N

N
N

HAL

open science

FFPACK: Finite field linear algebra package

Jean-Guillaume Dumas, Pascal Giorgi, Clément Pernet

» To cite this version:

Jean-Guillaume Dumas, Pascal Giorgi, Clément Pernet. FFPACK: Finite field linear algebra package.
[Research Report] LIP RR-2004-2, Laboratoire de I'informatique du parallélisme. 2004, 2+17p. hal-

02101818

HAL Id: hal-02101818
https://hal-lara.archives-ouvertes.fr /hal-02101818
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101818
https://hal.archives-ouvertes.fr

Laboratoire de [I’Informatique du Par-
allélisme

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL

n°5668

AN

FFPACK: Finite field linear algebra
package

Jean-Guillaume Dumas (UJF Grenoble)
Pascal Giorgi Janvier 2004
Clément Pernet (UJF Grenoble)

Research Report N° 2004-2

Ecole Normale Supérieure de

Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Teélécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ip@ens-lyon.fr

CENTRE NATIONAL
DE LA RECHERCHE I N I A
SCIENTIFIQUE

FFPACK: Finite field linear algebra package

Jean-Guillaume Dumas (UJF Grenoble)
Pascal Giorgi
Clément Pernet (UJF Grenoble)

Janvier 2004

Abstract

The FFLAS project has established that exact matrix multiplication over finite
fields can be performed at the speed of the highly optimized numerical BLAS
routines. Since many algorithms have been reduced to use matrix multiplica-
tion in order to be able to prove an optimal theoretical complexity, this paper
shows that those optimal complexity algorithms, such as LSP factorization,
rank determinant and inverse computation can also be the most efficient.

Keywords: Word size Finite fields; BLAS level 1-2-3; Linear Algebra
Package; Matrix Multiplication; LSP Factorization

Résumé

Le projet FFLAS a montré que le calcul d’un produit matriciel sur les corps
finis peut étre aussi rapide que les routines numériques BLAS. En algebre
linéaire exacte beaucoup d’algorithmes se réduisent au produit matriciel afin
de prouver une complexité théorique optimale. Dans ce papier nous montrons
que des algorithmes basés sur le produit matriciel, tels que la factorisation LSP,
le calcul du rang, le calcul du déterminant et l'inversion peuvent étre aussi les
plus efficaces en pratique.

Mots-clés: Corps Finis-Mot machines; Niveau BLAS 1-2-3; Package
d’Algebre Linéaire; Produit Matriciel; Factorisation LSP

FFPACK: Finite field linear algebra package *

Jean-Guillaume Dumas!

Pascal Giorgi?
Clément Pernet!

!Laboratoire Lmc, 50, av. des Mathématiques B.P. 53 38041 Grenoble.
2Laboratoire Lip, ENS de Lyon, 46, Allée d’Italie, F69364 Lyon Cedex 07.

1 Introduction

Exact matrix multiplication over finite fields can now be performed at the speed
of the highly optimized numerical BLAS routines. This has been established by
the FFLAS project [7]. Moreover, since finite field computations e.g. do not
suffer from numerical stability, this project showed also an easy effectiveness
of the algorithms with even better arithmetic complexity (such as Winograd’s
variant of Strassen’s fast matrix multiplication) [17].

Now for the applications. Many algorithms have been designed to use matrix
multiplication in order to be able to prove an optimal theoretical complexity.
In practice those algorithms were only seldom used. This is the case e.g. in
many linear algebra problems such as determinant, rank, inverse, system so-
lution or minimal and characteristic polynomial. Over finite fields or over the
integers those finite field linear algebra routines are used to solve many differ-
ent problems. Among them are integer polynomial factorization, Grébner basis
computation, integer system solving, large integer factorization, discrete loga-
rithms, error correcting codes, etc. Even sparse or polynomial linear algebra
needs some very efficient dense subroutines [11, 9]. We believe that with our
kernel, each one of those optimal complexity algorithms can also be the most
efficient.

The goal of this paper is to show the actual effectiveness of this belief for
the factorization of any shape and any rank matrices. The application of this
factorization to determinant, rank, and inverse is presented as well.

Some of the ideas from FFLAS, in particular the fast matrix multiplication al-
gorithm for small prime fields, are now incorporated into the Maple computer
algebra system since its version 8. Therefore an effort towards effective reduc-
tion has been made within Maple by A. Storjohann[21]. Effective reduction for
minimal and characteristic polynomial were sketched in [19] and A. Steel has re-
ported on similar efforts within his implementation of some Magma routines. We
provide a full C++ package available directly® or through LINBox2[6]. Extend-
ing the work undertaken by the authors et al.[17, 7, 3, 10], this paper focuses

*E-mail addresses: {Jean—Guillaume.Dumas, Clement.Pernet}@imag.fr, Pascal.GiorgiQens-1lyon.fr
www-1lmc.imag.fr/lmc-mosaic/Jean-Guillaume .Dumas/FFLAS
2w, linalg.org

FFPACK: Finite field linear algebra package 2

on matrix factorization, namely the exact equivalent of the LU factorization.
Indeed, unlike numerical matrices, exact matrices are very often singular, even
more so if the matrix is not square ! Consequently, Ibarra, Moran and Hui have
developed generalizations of the LU factorization, namely the LSP and LQUP
factorizations [15]. In section 4 we deal with the implementation of those two
routines as well as memory optimized (an in-place and a cyclic block) versions
using the fast matrix multiplication kernel. Those implementations require the
resolution of triangular systems with matrix right or left hand side. In section 3
the triangular system solver (Trsmroutine using BLAS terminology) is therefore
studied. Then, in section 5, we propose different uses of the factorization rou-
tine to solve other classical linear algebra problems. In particular, speed ratios
are presented and reflects the optimal behavior of our routines.

2 Base fields

The algorithms we present in this paper are written generically with regards
to the field over which they operate, as long as they provide some conversion
functions from a field element to a floating point representation and backwards.
As demonstrated in [7] this is easily done for prime fields and also for other finite
fields, via a g¢-adic transformation. The chosen interface is that of the LiNBox
fields [22, §5.3].

For our experiments we use some classical representations, e.g. modular
prime fields, primitive roots Galois fields, Montgomery reduction, etc. imple-
mented in different libraries, as in [7, 5]. Still and all, when no special im-
plementation is required and when the prime field is small enough, one could
rather use what we call a Modular<double> field representation. Indeed, the
use of the BLAS imposes conversions between the field element representations
and a corresponding floating point representation. Hence a lot of time con-
suming conversions can be avoided whenever the field element representation
is already a floating point number. This is the case for the LINBOX prime
field Modular<double>, where the exact representation of an element is stored
within the mantissa of a double precision floating point number. Of course all
the arithmetic operations remain exact as they are always performed modulo a
prime number.

3 Triangular system solving with matrix hand side

In this section we discuss the implementation of solvers for triangular systems
with matrix right hand side (or equivalently left hand side). This is also the
simultaneous resolution of n triangular systems. Without loss of generality for
the triangularization, we here consider only the case where the row dimension,
m, of the the triangular system is less than or equal to the column dimension,
n. The resolution of such systems is a classical problem of linear algebra. It
is e.g. one of the main operation in block Gaussian elimination. For solv-
ing triangular systems over finite fields, the block algorithm reduces to matrix
multiplication and achieves the best known arithmetic complexity. Therefore,
from now on we will denote by w the exponent of square matrix multiplica-
tion (e.g. from 3 for classical, to 2.375477 for Coppersmith-Winograd). More-
over, we can bound m X k by k x n rectangular matrix multiplication, using
R(m,k,n) < Cymin(m,k,n)* 2maz(mk,mn, kn) [14, (2.5)]. In the following

FFPACK: Finite field linear algebra package 3

subsections, we present the block recursive algorithm and two optimized imple-
mentation variants.

3.1 Scheme of the block recursive algorithm

The classical idea is to use the divide and conquer approach. Here, we consider
the upper left triangular case without loss of generality, since the any combi-
nation of upper/lower and left/right triangular cases are similar: if U is upper
triangular, L is lower triangular and B is rectangular, we call ULeft-Trsm the
resolution of UX = B, LLeft-Trsm that of LX = B, URight-Trsm that of
XU = B and LRight-Trsm that of XL = B.
Algorithm ULeft-Trsm(A4, B)
Input: Ae€Z,"*™, BeZ,""".
Output: X € Z,”*" such that AX = B.
Scheme
if m=1 then

X := A} xB.
else (splitting matrices into | 3| and [F] blocks)

A X B

[A1 A2 T X1) _ T Bl)
A3 X B B,
X5 :=ULeft-Trsm(A3, Bs).
Bl = Bl - AQXQ.

X, :=ULeft-Trsm(Ai, B;).
return X.

Lemma 3.1 Algorithm ULeft-Trsm is correct and its theoretical cost is bounded
by ﬁnm“f1 arithmetic operations in Z, for m < n.

Proof. The correctness of algorithm ULeft-Trsm can be proven by induction
on the row dimension of the system. For this, one only has to note that

A3X2 = 32

X = A1X1 + A2X2 = Bl

X |. .
[X] is solution <= {
Let C(m,n) be the cost of algorithm ULeft-Trsm where m is the dimension
of A and n the column dimension of B. It follows from the algorithm that

C(m,n) =2C(¢,n)+ R(Z, T, n). By counting each operation at one recursive
step we have:

logm

1
Z 21 R 21’ 21’)
Now, since m < n, we get Vi R(%, %, n) = C,, (Zﬂ)wf1 n and therefore:

C,nm®! log (1)w_2

C(m,n) = 5 o

i=1

which gives the O(nm“~!) bound of the lemma.

FFPACK: Finite field linear algebra package 4

3.2 Implementation using the BLAS “dtrsm”

Matrix multiplication speed over finite fields was improved in [7, 17] by the
use of the numerical BLAS? library: matrices were converted to floating point
representations (where the linear algebra routines are fast) and converted back
to a finite field representation afterwards. The computations remained exact
as long as no overflow occurred. An implementation of ULeft-Trsm can use
the same techniques. Indeed, as soon as no overflow occurs one can replace the
recursive call to ULeft-Trsm by the numerical BLAS dtrsm routine. But one
can remark that approximate divisions can occur. So we need to ensure both
that only exact divisions are performed and that no overflow appears. Not only
one has to be careful for the result to remain within acceptable bounds, but,
unlike matrix multiplication where data grows linearly, data involved in linear
system grows exponentially as shown in the following.

The next two subsections first show how to deal with divisions, and then give
an optimal theoretical bound on the coefficient growth and therefore an optimal
threshold for the switch to the numerical call.

3.2.1 Dealing with divisions

In algorithm 3.1, divisions appear only within the last recursion’s level. In the
general case it cannot be predicted whether these divisions will be exact or
not. However when the system is unitary (only 1’s on the main diagonal) the
division are of course exact and will even never be performed. Our idea is then
to transform the initial system so that all the recursive calls to ULeft-Trsm are
unitary. For a triangular system AX = B, it suffices to factor first the matrix
A into A = UD, where U, D are respectively an upper unit triangular matrix
and a diagonal matrix. Next the unitary system UY = B is solved by any
ULeft-Trsm (even a numerical one), without any division. The initial solution
is then recovered over the finite field via X = D~'Y. This normalization leads
to an additional cost of:

e m inversions over Z, for the computation of D~.

e (m —1)% + mn multiplications over Z, for the normalizations of U and
X.

Nonetheless, in our case, we need to avoid divisions only during the numer-
ical phase. cwTherefore, the normalization can take place only just before the
numerical routine calls. Let 8 be the size of the system when we switch to a
numerical computation. To compute the cost, we assume that m = 2¢3, where
i is the number of recursive level of the algorithm ULeft-Trsm. The implemen-
tation can however handle any matrix size. Now, there are 2° normalizations
with systems of size 8. This leads to an additional cost of:

e m inversions over Z,.

e (8 —1)% + mn multiplications over Z,.

This allows us to save (3 — 54) m? multiplications over Z, from a whole nor-
malization of the initial system. One iteration suffices to save %mz multiplica-
tions and we can save up to 1(m? — m) multiplications with logm iterations.

3uww.netlib. org/blas

FFPACK: Finite field linear algebra package 5

3.2.2 A theoretical threshold

The use of the BLAS routine trsm is the resolution of the triangular system over
the integers (stored as double for dtrsm or float for strsm). The restriction
is the coefficient growth in the solution. Indeed, the k' value in the solution
vector is a linear combination of the (n— k) already computed next values. This
implies a linear growth in the coefficient size of the solution, with respect to the
system dimension. Now this resolution can only be performed if every element
of the solution can be stored in the mantissa of the floating point representation
(e.g. 53 bits for double). Therefore overflow control consists in finding the
largest block dimension b, such that the result of the call to dtrsm will remain
exact.

We now propose a bound for the values of the solutions of such a system;
this bound is optimal (in the sense that there exists a worst case matching
the bound when n = 2%). This enables the implementation of a cascading
algorithm, starting recursively and taking advantage of the BLAS performances
as soon as possible.

Theorem 3.2 Let T € Z™ ™ be a unit diagonal upper triangular matriz, and
beZ" with |T| < p—1and |b| < p—1. Let X = (24)ic[1.n) € Z" be the
solution of T.X = b over the integers. Then, V k € [0..n — 1]:

(P—2)k—Pk32mp"_—_1’“Spk+(p—2)k if k is even
—pF—(p-2)F <2%=k <ph—(p—2)F ifkis odd

The proof is presented in appendix A. The idea is to use an induction on k with

the relation z = by, —>."
i—k+1 Lk,iTi- Two lower and an upper bounds for z,,_

are computed, dependlng whether k is even ot odd.
= [P -2
Gorellary tB:i3 bb¥h&Lid optzmal

Proof. We denote by u, = 5% [p" — (p — 2)"] and v, = 2% [p" + (p — 2)"]
the bounds of the theorem 3.2. Now VEe[0.n—1]u, <y g V1. Therefore
the theorem 3.2 gives V k € [L..n] zj < v,_1 < 255 [p"~1 + (p—2)"7Y]

1 p-1 0 p—1 0

Let T = 1 p—1 0 ,b= p—1
1 p—1 0

1 p—1

Then the solution X = (2;);c[1..,] € Z™ of the system T.X = b satisfies V k €
[0.n — 1] |Zp—k| = vx Thus, for a given p, the dimension n of the system must
satisfy

b

Pl + -2y <2 1)

where m is the size of the mantissa so that the resolution over the integers using
the BLAS trsm routine is exact. For instance, with a 53 bits mantissa, this
gives quite small matrices, namely at most 55 x 55 for p = 2, at most 4 x 4
for p < 9739, and at most p = 94906249 for 2 x 2 matrices. Nevertheless, this
technique is speed-worthy in most cases as shown in section 3.4.

FFPACK: Finite field linear algebra package 6

3.8 Recursive with delayed modulus

In the previous section we noticed that BLAS routines within Trsm are used only
for small systems. An alternative is to change the cascade: instead of calling the
BLAS, one could switch to the classical iterative algorithm: Let A € Z,™*™
and B,X € Z,™" such that AX = B, then

1

Vi, Xi,* = A—
1,2

(Biye — A fit1..m) X[i1..m] %) (2)
The idea is that the iterative algorithm computes only one row of the whole
solution at a time. Therefore its threshold is far below the one of the BLAS
routine, namely it requires only

n(p—1)* <2 3)

Resultantly, an implementation of this iterative algorithm depends mainly on
the matrix-vector product. The arithmetical cost of such an algorithm is now
cubic in the size of the system, where blocking improved the theoretical com-
plexity. Anyway, in practice fast matrix multiplication algorithms are not better
than the classical one for such small matrices [7, §3.3.2]. In section 3.4 we com-
pare both hybrid implementations with different thresholds to the pure recursive
one.

Now we focus on the dot product operation, base for matrix-vector product.
We use the results of [5], extending those of [7, §3.1]. There several implemen-
tations of a dot product are proposed and compared on different architectures.
According to [5], where many different implementations are compared (Zech log,
Montgomery, float, ...), the best implementation is a combination of a conver-
sion to floating point representation with delayed modulus (for big prime and
vector size) and an overflow detection trick (for smaller prime and vector size).

The first idea is to specialize dot product in order to make several multipli-
cations and additions before performing the division (which is then delayed).
Indeed, one needs to perform a division only when the intermediate result might
overflow. Now, if the available mantissa is of m bits and the modulo is p, di-
visions happen at worst every n multiplications where n satisfies condition (3).
There the best compromise has to be chosen between speed of computation and
available mantissa. A double floating point representation gives actually the
best performances for most of the vector and prime sizes [5]. Moreover one can
then perform the division “a4 la NTL” using a floating point precomputation of
the inverse: a*b mod p=a*b— |axbxp '] xp. The second idea is to use an
integer representation and to let the overflow occur. Then one should detect this
overflow and correct the result if needed. Indeed, suppose that we have added a
product ab to the accumulated result ¢ and that an overflow has occurred. The
variable ¢ now contains actually ¢ — 2. Well, the idea is just to precompute a
correction CORR = 2™ mod p and add this correction whenever an unsigned
overflow has occurred. Now for a portable unsigned overflow detection, we use a
trick of B. Hovinen [13]: since 0 < ab < 2™, an unsigned overflow has occurred if
and only if t+ ab < t. Of course, better performances are attained when several
products are grouped (whenever possible) so that test and correction are also
delayed [5]. Figure 1, shows the “quasi-optimal performances” obtained using
both techniques on a pIIl: the first part of the curve reflects a blocked version
of the overflow and correction idea, the second and constant part of the curve

FFPACK: Finite field linear algebra package 7

Dot product of a vector with 512 elements on a Plll 993 MHz

T T T T T
Classical
Overflow trick then switch to a double representation —<—

Speed (Mop/s)

400 q

300 q

200 1

100 q

ol L L L L L L
10000 20000 30000 40000 50000 60000

Prime

)

Figure 1: Speed improvement of dot product by delayed division, on a PIII, 993
MHz

(for bigger primes) is the very good behavior of a simple delayed division with
a double floating point representation and “a la NTL” divisions.

3.4 “Trsm” implementations behavior

As shown in section 3.1 the block recursive algorithm Trsm is based on matrix
multiplications. This allows us to use the fast matrix multiplication routine of
the FFLAS package [7]. This is an exact wrapping of the ATLAS library*[23]
used as a kernel to implement the Trsm variants. In the following we denote by
“pure rec”, the implementation of the recursive Trsm described in section 3.1,
by “BLAS”, the variant of section 3.2 with optimal threshold and by “delayed;”,
the variant of section 3.3 with a variable threshold ¢. In our comparisons we
use the fields presented in section 2 as base fields and the version 3.4.2 of AT-
LAS. Performances are expressed in million of finite field operations (Mfops)
per second for n X n dense systems.

n 400 700 | 1000 | 2000 | 3000 | 5000
pure rec. 853 1216 1470 1891 2059 2184
BLAS 1306 | 1715 | 1851 | 2312 | 2549 | 2660

delayedioo 1163 | 1417 | 1538 | 1869 | 2042 | 2137
delayedso 1163 | 1491 | 1639 | 1955 | 2067 | 2171
delayedas 1015 | 1465 | 1612 | 2010 | 2158 | 2186

delayeds 901 1261 1470 | 1937 | 2134 | 2166
n 400 700 | 1000 | 2000 | 3000 | 5000
pure rec. 810 1225 1449 1886 2037 | 2184
BLAS 1066 | 1504 | 1639 | 2099 | 2321 | 2378

delayedioo 1142 | 1383 | 1538 | 1860 | 2019 | 2143
delayedso || 1163 | 1517 | 1639 | 1955 | 2080 | 2172
delayed2s 1015 | 1478 | 1612 | 2020 | 2146 | 2184
delayeds 914 | 1279 | 1449 | 1941 | 2139 | 2159

Table 1: Comparing speed (Mfops) of Trsm using modular<double>, on a P4,
2.4GHz (Upper table is over Zs, lower table is over Z32749)

4http://math-atlas.sourceforge.net

FFPACK: Finite field linear algebra package 8

n 400 7001 1000 | 2000 | 3000 | 5000
pure rec. 571 853 999 | 1500 | 1708 | 1960
BLAS 688 | 1039 | 1190 | 1684 | 1956 | 2245

delayed:so 799 | 1113 909 | 1253 | 1658 | 2052
delayedioo || 831 | 1092 | 1265 | 1571 | 1669 | 2046
delayedss 646 991 | 1162 | 1584 | 1796 | 2086
delayeds 528 755 917 | 1369 | 1639 | 1903

n 400 700 | 1000 | 2000 | 2000 | 5000
pure rec. 551 786 | 1010 1454 1694 | 1929
BLAS 547 828 990 | 1449 | 1731 | 1984

delayedioo 703 958 | 1162 | 1506 | 1570 | 1978
delayedso 842 | 1113 | 1282 | 1731 | 1890 | 2174
delayedas 653 952 | 1086 | 1556 | 1800 | 2054

delayeds 528 769 900 | 1367 | 1664 | 1911

Table 2: Comparing speed (Mfops) of Trsm using givaro-ZpZ, on a P4, 2.4GHz
(Upper table is over Z5, lower table is over Z32749)

One can see from table 1 that the “BLAS” Trsm variant with a Modular<double>
representation is the most efficient choice for small primes (here switching to
BLAS happens for n = 23 when p = 5 and m = 53). Now for big primes, despite
the very small granularity (switching to BLAS happens only for n = 3 when
p = 32749 and m = 53), this choice remains the best as soon as the systems are
bigger than 1000 x 1000. This is because grouping operations into blocks speeds
up the computation. However in the case of smaller systems, the “delayed”
variant is more efficient, due to the good behavior of dot product. Then, table
2 shows that the conversions from machine integers to floating points numbers,
needed by the “BLAS” variant, can become too big a price to pay. Therefore,
the “delayed” variant is the best choice. However, for large matrices, conversions
(O(n?)) are dominated by computations (O(n*)), and the “BLAS” variant is
again the fastest one, provided that the field is small enough. Finally, one would
rather use a Modular<double> representation and the “BLAS” Trsm variant in
most cases. However, when the base field is already specified one can search for
delayed thresholds which could provide slightly better performances.

4 Triangularizations

We now come to the core of this paper, namely the matrix multiplication based
algorithms for triangularization over finite fields. The main concern here is the
singularity of the matrices. Moreover, practical implementations need to effi-
ciently deal with the rank profile, unbalanced dimensions, memory management,
recursive thresholds, etc. Therefore, in this section we present three variants of
the recursive exact triangularization. First the classical LSP of Ibarra et al. is
sketched. In order to reduce its memory requirements, a first version, LUdivine,
stores L in-place, but temporarily uses some extra memory. Our last implemen-
tation is fully in-place without any extra memory requirements and corresponds
to Ibarra’s LQUP. From both LUdivine and LQUP one can easily recover the LSP
via some extractions and permutations.

4.1 LSP Factorization

The LSP factorization is a generalization of the well known block LUP factoriza-
tion for the singular case [1]. Let A be a m x n matrix, we want to compute

FFPACK: Finite field linear algebra package 9

the triple < L,S,P > such that A = LSP. The matrices L and P are as in
LUP factorization and S reduces to a non-singular upper triangular matrix when
zero rows are deleted. The algorithm with best known complexity computing
this factorization uses a divide and conquer approach and reduces to matrix
multiplication [15]. Let us describe briefly the behavior of this algorithm. The

-] - \
S__T‘ ' | T O, — |
-
X Z E—

Figure 2: Principle of the LSP factorization

algorithm is recursive: first, it splits A in halves and performs a recursive call
on the top block. It thus gives the T', Y and L; blocks of figure 2. Then, after
some permutations ([X Z] = [A21A22]P), it computes G such that GT = X via
Trsm, replaces X by zeroes and eventually updates Z = Z — GY . The third step
is a recursive call on Z. We let the readers refer e.g. to [2, (2.7c)] for further
details.

Lemma 4.1 Algorithm LSP is correct. The dominant term of its theoretical cost

is bounded by 2w9‘1”_2m“_1 (n + 2“,7”_2) arithmetic operations in Z, for m < n.

This refines Ibarra’s original factor[15, Theorem 2.1] from 3n to n+ 52". More-

over, when each one of the intermediate block is of full rank, this factor even
reduces to n —mgz:fj [18, Theorem 1]. And this nicely gives 2n®, when w = 3,
n=m and C, = C3 = 2.

The point here is that, L being square m x m does not fit in place under
S. Therefore a first implementation produces an extra triangular matrix. The

following subsections address this memory issue.

4.2 LUdivine

The main concern with the direct implementation of the LSP algorithm, is the
storage of the matrix L: it can not be stored with its zero columns under S
(as shown in figure 2). Actually, there is enough room under S to store all the
non zero entries of L, as shown in figure 3. Storing only the non zero columns
of L is the goal of the LUdivine variant. One can notice that this operation
corresponds to the storage of L = L(Q) instead of L, where Q is a permutation
matrix such that Q7S is upper triangular. Consequently, the recovery of L from
the computed L is straightforward. Note that this I corresponds to the echelon
form of [16, §2] up to some transpositions.

FFPACK: Finite field linear algebra package 10

Figure 3: Principle of the LUdivine factorization

Further developments on this implementation are presented in [3, 18]. How-
ever, this implementation is still not fully in place. Indeed, to solve the trian-
gular system G = X.T~!, one has then to convert T to an upper triangular
matrix stored in a temporary memory space. In the same way, the matrix prod-
uct Z = Z — GY also requires a temporary memory allocation, since rows of Y
have to be shifted. This motivates the introduction of the LQUP decomposition.

4.8 LQUP

To solve the data locality issues, due to zero rows inside S, one can prefer to
compute the LQUP factorization, also introduced in [15]. It consists in a slight
modification of the LSP factorization: S is replaced by U, the corresponding
upper triangular matrix, after the permutation of the zero rows. The tranpose
of this row permutation is stored in Q).

Y

Figure 4: Principle of the LQUP factorization

This prevents the use of temporaries for Y and T, since the triangles in
U are now contiguous. Moreover, the number of instructions to perform the
row permutations is lower than the number of instructions to perform the block
copies of LUdivine or LSP. Furthermore, our implementation of LQUP also uses
the trick of LUdivine, namely storing L in its compressed form L. Thanks to
all these improvements, this triangulation appears to be fully in place. As will
be shown in section 4.4, it is also more efficient. Here again, the LSP and LQUP
factorizations are simply connected via S = QU. So the recovery of the LSP is
still straightforward.

FFPACK: Finite field linear algebra package 11

4.4 Comparisons

As shown in previous sections the three variants of triangularization mainly dif-
fer by their memory management. Indeed, the main operations remain matrix
multiplications and triangular system solving. Therefore, the implementation of
all these variants use the fast matrix multiplication routine of the FFLAS pack-
age [7] and the triangular system solver of subsection 3.2 as kernel. The results
are impressive: for example, table 3 shows that it is possible to triangularize a
5000 x 5000 matrix over a finite field in 32.9 seconds. We now compare the three
routine speed and memory usage with the same kernels: a Modular<double>
representation (so that no conversion overhead occur) and the recursive with
BLAS Trsm. For table 3, we used random dense square matrices (but with 3n

n 400 | 1000 | 3000 | 5000 | 8000 | 10000

LSP 0.05 | 0.48 | 8.29 | 35.56 | 258.7 | 1297
LUdivine || 0.05 | 047 | 7.94 | 33.24 | 451.8 | 1289
LQUP 005 046 | 7.79 | 329 | 183.6 | 1014

Table 3: Comparing real time (seconds) of LSP, LUdivine, LQUP over Zig1, on
a P4, 2.4GHz

non-zero entries so as to have rank defficient matrices. The timings given in ta-
ble 3 are close since the dominating operations of the three routines are similar.
LSP is slower, since it performs some useless zero matrix multiplications when
computing Z = Z — GY (section 4.2). LQUP is slightly faster than LUdivine
since row permutations involve less operations than the whole block copy of
LUdivine (section 4.3). However these operations do not dominate the cost of
the factorization, and they are therefore of little influence on the total timings.
This is true until the matrix size induces some swapping, around 8000 x 8000.

Now for the memory usage, the fully in-place implementation of LQUP saves
20% of memory (table 4) when compared to LUdivine and 55% when compared
to LSP. Actually, the memory usage of the original LSP is approximately that of
LUdivine augmented by the extra matrix storage (which corresponds exactly
to that of LQUP: e.g. 5000 x 5000 x 8bytes = 200Mb). This memory reduction is

n 400 | 700 |\ 1000 | 2000 3000 5000
LSP 2.83 | 871 | 17.85 | 71.16 | 160.35 | 444.17
LUdivine || 1.60 | 4.90 | 10.00 | 39.99 | 89.98 | 249.86
LQUP 1.28 | 3.93 | 8.01 | 32.02 | 72.02 | 200.04

Table 4: Comparing memory usage (Mega bytes) of LSP, LUdivine, LQUP over
Z101, on a P4, 2.4GHz

of high interest when dealing with large matrices (further improvements on the
memory management are presented section 4.5).

4.5 Data locality

To solve even bigger problems, say that the matrices do not fit in RAM, one
has mainly two solutions: either perform out of core computations or parallelize
the resolution. In both cases, the memory requirements of the algorithms to
be used will become the main concern. This is because the memory accesses
(either on hard disk or remotely via a network) dominate the computational
cost. A classical solution is then to improve data locality so as to reduce the

FFPACK: Finite field linear algebra package 12

volume of these remote accesses. In such critical situations, one may have to
prefer a slower algorithm having a good memory management, rather than the
fastest one, but suffering from high memory requirements. We here propose to
deal with this concern in the case of rank or determinant computations of large
dense matrices. The generalization to the full factorization case being direct
but not yet fully implemented.

To improve data locality and reduce the swapping, the idea is to use square
recursive blocked data formats [12]. A variation of the LSP algorithm, namely
the TURBO algorithm [8], adapts this idea to the exact case. Alike the LQUP
algorithm which is based on a recursive splitting of the row dimension (see
section 4.3), TURBO achieves more data locality by splitting both row and column
dimensions. Indeed the recursive splitting with only the row dimension tend to
produce “very rectangular” blocks: a large column dimension and a small row
dimension. On the contrary, TURBO preserves the squareness of the original
matrix for the first levels. More precisely each recursive level consists in a
splitting of the matrix into four static blocks followed by five recursive calls
to matrix triangularizations (U, V, C, D, and Z, in that order on figure 5),
six Trsm and four matrix multiplications for the block updates. In this first

lsw | | lse

Figure 5: Principle of the TURBO decomposition

implementation, only one recursive step of TURBO is used, the five recursive
calls being performed by the LQUP algorithm. For the actual size of matrices,
the quite complex implementation of more recursive levels of TURBO is not yet
mandatory.

Now for the comparisons of figure 6, we use the full LQUP factorization algo-
rithm as a reference. Factorization of matrices of size below 8000 fit in 512Mb
of RAM. Then LQUP is slightly faster than TURBO, implementation of the latter
producing slightly more scattered groups. Now, the first field representation
chosen (curves 1 and 2) is a modular prime field representation using machine
integers. As presented in [7], any matrix multiplication occurring in the de-
composition over such a representation is performed by converting the three
operands to three extra floating point matrices. This memory overhead is crit-
ical in our comparison. TURBO, having a better data locality and using square
blocks whenever possible, requires smaller temporary matrices than the large
and very rectangular blocks used in LQUP. Therefore, for matrices of order over
8000, LQUP has to swap a lot while TURBO remains more in RAM. This is strik-
ingly true for matrices between 8000 and 8500, where TURBO manages to keep
its top speed.

FFPACK: Finite field linear algebra package 13

TURBO vs LQUP for rank computation over GF(101) on a P4-2.4Ghz, 512Mb RAM
3000 T T T T T

2500 |- P ,
2000 |

1500 -

Mfops

1000

(1) TURBO using Givaro-ZpZ —+—

(3) TURBO using modular<double> —*—
4) LQyP using mudu\a‘y <double> 49‘—

0 2000 4000 6000 8000 10000 12000
Matrix order

Figure 6: TURBO versus LQUP for out of core rank

To also reduce the memory overhead due to the conversions to floating point
numbers, one can use the modular<double> field representation, as described
in section 2. There absolutely no allocation is done beside the initial matrix
storage. On the one hand, performances increase since the conversions and
copy are no longer performed, as long as the computations remain in RAM (see
curves 3 and 4). On the other hand, the memory complexities of both algorithms
now become identical. Furthermore, this fully in-place implementation does
not create small block copies anymore. Paradoxically, this prevents the virtual
blocks from fitting in the RAM, since they are just a view of the large initial
matrix. For this reason, both performance losses appear for matrices of order
around 8000. However, the drop is lower for TURBO thanks to the recursive
blocked data formats producing better data locality.

This behavior of course confirms that as soon as the RAM is full, data
locality becomes more important than memory saves : TURBO over Givaro-Zpz
is the fastest for matrices of size bigger than 8000, despite its bigger memory
demand. This is advocating further uses of recursive blocked data formats and
of more recursive levels of TURBO.

5 Rank, determinant, inverse

The LQUP factorization and the Trsm routines reduce to matrix multiplication
as we have seen in the previous sections. Theoretically, as matrix multiplication
requires 2n3 —n? arithmetic operations, the factorization, requiring at most %n3
arithmetic operations, could be computed in about % of the time. Now, the ma-
trix multiplication routine Fgemm of FFLAS package can compute 5000 x 5000
matrix multiplications in only 67.58 seconds on a 2.4GHz pentium 4. This is
achieved with pipelining within the P4 processor and with very good perfor-
mances of the BLAS. This corresponds to 3300 millions of finite field arithmetic
operations per seconds ! Well, table 5 shows that with n X n matrices we are
not very far from these quasi-optimal performances also for the factorization:

Moreover, from the two routines, one can also easily derive several other
algorithms:

FFPACK: Finite field linear algebra package 14

n 400 700 | 1000 | 2000 3000 5000
LQUP 0.05s | 0.18s | 0.46s | 2.80s | 7.79s | 32.9s
FGeEmM || 0.04s | 0.23s | 0.62s | 4.28s | 14.72s | 67.58s
Ratio 125 078 | 0.74 | 0.65 0.53 0.48

Table 5: Comparing Matrix Multiplication and Factorization over Zjg1, on a
P4, 2.4GHz

e The rank is the number of non-zero rows in U.

e The determinant is the product of the diagonal elements of U (stopping
whenever a zero is encountered).

e The inverse is also straightforward:

Algorithm Inverse(A)
Input: A€ Z,”*™, non singular.
Output: A~'eZ,™*™.

Scheme
L.UP := LQUP(A). (A is invertible, so Q is Id)
X := LLeft-Trsm(L,Id).
At = PT ULeft-Trsm(U, X).

Now, the inverse can then be computed with at most %n3 +2n3 arithmetic op-
erations which gives a theoretical ratio of %. Once again, table 6 proves that our
implementation has pretty good performances: Indeed, operations performed in

n 400 700 | 1000 2000 3000 5000
Inv 0.18s | 0.70s | 1.79s | 10.84s | 32.33s | 139.5s
FGEMM || 0.04s | 0.23s | 0.62s | 4.28s | 14.72s | 67.58s
Ratio 450 | 3.04 | 2.89 2.53 2.20 2.07

Table 6: Comparing Matrix Multiplication and Inverse over Zjp;, on a P4,
2.4GHz

LQUP, or the Trsm are not grouped as well as in Fgemm. Therefore, the excel-
lent performances of Fgemm make the ratio somewhat unreachable, although the
invert routine is very fast. Note that, as the first LLeft-Trsm call is made
on the identity it could be accelerated in a specific routine. Indeed, during the
course of LUP, L~ can actually be computed with only a %3 overhead, thus

reducing the theoretical ratio from 4/3 to 1.

6 Conclusions

We have achieved the goal of approaching the speed of the numerical factoriza-
tion of any shape and any rank matrices, but for finite fields. For example, the
LQUP factorization of a 3000 x 3000 matrix over a finite field takes 8.5 seconds
where 6 seconds are needed for the numerical LUP factorization of lapack®. To
reach these performances one could use blocks that fit the cache dimensions of
a specific machine. In [7] we proved that this was not mandatory for matrix
multiplication. We think we prove here that this is not mandatory for any dense

5www.netlib.org/lapack

FFPACK: Finite field linear algebra package 15

linear algebra routine. By the use of recursive algorithms and efficient numeri-
cal BLAS, one can approach the numerical performances. Moreover, long range
efficiency and portability are warranted as opposed to every day tuning with at
most 10% loss for large matrices (see table 2 where delayed can beat BLAS only
for big primes and with a specific empirical threshold).

Besides, the exact equivalent of stability constraints for numerical compu-
tations is coefficient growth. Therefore, whenever possible, we computed and
improved theoretical bounds on this growth (see bounds 3.3 and [7, Theorem
3.1]). Those optimal bounds enable further uses of the BLAS routines.

Further developments include:

e A Self-adapting Software [4] (to switch to different algorithms during the
recursive course of Trsm and TURBO), could be used to find the best empirical
thresholds.

e The other case where our wrapping of BLAS is insufficient is for very small
matrices (see tables 1 and 2). Here also, automated tuning would produce
improved versions.

e The extension of the factorization to some other algorithms as shown for the
Inverse (e.g. null-space computation as in [21]) is in progress.

e Finally, extending the out of core work of section 4.5 to design a parallel
library is promising.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[2] Dario Bini and Victor Pan. Polynomial and Matriz Computations, Volume 1:
Fundamental Algorithms. Birkhauser, Boston, 1994.

[3] Morgan Brassel, Pascal Giorgi, and Clement Pernet. LUdivine: A symbolic block
LU factorisation for matrices over finite fields using blas. In Fast Coast Computer
Algebra Day, Clemson, South Carolina, USA, April 2003. Poster.

[4] Jack Dongarra and Victor Eijkhout. Self-adapting numerical software and au-
tomatic tuning of heuristics. Lecture Notes in Computer Science, 2660:759-770,
January 2003.

[6] Jean-Guillaume Dumas. Efficient dot product over word-size finite fields. Rapport
de recherche, IMAG, December 2003.

[6] Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi, Brad-
ford Hovinen, Erich Kaltofen, B. David Saunders, Will J. Turner, and Gilles
Villard. LinBox: A generic library for exact linear algebra. In Arjeh M. Cohen,
Xiao-Shan Gao, and Nobuki Takayama, editors, Proceedings of the 2002 Inter-
national Congress of Mathematical Software, Beijing, China, pages 40-50. World
Scientific Pub, August 2002.

[7] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field linear
algebra subroutines. In Teo Mora, editor, Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, Lille, France, pages 63-74.
ACM Press, New York, July 2002.

[8] Jean-Guillaume Dumas and Jean-Louis Roch. On parallel block algorithms for
exact triangularizations. Parallel Computing, 28(11):1531-1548, November 2002.

[9] Jean-Guillaume Dumas and Gilles Villard. Computing the rank of sparse ma-
trices over finite fields. In Victor G. Ganzha, Ernst W. Mayr, and Evgenii V.

FFPACK: Finite field linear algebra package 16

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

(21]

[22]

(23]

Vorozhtsov, editors, Proceedings of the fifth International Workshop on Com-
puter Algebra in Scientific Computing, Yalta, Ukraine, pages 47-62. Technische
Universitdt Miinchen, Germany, September 2002.

Pascal Giorgi. From BLAS routines to finite field exact linear algebra solutions,
July 2003. ACA’2003, 9th International Conference on Applications of Computer
Algebra, Raleigh, North Carolina State University, USA.

Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the complexity
of polynomial matrix computations. In Sendra [20], pages 135-142.

F. Gustavson, A. Henriksson, I. Jonsson, and B. Kaagstroem. Recursive blocked
data formats and BLAS’s for dense linear algebra algorithms. Lecture Notes in
Computer Science, 1541:195-206, 1998.

Bradford Hovinen, 2002. Personal communication.

Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplications and
improving parallel matrix computations. In ACM, editor, PASCO ’97. Proceed-
ings of the second international symposium on parallel symbolic computation, July
20-22, 1997, Mauwi, HI, pages 11-23, New York, NY 10036, USA, 1997. ACM
Press.

Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast
LUP matrix decomposition algorithm and applications. Journal of Algorithms,
3(1):45-56, March 1982.

Erich Kaltofen, Mukkai S. Krishnamoorthy, and B. David Saunders. Parallel
algorithms for matrix normal forms. Linear Algebra and its Applications, 136:189—
208, 1990.

Clément Pernet. Implementation of Winograd’s matrix multiplication over finite
fields using ATLAS level 3 BLAS. Technical report, Laboratoire Informatique et
Distribution, July 2001. www-id.imag.fr/Apache/RR/RRO11122FFLAS.ps.gz.

Clément Pernet. Calcul du polynéme caractéristique sur des corps finis. Master’s
thesis, University of Delaware, June 2003.

Clement Pernet and Zhendong Wan. LU based algorithms for the characteristic
polynomial over a finite field. In Sendra [20]. Poster.

Rafael Sendra, editor. ISSAC’2003. Proceedings of the 2003 International Sympo-
sium on Symbolic and Algebraic Computation, Philadelphia, Pennsylvania, USA.
ACM Press, New York, August 2003.

Arne Storjohann. Effective reductions to matrix multiplication, July 2003.
ACA’2003, 9th International Conference on Applications of Computer Algebra,
Raleigh, North Carolina State University, USA.

Will J. Turner. Blackboz linear algebra with the LinBox library. PhD thesis, North
Carolina State University, May 2002.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing, 27(1-2):3—
35, January 2001. www.elsevier.nl/gej-ng/10/35/21/47/25/23/article.pdf.

Appendix

A

Proof of theorem 3.2

THEOREM 3.2 Let T € Z™*™ be a unit diagonal upper triangular matrix, and
be Z™ with |T| < p—1and [b] < p—1. Let X = (2;)icq1..,] € Z™ be the
solution of T.X = b over the integers.

FFPACK: Finite field linear algebra package 17

Then
—up < Tp_p <v, if kis even (4)

Vke [0..n—l]{ —vp < Epep <wup if kis odd

where
{ = B "~ (0= 2)")
v = B3 : [p" + (p —2)"]
Proof. Let us define the inductlon hypothesis TH; to be that the equations
(4) are true for k € [0.l —1] . When ! = 0, z, = b, which implies that
—ug = 0 <z, < p—1 = wvy. Thus IHy is proven. Let us suppose that

Vj € [0..l] TH; is true, and prove I H;y;. There are two cases: either [is odd or
not !

If] is odd, [+ 1 is even. Now, by induction, an upper bound for z,,_;_1 is

=
2
-1 1+Zu2i+v2i+1
=0
%
—17 9 i i i
< (-1 |1+ pT[pQ -(p-2)° +p2+1+(p—2)2+1]
=0
-1
p—17[2
< -1+ Y P e+ 0+ -2 0 - 3)]
=0
I+1 I+1
p—1 pT—1 p—2)""-1
< (p- —— 1 A M——
< -1+ [(p+) 1 +(p—3) P27 -1
p—=17 141 41
< P2 _
< = [p +(-2)]
< vt
Similarly, a lower bound for z,_;—; is
-1
2
—(p—-1) ZUM + u2it1
=0
> P—) Z[2 2l (p—2)2i+1]

> —@ Z [pzi(p+ H-(-2%@p- 3)]

PR [- -]

—Ul41

ALY

Finally, If [is even, a similar proof leads to —vj41 < Zp—j41 < U1

