4+ 1) = (sg + 2"s1) mod (2" + 1) = (sg — s1) mod (2" + 1)
=(s0+2"—s1+1)mod (2" + 1) = (so + 51 +2)mod (2" + 1)

- 50+§1+2 if50+§1+1<2n,
Clso4+5 +1-2" ifsg+5 +1>2m,

which is the diminished-one representation of (zy) mod (2" 41). Figure 5a depicts the corresponding hardware operator.
Small improvements are again possible when x,y € Z3. ;. The conversion from normal representation to the diminished-
one number system is exactly the same as for the operator based on modulo (2" + 1) adders (Figure 4b). Note finally
that 0 < smod (2" + 1) < 2™ — 1. Due to the special encoding of zero, (xy) mod (2" + 1) = (smod (2" 4+ 1) + 1) mod 2"
and we perform the conversion by setting the input carry of the final adder to one (Figure 5b).

(x-1)mod(Z' +1) (y-1)mod(Z' +1) (x-1)mod 7 (y-1)mod 2' Unsigned multpler
o | 5 3
g ‘ Partial Product Generation‘ : ‘ Partial Product Generation‘ s & X y
e] =
« AN
Q = 1 <1 <1 < > 1 ><
©
2 (e
Q x1=0 Xx==0 x==0 x!=0
o y==0 y!=0 y==0 y!l=0
T
? © N most Sig—_p
S . nificant bits

,,,,,,,,,,,,,,,,,,,,,, , P+n/2 - 1 nificant bits
= i :
e :
‘g | carry-out—m =1
5
O
jan 1
L+
™
‘o V
: § (xy) mod (2" +1)
d = : :
(Zp+n2-)mod (' +1) (ZP+ndmod (2 +1) :
(a) Diminished—one number system (b) Multiplication in Z’;nJrl (c) Modified Low-High algorithm

Figure 5: Two other architectures of a modulo (2" + 1) multiplier based on Ma’s algorithm and the architecture based
on the modified Low-High algorithm described in [1].

3.3 Implementation Results

This section describes the main characteristics of some modulo m multipliers studied in this paper. The experimental
setup is the same as for modular adders. Table 3 digests the main characteristics of modulo m multipliers based on
a multiplication with subsequent modulo correction for Virtex-II devices. We only consider here operators requiring a
single 18-Kbit memory block, which defines the maximum value for m. Remember that k& = |[log, m]| + 1 denotes the
number of bits required to encode m. When m < 2*, Equation (7) yields

(zy) modm = ((zy) mod 2% + ((2¥ — m) - (zy) div 2¥) mod m.

The table is addressed by the k-bit word (zy) div 2¥ and also returns a k-bit number. Consequently, the block SelectRAM
is configured in the 1K x18-bit mode (i.e 10 address bits and 18 data bits) and the modulo m is comprised between 3
and 1023.

Table 3: Multiplication with subsequent modulo correction on a XC2V40-6 device. Each operator requires a small
multiplier and a single 18-Kbit memory block.

| |m:5|m:13|m:29|m:61|m:125|m:253|m:509|m:1021|
Area [slices| 6 8 12 13 15 16 20 19
Delay [ns] 5.6 8.5 8.7 9.2 9.5 10.2 9.5 9.7

8 Jean-Luc Beuchat

Table 4 summarizes the area and the delay of several modulo (2" 4 1) multipliers when z,y € Z3.,,. In this
experiment, we compare the two architectures discussed in this paper (Figures 4b and 5b) to an operator based on the
modified Low-High algorithm proposed in [1]. This circuit involves a n x n unsigned multiplier, a multiplexer to handle
the special cases where = 0 or y = 0, and a modulo correction (Figure 5c). Our experiments illustrate that:

e The architecture based on a carry-propagate adder tree and a modulo (2™ + 1) correction seems to be the better
implementation of Ma’s algorithm for FPGAs. This result is not surprising: note that our modulo (2" +1) adder is
roughly twice as large as an (n + 1)-bit carry-propagate adder. Consequently, the two modulo (2" + 1) multipliers
previously described respectively require 2 - [n/2] (Figure 4b) and [n/2] + 2 (Figure 5b) carry-propagate adders
to sum the partial products.

e The modified Low-High algorithm leads to smaller and faster circuits when the modulo (2" 4 1) multiplier is purely
combinatorial. The n-bit x n-bit unsigned multiplier sums up n partial products P; = 2'z;y, i € {0,...,n — 1}
with a tree of carry-propagate adders. This architecture takes advantage of the dedicated AND gate associated
with each LUT in order to generate the partial products. Although Ma’s algorithm reduces the amount of partial
products, their generation involves much more hardware resources (LUTs and multiplexers).

e However, when pipeline stages are inserted to reduce the delay, the circuit illustrated on Figure 4b is attractive
for n < 28. This result is explained by the fact that pipelining the unsigned multiplier of the operator based on
the modified Low-High algorithm is expensive.

Table 4: Modulo (2" + 1) multiplication in Z3, ,; on a XCV200E-6 device.

| [n=4 | n=8 | n=12 [n=16 | n=20 | n=24 [n=28 | n=32 |
Figure 4b 14 slices | 61 slices | 141 slices | 254 slices | 398 slices | 575 slices 885 slices 1156 slices
(without pipeline) 11.6 ns 21.5 ns 30.9 ns 35.5 ns 47.3 ns 51.8 ns 56.6 ns 55.8 ns
Figure 4b 15 slices | 66 slices | 156 slices | 264 slices | 433 slices | 603 slices | 1014 slices | 1300 slices
(with pipeline) 6.7 ns 8.9 ns 9.7 ns 10.8 ns 13.3 ns 12.4 ns 15.1 ns 15.1 ns
Figure 5b 15 slices | 57 slices | 123 slices | 212 slices | 325 slices | 461 slices | 725 slices 939 slices
(without pipeline) 11.2 ns 18.8 ns 24.1 ns 28.7 ns 34.8 ns 35.9 ns 39.0 ns 42.6 ns
Figure 5b 18 slices | 63 slices | 138 slices | 223 slices | 362 slices | 494 slices 856 slices 1089 slices
(with pipeline) 5.8 ns 8.5 ns 9.9 ns 10.6 ns 10.9 ns 11.5 ns 12.1 ns 13.2 ns
Figure 5c 19 slices | 53 slices | 111 slices | 182 slices | 270 slices | 372 slices | 492 slices 629 slices
(without pipeline) 16.1 ns 21.8 ns 27.6 ns 30.0 ns 34.5 ns 37.9 ns 39.3 ns 44.2 ns
Figure 5¢ 25 slices | 77 slices | 139 slices | 220 slices | 353 slices | 460 slices 592 slices 743 slices
(with pipeline) 7.1 ns 9.4 ns 11.4 ns 12.6 ns 12.8 ns 14.1 ns 13.5 ns 15.9 ns

4 Conclusion

We have described and compared several modular adders and multipliers involving various building blocks (carry-
propagate adders, tables, and small multipliers). Our main results include the design of a new modulo (2" + 1) adder,
a modulo m multiplier based on the embedded multipliers and memory blocks available in Virtex-II devices, and
implementations of Ma’s algorithm carefully optimized for FPGAs. Our experiments indicate that the choice of an
operator depends on several parameters such as the modulo m, the target FPGA family, and the number of internal
pipeline stages. However, our VHDL generators allow to quickly explore a wide parameter space and to determine which
architecture is most appropriate for a given application.

5 Acknowledgments
The author would like to thank the “Ministére Frangais de la Recherche” (grant # 1048 CDR. 1 “ACT jeunes chercheurs”),

the Swiss National Science Foundation, and the Xilinx University Program for their support.

A Proof of the New Modulo (2" + 1) Addition Algorithm

Let us demonstrate that Equation (6) carries out (z 4+ y + 1) mod (2" + 1) when 0 < z,y < 2". First of all, let us note
that 0 <z +y < 2"*! and

r+y+1 ifzx+y<2m

z+y+1)mod(2" +1) =
(y+1) () {:c+y2" if o +y>2"

We have to distinguish the three following cases to establish the correctness of our algorithm:

Some Modular Adders and Multipliers for Field Programmable Gate Arrays 9

e For z +y = 2" (ie. x =y = 2"), we have (z + y)mod2" =0, s,, = 0, and s,,1 = 1. Our algorithm returns
(x +y+1)mod (2" + 1) = 2" = x + y — 2", which is the correct result.

e For2" < z+y < 2" we know that s,,+1 = 0 and s,, = 1. Consequently, (z+y+1) mod (2"+1) = (z+y) mod 2" =
x+y—2"

e Finally, for 0 < z+y < 2", sp41 = s, = 0 and (z+y) mod 2" = x+y. We obtain (x+y+1) mod (2" +1) = z+y+1.

B Modulo Partial Product Generation for Ma’s Algorithm

Note that —2¢9; + 1241 +12i—1 € {—2,—1,0,1,2}. Each partial product has therefore the form (+272z —1) mod (2" +1).
Let & = (z — 1) mod (2" + 1) denote the diminished-one representation of z. We describe here how to compute a partial
product from €. Let us consider the case where z # 0 (i.e. £ # 2™). Since 2"t is congruent to —2¢ (modulo (2" + 1)),
we have:

(272 — 1)mod (2" + 1) = (27¢ + 27 — 1) mod (2" + 1)

n—1-—j n—1
= > @2+ Y 27427 1| mod (2" +1)
i=0 i=n—j
n—1—j n—1
= 3 @2t - 3 g2 42 1| mod (2" +1)
i=0 i=n—j
n—1-—j n—1 B
=| > &2+ > &2 mod (2" + 1), (12)
i=0 i=n—j

and

(=272 — 1)mod (2" + 1) = (—27¢ — 27 — 1) mod (2" + 1)

n—1—j n—1
= > @2 3 2 -2 1 mod (2" + 1)
i=0 i=n—j
n—1—j n—1
= |- > &2+ Y G2 42" — 2 | mod (2" + 1)
i=0 i=n—j
n—1-—j n—1
= D &2+ > 27 | mod (2" +1). (13)
i=0 i=n—j

When the modulo (2" + 1) multiplication is performed in Z3., , all partial products are generated according to Equa-
tion (12) and Equation (13). However, in the general case, we must also handle 2 = 0 and obtain

(292 —1)mod (2" + 1) = (27 - 2" + 2/ — 1)mod (2" + 1) = (—27 + 2/ — 1) mod (2" + 1) = 2",

and
(=272 —1)mod (2" + 1) = (=27 - 2" =27 — 1)mod (2" + 1) = (27 — 27 — 1) mod (2" + 1) = 2".

C Proof of Equation (11)

The modified modulo (2" + 1) adder defined by Equation (11) outputs the product p of two elements x,y € Z3,._
under the operation of multiplication modulo (2" + 1). Since (Z3.,,-) is a group, we know that p € {a € Zany1 |
ged(a, 2™ 4+ 1) = 1} (thus p # 0 and p # 2™ 4 1). Therefore, the sum a 4+ b + 2 is not a multiple of 2" + 1 and

a+b+2 ifl<a+b+1<2" -2
(a+b+2)mod (2" +1)= (0 ifa+b+1=2"-1lora+b+1=2""" (0 encodes 2"),
a+b+1-2" if2"<a+b+1<2"h

It is easy to show that Equation (11) returns the correct result for each case described above. Remember that we have
defined s = 5,415y, ... 50 such that s =a + b+ 1.

n—1 n—1

e For0<s=a+b+1<2"—2, weobtain s,11 =5, =0and (3 ;) 82" + 541 VSp)mod 2" =3 7" 152" +1 =
a+b+2.

10 Jean-Luc Beuchat

n—1

e For s=a+b+1=2"—1, we have again s,y1 = s, = 0 and (>_;_, 828 + 511 V 8,) mod 2" = 2" mod 2" = 0.
When s = a+ b+ 1= 2"*! the most significant bit s, is equal to 1 and s; = 0, Vi € {0,...,n}. The operator
returns the number 0 which encodes 2.

n—1

e Finally, for 2" < s = a+b+1 < 2"*! 5,01 = 0,5, = 1, and (1) 8:2'+5,11 V 5,) mod 2" = (37" 5,27) mod 2" =
s — 2™, which is the correct result.

References

[1] J.-L. Beuchat. Modular Multiplication for FPGA Implementation of the IDEA Block Cipher. In Proceedings of the
Eleventh ACM International Symposium on Field-Programmable Gate Arrays, 2003. Submitted.

[2] J.-L. Beuchat and A. Tisserand. Small Multiplier-based Multiplication and Division Operators for Virtex-II Devices.
In M. Glesner, P. Zipf, and M. Renovell, editors, Field-Programmable Logic and Applications — Reconfigurable
Computing Is Going Mainstream, number 2438 in Lecture Notes in Computer Science, pages 513-522. Springer,
2002.

[3] A. V. Curiger. VLSI Architectures for Computations in Finite Rings and Fields, volume 26 of Series in Microelec-
tronics. Hartung-Gorre Verlag, 1993.

[4] A. V. Curiger, H. Bonnenberg, and H. Kaeslin. Regular VLSI Architectures for Multiplication Modulo (2" + 1).
IEEE Journal of Solid-State Circuits, 26(7):990-994, 1991.

[5] A. Haméldinen, M. Tommiska, and J. Skytta. 6.78 Gigabits per Second implementation of the IDEA Cryptographic
Algorithm. In M. Glesner, P. Zipf, and M. Renovell, editors, Field-Programmable Logic and Applications — Re-
configurable Computing Is Going Mainstream, number 2438 in Lecture Notes in Computer Science, pages 760-769.
Springer, 2002.

[6] A. A. Hiasat. New Efficient Structures for a Modular Multiplier for RNS. IEEE Transactions on Computers,
49(2):170-174, 2000.

[7] A. A. Hiasat. High-Speed and Reduced-Area Modular Adder Structures for RNS. IEEE Transactions on Computers,
51(1):84-89, 2002.

[8] X. Lai. On the Design and Security of Block Ciphers. ETH Series in Information Processing. Hartung-Gorre Verlag
Konstanz, 1992.

[9] Y. Ma. A Simplified Architecture for Modulo (2" 4 1) Multiplication. IEEE Transactions on Computers, 47(3):333—
337, 1998.

[10] R. Zimmermann. Efficient VLSI Implementation of Modulo (2™ £+ 1) Addition and Multiplication. In Proceedings
of the 14th IEEE Symposium on Computer Arithmetic, pages 158-167, Adelaide, Australia, April 1999.

