Lo

PVM et MPI multi-utilisateurs sur MCS Capitan

Keywords: CAPNX, un environnement NX, Parallel computer, Capitan, CAPCASE, PVM, MPI R esum e Ordinateur parall ele, Capitan, CAPCASE, PVM, MPI

We p r e s e n t here the use, the implementation and the performances, of the usual message-passing libraries NX, PVM and MPI on the Capitan machine. In particular, the implementation o f a multi-user environment is described.

Table des mati eres

L'environnement de base de la Capitan 2

1.1 Programmation avec CAPCASE :2 1.1.1 Vue d'ensemble :2 1.1.2 Discussion :2 1.2 Environnement d'ex ecution :2 Impl ementation de NX au dessus de CAPCASE 3

2.1 Pourquoi NX? :3 2.2 Utilisation des canaux CAPCASE pour NX :3 2.3 Contrôle de ot :4 2.4 Impl ementation des traces :4

Impl ementation des entr ees-sorties 5

Chargement statique 6

Environnement dynamique multi-utilisateurs 6

Portage de PVM 9

Portage de MPI 9

Quelques tests de performances 9 Introduction L'environnement actuel de la Capitan o re une interface propri etaire CAPCASE au programmeur pour d evelopper ses logiciels. Nous exposons ici comment nous avons construit au dessus de CAPCASE des biblioth eques fournissant respectivement l e s i n terfaces de programmation NX, PVM et MPI. Ainsi, la plupart des applications parall eles existantes peuvent d esormais être ex ecut ees sur la Capitan.

Cet environnement est enti erement b a s e sur la couche CAPCASE, ce qui permet de pr eserver l'investissement qui a et e fourni pour CAPCASE tout en rendant l e d eveloppement de cette sur-couche moins coûteux. Pour les syst emes d' echanges de messages, l'inconv enient d'une sur-couche se ressent e n g en eral par des performances moindres en comparaison d'une impl ementation directe au dessus du mat eriel, dans notre cas les tests de performances montrent que les d elais suppl ementaires introduits par notre couche logicielle sont t r es faibles, et pratiquement n egligeables par rapport au coût total des communications.

1 L'environnement de base de la Capitan Le code de l'application utilise lui une interface propri etaire, les primitives de bases o rent des envois asynchrones, les primitives de r eception usuelles, bloquantes ou asynchrones, avec s election facultative s u r l a source. D'autre part on dispose d'une primitive de di usion pour envoyer un message a un groupe de tâches d eclar es statiquement d a n s l e c hier LSL.

Discussion

L'informatique du parall elisme arrive dans une phase de maturation et aujourd'hui trois standards se sont impos es : HPF pour la programmation data-parall ele, PVM et MPI pour la programmation par echange de messages. Il para^ t donc tr es improbable que qui que ce soit veuille investir des moyens importants dans un logiciel utilisant l'environnement CAPCASE de base et qui ne serait pas utilisable et portable sur les autres machines actuelles et futures du march e (sauf dans le cas cibl e d u t e m p s r eel embarqu e). Par cons equent il appara^ t indispensable dans l'optique d'une machine g en eraliste que l'utilisateur puisse disposer au moins des standards de base tels que MPI BHLS + 95, Mes94], PVM GBD + 94]. De plus une quantit e remarquable d'outils au niveau compilation, visualisation, analyse de performances existent d ej a a u d e s s u s de ces interfaces. Cela permet donc au constructeur de concentrer ses e orts de d eveloppement uniquement sur la couche de bas niveau. C'est un avantage important lorsqu'on conna^ t le coût de d eveloppement d'un environnement complet de haut niveau.

Environnement d'ex ecution

Avec CAPCASE, les tâches de l'application sont r eparties statiquement a l'aide du chier LSL, le code de ces applications est li e a vec le noyau d'ex ecution pour former une image par processeur qui est charg ee lors de l'initialisation de la machine. Ces op erations sont faites a l'aide d'outils CAPCASE appropri es. L'ex ecution de deux applications di erentes n ecessite une r einitialisation compl ete de la mach i n e , e n e e t l e c o d e d e l'application, le noyau CAPCASE pour un processeur sont l i es ensemble et CAPCASE ne supporte pas les tâches dynamiques. D'autre part pour une application donn ee on a autant d'images ex ecutables que de n uds dans la machine, même pour un code de type SPMD, ce qui a pour cons equence un temps de compilation relativement important.

2 Impl ementation de NX au dessus de CAPCASE 2.1 Pourquoi NX? La plupart des interfaces de programmation parall ele par echange de messages (NX, CMMD, PVM, MPI), g erent dynamiquement les types de messages, et o rent une vue compl etement connect ee de la machine contrairement a l'environnement CAPCASE.

Nous avons d ecid e d'impl ementer la librairie NX au dessus de CAPCASE. Le choix de NX a et e f a i t pour deux raisons. Premi erement c'est une librairie bien repr esentative de la programmation par echanges de messages, deuxi emement il existe des impl ementations de PVM et de MPI au dessus de NX, ce qui nous a permis de porter PVM et MPI avec un investissement en temps non prohibitif.

Utilisation des canaux CAPCASE pour NX

Ici nous appellerons ((message NX)) les messages echang es au niveau de l'application a l'aide des primitives NX, ((message CAPCASE)), ceux utilis es par la couche inf erieure de notre impl ementation, et qui permettent de r ealiser e ectivement l a c o m m unication a l'aide des primitives CAPCASE.

Un chier LSL est cr e e automatiquement par notre logiciel en fonction du nombre de tâches NX que l'utilisateur veut utiliser. Actuellement notre syst eme r epartit de mani ere modulaire les ((n uds)) NX sur les processeurs de la Capitan et d eclare en plus une tâche sur le processeur hôte qui s'occupera des entr eessorties (on l'appellera tâche d'interface).

Notre impl ementation d eclare trois types de canaux de communication:

{ Un canal pour les entr ees sorties, il relie de mani ere bidirectionnelle chaque tâche de calcul a l a t âche d'interface et transmet dans un sens les requêtes d'entr ees-sorties et dans l'autre les r eponses correspondantes. Chaque message commence par un entier identi ant l e t ype de la requête. On a un type pour chaque primitive d ' e n tr ee-sortie impl ement ee: open, read, write, close, ioctl, dup, stat, access, . . . T outes les primitives POSIX concernant l e s e n tr ees-sorties sont i m p l ement ees. L'utilisation de ce canal est d etaill ee dans la section 3. { Un premier canal de messagerie : il relie chaque paire de tâches de calcul. Sur ce canal transiteront des en-têtes d'informations correspondant aux messages NX de l'application. Les petits messages NX sont compl etement inclus dans cet en-tête. Les messages circulant sur ce canal sont de petite taille et born es, ce qui permet a u n r ecepteur de recevoir de tels messages dans un tampon de taille xe sans en conna^ tre a priori le contenu. { Un deuxi eme canal de messagerie : il relie aussi chaque paire de tâches de calcul. Sur ce canal transitent les messages NX de taille importante, il est d eclar e d a n s l e c hier LSL avec une taille maximale d e message tr es importante (sup erieure a l a m emoire disponible par n ud), mais en communication par paquets de sorte que la m emoire r eserv ee par CAPCASE pour ses tampons de communications est limit ee. Lorsqu'un message NX de taille importante doit être transf er e, un en-tête est d'abord envoy e sur le premier canal de messagerie. Le destinataire en recevant cet en-tête peut alors prendre les dispositions n ecessaires pour recevoir les donn ees r eelles sur le deuxi eme canal.

Cette organisation avec deux canaux de messagerie permet de ne pas imposer de limite statique a l a taille des messages echang es par les applications sans r eserver excessivement d e m emoire. D'autre part en choisissant b i e n l e s e u i l e n tre petit et gros messages, la latence suppl ementaire introduite est tout a f a i t n egligeable, en e et les petits messages NX sont e n voy es comme un seul message CAPCASE sur le premier canal, et dans le cas des gros messages, le temps de communication de l'en-tête sur un canal s epar e est n egligeable devant l e c o ût total de communication.

Contrôle de ot

Les primitives CAPCASE op erent a bas niveau et ne permettent pas de mettre en le les envois de messages. C'est a dire, avant d'envoyer un message entre deux tâches, on doit être sûr qu'il n'y a pas d ej a u n message en cours sur le même parcours (ou tout du moins qu'il a d ej a q u i t t e c o m p l etement l'hypern ud de d epart), sinon le premier message risque d'être ecras e partiellement par le second. CAPCASE positionne une variable d es qu'il est possible d'envoyer a n o u v eau un message. Or les primitives NX doivent impl ementer l'envoi asynchrone de messages et les mettre en le de mani ere transparente pour l'application. Nous utilisons pour cela un m ecanisme de m emorisation locale des messages sur le n ud emetteur. Les messages en attente sont mis dans une liste cha^ n ee, et d es que le canal est disponible, le premier (s'il y en a un) est envoy e.

Le probl eme qui se pose est que la disponibilit e du canal n'est test ee que lorsque la tâche est en train d'e ectuer une primitive NX. La situation suivante peut se produire : une tâche envoie deux messages cons ecutivement, et e ectue de long calculs avant de rappeler une primitive NX. Le second message sera bu eris e localement, et bien que le canal soit lib er e eventuellement assez tôt, ne sera envoy e que bien plus tard.

Pour r esoudre cet inconv enient, il est utile dans certains cas de se bloquer en attente de la disponibilit e d'un canal plutôt que de rendre la main, n eanmoins il ne faut pas tomber dans la situation o u tout le monde attend la disponibilit e d'un canal ce qui provoquerait une etreinte fatale, on peut eviter ceci en adoptant une technique de ((polling)), on teste alternativement la disponibilit e d'un canal et la pr esence d'un message a r eceptionner, mais cette solution peut aussi provoquer des d elais incongrus dans l'application: si une tâche A envoie a B et C, que A reste bloqu ee un certain temps dans le premier envoi, parce que B n'est pas prêt a r eceptionner, le message de A a C sera pris en compte plus tard que n ecessaire.

Pour eviter cela, nous avons choisi d'utiliser une propri et e particuli ere de CAPCASE. Etant d o n n e qu'un message CAPCASE implique des bu erisations a plusieurs niveaux, on peut r eussir a lancer deux messages même si le destinataire n'a pas e ectu ee la primitive CAPCASE de r eception (ceci est valable uniquement pour les messages de type court). Autrement dit, apr es un message de type court, le canal redevient disponible imm ediatement ind ependamment du destinataire (s'il n'y a pas d ej a un message sur le même canal). Pour d etecter cette situation (pas de message en cours sur un canal), nous rajoutons dans les en-têtes des messages des champs d'acquittement. Ainsi dans le cas o u seul le dernier message envoy e d e A a B n'a pas encore et e acquitt e par B, o n e s t s ûr que l'on peut attendre la disponibilit e d u c a n a l A ! B sans bloquer (en fait le canal est a nouveau disponible pratiquement i m m ediatement). Bien qu'il existe encore des cas o u l'on puisse avoir des d elais inutiles, ceux-ci correspondent a des situations quasiment inexistantes dans les applications courantes (A envoie plus de trois messages a l a s u i t e a B sans que B n'e ectue de reception ni n'envoie de message a A) et de toute mani ere, même lorsqu'elles surviennent, la s emantique des primitives NX est respect ee et garantit l'absence d' etreinte fatale dans une application correcte.

Impl ementation des traces

Une facilit e d e t r a cage est impl ement ee dans la biblioth eque NX. Elle peut être activ ee ou d esactiv ee au chargement de l'application, par une option appropri ee. Apr es activation, chaque appel a une primitive d e communication entra^ ne une ecriture estampill ee de la requête dans un tampon local au processeur, quand ce tampon est plein, il est ecrit dans un chier, ce syst eme de tampon permet de limiter la perturbation introduite par le tra cage dans le d eroulement de l'application. D'autre part au d ebut et a la n de l'application, la di erence de valeur entre les horloges des di erents processeurs est evalu ee, et les estampilles recueillies sont corrig es pour repr esenter un temps physique coh erent e n tre les di erents processeurs. Nous supposons que chaque horloge est de la forme d + (1 +)t o u t est le temps physique, d un d ecalage de base, et est le biais de l'horloge par rapport au temps physique. Des techniques plus evolu es permettraient de prendre en compte les variations du biais lui-même au cours du temps. Elles s'av erent super ues pour l'instant.

Les traces sont nalement c o n verties au format PICL Wor92] p o u r être visualis ees avec par exemple l'outil Paragraph HE91].

3 Impl ementation des entr ees-sorties Avec CAPCASE est fourni un syst eme permettant de faire des entr ees-sorties a partir de n'importe quelle tâche. Ce syst eme n'est pas document e, et n ecessite a la fois des ajouts dans le chier LSL et l'appel de fonctions d'initialisation par les di erentes tâches. C'est une premi ere raison qui nous a pouss e a ecrire notre propre syst eme d'entr ees-sorties, utilisable de mani ere compl etement transparente pour l'utilisateur. Cependant la principale raison vient du fait que le syst eme original n'o re pas la exibilit e indispensable pour l'environnement dynamique multi-utilisateur r ealis e e t d ecrit dans la section 5.

Avec notre impl ementation, toutes les entr ees-sorties e ectu es par les tâches sont redirig ees sur un processus Unix tournant sur la machine (ou le processeur hôte). La gure 1 repr esente les di erentes couches logicielles impliqu es dans l'ex ecution d'une op eration d'entr ee-sortie. Les E/S s'e ectuent en utilisant un canal de communication d edi e. Une op eration d'entr ee-sortie d'une tâche g en ere un message a destination de la tâche d'interface, dans lequel la requête a et e e n c o d ee. La tâche d'interface e ectue alors l'op eration d'entr ee-sortie proprement dite (sauf en con guration multi-utilisateurs, cf. ci-dessous), et retourne le r esultat a l a t âche de d epart.

Notons quelques cons equences de ce m ecanisme: l'ensemble des descripteurs de chiers (au sens POSIX) est partag e par toutes les tâches d'une application, qu'elles soient sur le même processeur ou pas. Si chaque tâche ouvre un chier, on aura autant de descripteurs ouverts que de tâches, mais on peut avoir une tâche qui ouvre un chier et qui communique le descripteur de chier aux autres tâches.

Dans le cadre d'une utilisation multi-utilisateurs (cf. section 5), ce n'est pas la tâche d'interface qui e ectue l'appel syst eme, elle se contente de faire passer le message au processus de contrôle de l'application (cf. section 5), qui lui e ectue la requête, et r epond a l a t âche d'interface, qui fait passer cette r eponse a l a tâche originale. Ceci permet d'assurer que les op erations d'entr ees-sorties sont bien faites dans le contexte de l'utilisateur nal (num ero d'uid, r epertoire courant, droits d'acc es, terminal de contrôle, entr ee et sortie standards).

Chargement statique

Notre environnement o re en fait deux modes de fonctionnements, dans le premier cas l'application de l'utilisateur a laquelle a et e l i e notre biblioth eque, est utilis e directement comme tâche CAPCASE. Deux scripts sont alors utilis es : allocnode pour indiquer le nombre de tâches utilis ees, ce script cr ee un chier LSL adapt e fonction du nombre de n uds demand e et appelle les outils CAPCASE pour le compiler. Puis le script sload (pour Static LOAD) permet d'ex ecuter un programme sur la Capitan. Si c'est la premi ere fois qu'on ex ecute ce programme, l' edition de liens nale est faite avec les outils CAPCASE (cf x1.2) de mani ere transparente pour l'utilisateur. Puis l'application est charg ee et ex ecut ee sur la Capitan.

La gure 2 pr esente l'interaction des di erents composants.

Environnement dynamique multi-utilisateurs

La sur-couche que nous avons introduite jusqu'ici permet d'o rir un environnement sur la Capitan semblable aux autres machines parall eles du march e pour les programmes de type SPMD. Mais il ne r esout pas l'un des probl emes de la Capitan: l'environnement mono-utilisateur, mono-tâche, avec reboot obligatoire (de l'ordre de cinq minutes) ent r e d e u x e x ecutions. Si ce n'est pas un probl eme en mode de production mono-tâche, cette restriction est r edhibitoire en mode de d eveloppement, o u s i l ' o n v eut pouvoir partitionner les n uds entre plusieurs utilisateurs. Cette section pr esente notre impl ementation d'un environnement multi-applications, multi-utilisateurs toujours au dessus de CAPCASE.

La gure 3 pr esente les connections entre les di erents composants logiciels et mat eriels n ecessaire pour notre environnement dynamique.

En permanence, sur la Capitan tourne une application au sens CAPCASE. Cette application est constitu ee d'un pseudo-noyau sur chaque n ud, et d'une tâche d'interface sur l'hôte de la Capitan, cette derni ere a cette fois un rôle plus complexe, elle communique avec les pseudo-noyaux pour permettre le chargement dynamique d'applications. Un pseudo-noyau sur requête de la tâche d'interface, r eserve sur son processeur la place n ecessaire a une nouvelle tâch e , y c o p i e l e c o d e e t l e s d o n n ees de la tâche que lui transmet la tâche d'interface, et donne le contrôle a cette application qui d emarre. Lorsque l'application se termine, le pseudo-noyau reprend le contrôle. Il peut aussi reprendre le contrôle sur requête de la tâche d'interface, et ((supprimer)) une application en cours. Le processeur devient libre pour une nouvelle application. Les primitives CAPCASE sont disponibles pour l'application grâce a une table de fonctions initialis ee par le pseudo-noyau. L' emulation de l'interface NX se fait a l'aide d'exactement l a m ême sur-couche que dans le cas statique. La correspondance entre les n uds au sens NX et les processeurs de la Capitan est choisie dynamiquement par la tâche d'interface et transmise a cette couche par l'interm ediaire du pseudo-noyau.

Au niveau de la machine hôte, le lancement de l'application est fait par un processus Unix que nous appellerons processus de contrôle. Le processus de contrôle se connecte a l a t âche d'interface (qui est aussi un processus Unix) grâce a u n ((socket Unix)). Une fois la connection etablie, le processus de contrôle fournit par ce lien de communication le nombre de n uds requis et l'ex ecutable de l'application a lancer. D es qu'il y assez de n uds disponibles sur la Capitan, la tâche d'interface alloue le nombre de n uds requis, envoie les messages d'initialisation appropri es aux pseudo-noyaux correspondants, et r epond au processus de contrôle par un message d'acquittement. D'autre part, durant l a d u r ee d'ex ecution de l'application, tous les messages re cus par la tâche d'interface et concernant les entr ees-sorties sont transmis au processus de contrôle des tâches correspondantes. Celui-ci e ectue alors l'entr ee-sortie dans le bon contexte (celui de l'utilisateur qui a lanc e l'application), et transmet le r esultat de la requête a l a t âche d'interface qui le fait passer a l a t âche destination. Tout le protocole n ecessaire pour communiquer avec la tâche de contrôle est impl ement e dans une biblioth eque semblable a la biblioth eque NX disponible sur le Paragon pour les n uds de service. Il y a une fonction pour initialiser une partition nx initve, une fonction pour charger les ex ecutables sur les n uds nx load. On notera que l'on dispose seulement d'un sous-ensemble de l'interface disponible sur le Paragon pour le chargement et la gestion des n uds d'une partition. Notre biblioth eque permet aussi de disposer comme dans le cas de l'iPSC/860 ou du Paragon des fonctions d' echange de message (csend, crecv,. ..) entre le processus de contrôle et les n uds de calculs (ceci est capital pour l'impl ementation de PVM).

En g en eral, l'utilisateur nal se contentera d'invoquer le programme load, a vec en argument la taille de la partition et le nom de l'ex ecutable a c harger sur les n uds. De mani ere interne, load initialise la partition, charge les ex ecutables, et attend la n de l'application.

Les n uds sont allou es automatiquement l o r s d u c hargement d'un programme (NX, PVM ou MPI), et lib er es d es la n du programme (qu'elle soit normale ou par interruption, ou accidentelle du style acc es m emoire ill egal), ce qui optimise la disponibilit e des n uds en situation multi-utilisateurs.

6 Portage de PVM La distribution PVM standard de UT/ORNL GBD + 94] a et e install ee avec succ es sur la Capitan. Elle utilise l'interface NX, quelques modi cations lui ont et e apport ees, pour g erer les di erences entre une vraie machine Intel et la Capitan munie de notre environnement (les modi cations concernent uniquement le format des donn ees lors de la conversion XDR utilis e par PVM, et l'introduction d'un nouveau nom pour cette nouvelle architecture). La Capitan peut être utilis ee sous PVM seule ou avec d'autres machines. PVM sur machines parall eles a quelques sp eci cit es par rapport a l a v ersion r eseau (cf. documentation PVM GBD + 94]), notre environnement n'ajoute aucune restriction par rapport a l a v ersion PVM sur d'autres machines parall eles.

PVM utilisant par nature le lancement dynamique de tâches, pour l'utiliser, il faut obligatoirement q u e l a Capitan soit en environnement m ulti-utilisateurs. En fait, certaines machines parall eles, comme par exemple le Cray T3D imposent u n c hargement statique des tâches PVM en une seule fois et avec un seul ex ecutable. Cette restriction n ecessitant g en eralement un port des programmes PVM ecrit pour la version r eseau, nous avons pr ef er e b i e n s ûr avec l'environnement Capitan en mode dynamique, o rir une compatibilit e P V M totale, sans portage des programmes.

PVM sur Capitan a et e v alid e g r âce au jeu de tests fourni avec la version standard.

7 Portage de MPI Nous avons utilis e MPICH : une version publique de MPI construite au dessus de l'interface NX d evelopp ee conjointement par the Argonne National Laboratory and the Mississipi State National Laboratory. C e t t e version de MPI consiste principalement en une biblioth eque de fonctions MPI utilisant d e m a n i ere internes les primitives NX. Un programme MPI s'ex ecute uniquement en mode SPMD, il n'y a pas de notion de chargement de programme. La compilation de cette biblioth eque de fonctions a permis de rendre disponible MPI sur la Capitan.

MPI a et e v alid e sur la Capitan en faisant tourner la suite de tests de validation fournie ind ependemment. Les programmes MPI peuvent être ex ecut es soit avec un chargement statique (commande sload) o u a vec le mode de chargement dynamique (commande load).

8 Quelques tests de performances Nous avons cherch e ici a mesurer ce que coûtait en performance l'utilisation de notre environnement q u i o re des fonctionnalit es suppl ementaires, des biblioth eques standards et un environnement dynamique. Dans la gure 4, nous avons repr esent e les temps de transmission en utilisant directement les primitives CAPCASE sur des messages de ((type short)) au sens CAPCASE ainsi que sur des messages de ((type long)). L a d e r n i ere courbe repr esente les temps de transmission en utilisant notre impl ementation des primitives NX d'envoi et de r eception, le r esultat est bien conforme a notre strat egie d ecrite dans la section 2.2. Pour les petits messages, on utilise un canal CAPCASE de ((type short)), le temps suppl ementaire par rapport a CAPCASE est tr es faible et vient essentiellement d'une recopie m emoire, n ecessaire pour avoir une s emantique d'envoi non bloquante, tout en lib erant le bu er utilisateur. Pour des gros messages, nous envoyons a la fois un message de ((type short)) pour l'en-tête et un message de ((type long)) pour les donn ees, c'est ce qui provoque un saut important dans la courbe. On notera que la forme des courbes est li ee tr es etroitement aux constantes utilis es pour les paquets CAPCASE et pour la d e nition des gros messages.

La deuxi eme gure montre une comparaison sur une echelle de taille de messages beaucoup plus large, et on constate qu'on obtient l e s m êmes performances avec notre impl ementation qu'en programmant directement a plus bas niveau, le d elai suppl ementaire introduit est tout a fait n egligeable.

En conclusion, la couche suppl ementaire que nous avons introduite ne d egrade absolument pas les performances. La plupart du temps l'overhead introduit est tr es inf erieur a 10%, seul la plage des tailles 1000 a 2000 d epassent ce seuil, l'overhead est alors de 20% a 25% environ. Nous envisageons de modi er le seuil o u l'on s epare l'en-tête et les donn ees, de mani ere a pratiquement supprimer cette zone, en augmentant l a tailles des tampons pour les messages de ((type short)).

Conclusion

Notre environnement permet de disposer sur la Capitan d'un environnement m ulti-utilisateurs o rant la exibilit e disponible actuellement sur toutes les machines parall eles r ecentes. Nous avons une premi ere version test ee et ayant prouv e sa abilit e, elle poss ede une restriction : le partitionnement des processeurs n'est pas impl ement e, et les applications des di erents utilisateurs sont e n f a i t e x ecut ees a t o u r d e r ôle (le serveur g ere une le d'attente). Une version compl ete avec plusieurs utilisateurs simultan es r epartis sur les noeuds de la machine est en beta-test.

La machine Capitan peut aussi bien être utilis ee en mode de production qu'en mode de d eveloppement avec de multiples ex ecutions courtes successives (les d elais de chargement d'une application etant maintenant n egligeables), mais aussi en mode ((serveur de calcul)) o u des utilisateurs multiples peuvent soumettre des travaux a e ectuer, qui seront trait es d es que le nombre de processeurs disponibles le permet. La plupart des applications parall eles disponibles utilisent l e s i n terfaces PVM, MPI ou NX, et donc peuvent être ex ecut ees sur la Capitan.

Des extensions peuvent être envisag ees pour permettre le d eboguage des tâches tournant sur les n uds, et une s ecurit e accrue de l'environnement m ulti-utilisateurs. Des am eliorations de performance peuvent être e ectu ees en int egrant l a c o u c he CAPCASE avec notre environnement de mani ere a p o u v oir traiter les communications a un plus bas niveau. D'autre part la disponbilit e r ecente de du noyau ((Sphynx)) sur la Capitan va permettre de nouvelles possibilit es, en particulier plusieurs tâches sur un seul processeur.

A Mode d'emploi de NX et MPI sur Capitan

Pour utiliser les di erentes commandes de l'environnement i l f a u t e x ecuter (ou ajouter dans votre .cshrc) sur la machine capitan (pollux):

Conclusion 12 A

 12 Mode d'emploi de NX et MPI sur Capitan 12 A.1 Compilation d'un programme NX : 13 A.2 Compilation d'un programme MPI : 13 A.3 Ex ecution d'un programme NX ou MPI : 13 A.4 Exemple complet NX : 13 A.5 Exemple complet MPI : 14

Fig. 1 -

 1 Fig. 1 -Impl ementation des entr ees-sorties.

Fig. 3 -

 3 Fig. 2 -Con guration en chargement statique.

Fig. 4 -Fig. 5 -

 45 Fig. 4 -Temps de transmission pour des petits messages directement avec CAPCASE ou avec notre e n v ironnement

 # commandes generales set path=(~lprylli/capnx/bin $path) # pour PVM setenv PVM_ROOT /home/lprylli/pvm3 setenv PVM_ARCH MATRA set path=(~lprylli/pvm3/lib $path) A.1 Compilation d'un programme NX icc <.c> <.o> -o progname] icc accepte les options standarts des compilateurs C et a de plus une option d'aide en ligne, vous pouvez faire icc -help. Il est recommand e d'inclure le chier d'entête "nx.h" dans les modules utilisant les primitives NX. A.2 Compilation d'un programme MPI Pour compiler un programme MPI, rajouter la librairie MPI: icc <.c> <.o> -o progname] -lmpi Il est n ecessaire d'inclure le chier d'entête "mpi.h" dans les modules utilisant les primitives MPI. A.3 Ex ecution d'un programme NX ou MPI Une seule commande tr es simple de chargement : load -sz <nbnode>] -trace] <pathname> program arguments ...] Vous pouvez faire load -help pour l'aide en ligne. A.4 Exemple complet NX Programme jeton ecrit avec la biblioth eque NX : #include <stdio.h> #include <cube.h> /* ce programme fait circuler un jeton le long d'un anneau forme par les differents processeurs*

 Pour utiliser CAPCASE, le programmeur doit d eclarer s epar ement d a n s u n c hier a part, le chier LSL, l a r epartition des tâches de l'application et les canaux de communication utilis ees entre les tâches, l'allocation des tampons utilis es pour les communication se fait statiquement suivant les indications fournies par le programmeur dans le chier LSL.

	1.1 Programmation avec CAPCASE
	1.1.1 Vue d'ensemble

next = mynode() + 1 if (next == numnodes()) next = 0 if (mynode () == 0) { printf("jeton demmarre sur noeud 0\n") csend(TYPE,NULL,0,next,0) crecv(TYPE,NULL,0) printf("jeton arrive sur 0\n") } else { crecv(TYPE,NULL,0) printf("jeton sur %d\n",mynode()) csend(TYPE,NULL,0,next,0) } } Compilation et ex ecution : pollux%icc jeton.c -o jeton pollux%load jeton from 0:Application started on 4 nodes jeton demmarre sur noeud 0 jeton sur 1 jeton sur 2 jeton sur 3 jeton arrive sur 0 all nodes have exited from -1:end of the application pollux% A.5 Exemple complet MPI Thu Oct 5 13:14:27 1995 t80040000] t40011] node 0 started,tid=262161 t80040000] t40012] node 1 started,tid=262162 t80040000] t40010] node 2 started,tid=262160 t80040000] t40013] node 3 started,tid=262163 t80040000] t40011] token start on 0 t80040000] t40012] token is on 1 t80040000] t40010] token is on 2 t80040000] t40013] token is on 3 t80040000] t40011] token arrive on 0 R ef erences