N
N

N

HAL

open science

Separability, Expressiveness, and Decidability in the
Ambient Logic

Daniel Hirschkoff, E. Lozes, D. Sangiorgi

» To cite this version:

Daniel Hirschkoff, E. Lozes, D. Sangiorgi. Separability, Expressiveness, and Decidability in the Am-
bient Logic. [Research Report] LIP RR-2002-18, Laboratoire de I'informatique du parallélisme. 2002,

24+17p. hal-02101816

HAL Id: hal-02101816
https://hal-lara.archives-ouvertes.fr /hal-02101816
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lara.archives-ouvertes.fr/hal-02101816
https://hal.archives-ouvertes.fr

Laboratoire de I'Informatique du

Parallélisme
o) Ecole Normale Supérieure de Lyon
i Unité Mixte de Recherche CNRS-INRIA-ENS LYON % CENTRE NATIONAL
n° 5668 STENTHQUE

Separability, Expressiveness, and
Decidability in the Ambient Logic

Daniel Hirschkoff!, Etienne Lozes!,

and Davide Sangiorgi?
April 2002

L LIP - ENS Lyon, France
2 INRIA Sophia Antipolis, France

Research Report N° 2002-18

Ecole Normale Supérieure de
Lyon

il 46 Allee ' Itdlie, 6936% Lyon Cedex 07, France ?‘I INRIA

Télephone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ipQ@ens-lyon. fr



Separability, Expressiveness, and Decidability in
the Ambient Logic

Daniel Hirschkoff', Etienne Lozes', and Davide Sangiorgi?

L LIP - ENS Lyon, France
2 INRIA Sophia Antipolis, France

April 2002

Abstract

The Ambient Logic (AL) has been proposed for expressing properties of process
mobility in the calculus of Mobile Ambients (MA), and as a basis for query
languages on semistructured data.

We study some basic questions concerning the descriptive and discriminating
power of AL, focusing on the equivalence on processes induced by the logic
(=1). We consider MA, and two Turing complete subsets of it, MAjr and
MAJ}", respectively defined by imposing a semantic and a syntactic constraint
on process prefixes.

The main contributions include: coinductive and inductive operational char-
acterisations of =p; an axiomatisation of =7 on MAJ}"; the construction of
characteristic formulas for the processes in MAr with respect to =p; the de-
cidability of =7, on MAr and on MAT.", and its undecidability on MA.

Keywords: Distributed and mobile systems, modal logics, Mobile Ambients,
decidability, expressiveness, characteristic formula
Résumé

La Logique des Ambients (AL) a été introduite pour exprimer des propriétés
ayant trait & la mobilité des processus dans le calcul des Ambients Mobiles
(MA), ainsi qu’en tant que fondement pour des langages de requétes pour des
données semi-structurées.

Nous étudions un certain nombre de questions fondamentales ayant trait au
pouvoir expressif de cette logique, en nous intéressant a ’équivalence sur les
processus induite par la logique (=L ). Nous considérons AM, ainsi que deux
sous-ensemble Turing complets de ce calcul, MAr et MATL", définis par le biais
de restrictions syntaxique et sémantique sur les termes préfixés.

Parmi nos principales contributions, nous pouvons mentionner: deux ca-
ractérisations, coinductive et inductive, de =r; une axiomatisation de =y, sur
MATL"; la construction de formules caractéristiques pour =y, pour les processus
de MAjr; la décidabilité de =1, sur MAr et sur MAT.", et la non-décidabilité
de cette relation sur MA.

Mots-clés: Systemes distribués et mobiles, logique modale, Ambients
mobiles, décidabilité, expressivité, formule caractéristique



1 Introduction

The Ambient Logic, AL, [9] is a modal logic for expressing properties of processes
in the calculus of Mobile Ambients, MA [7, 8]. In MA the unit of movement is
an ambient, which, intuitively, is a named location. An ambient may contain
other ambients, and capabilities, which determine the ambient movements. The
primitives for movement allow: an ambient to enter a sibling ambient; an ambi-
ent to exit the parent ambient; a process to dissolve an ambient boundary. MA
has a replication operator to make a process persistent, that is, to make infinite
copies of the process available.

An ambient can be thought of as a labelled tree. The sibling relation on
subtrees represents spatial contiguity; the subtree relation represents spatial
nesting. A label may represent an ambient name or a capability; moreover, a
replication tag on labels indicates the resources that are persistent.! The trees
are unordered: the order of the children of a node is not important. As an

example, the process P def lafin ¢] | open a. b[0] is represented by the tree:

!a/ \open a
inc\l, b\L

The replication !a indicates that the resource alin c] is persistent: unboundedly
many such ambients can be spawned. By contrast, open a is ephemeral: it can
open only one ambient.

Syntactically, each tree is finite. Semantically, however, due to replications,
a tree is an infinite object. As a consequence, the temporal developments of a
tree can be quite rich. The process P above (we freely switch between processes
and their tree representation) has only one reduction, to in ¢ | lafin ¢] | b[0].
However, the process la[in c| | lopen a.b[0] can evolve into any process of the
form

inc|...|inc|b[0]]...]|b]0]]!'alin c] | lopen a.b0].
In general, a tree may have an infinite temporal branching, that is, it can evolve
into an infinite number of trees, possibly quite different from each other (for
instance, pairwise behaviourally unrelated). Technically, this means that the
trees are not image-finite.

In summary, MA is a calculus of dynamically-evolving unordered edge-
labelled trees. AL is a logic for reasoning on such trees. Indeed, the actual
definition of satisfaction of the formulas is given on MA processes quotiented
by a relation of structural congruence, which equates processes with the same
tree representation. (This relation is similar to Milner’s structural congruence
for the m-calculus [18].)

AL has also been advocated as a foundation of query languages for semistruc-
tured data [5]. Here, the laws of the logic are used to describe query rewriting
rules and query optimisations. This line of work exploits the similarities between
dynamically-evolving edge-labelled trees and standard models of semistructured
data.

AL has a connective that talks about time, that is, how processes can evolve.
The logic has also connectives that talk about space, that is, the shape of the

1We are using a tree representation different from that of Cardelli and Gordon, but more
convenient to our purposes.



edge-labelled trees that describe process distributions. AL is quite different from
standard modal logics. First, such logics do not talk about space. Secondly,
they have more precise temporal connectives. The only temporal connective
of AL talks about the many-step evolution of a system on its own. In stan-
dard modal logics, by contrast, the temporal connectives also talk about the
potential interactions between a process and its environment. For instance, in
the Hennessy-Milner logic [15], the temporal modality {(u). A is satisfied by the
processes that can perform the action x4 and become a process that satisfies .A.
The action p can be a reduction, but also an input or an output.

In this paper we study some basic questions concerning the descriptive and
discriminating power of AL. We consider, besides the calculus MA, two subsets
of it, obtained by imposing constraints on the processes underneath capabilities.
In MAjp, these processes must be image-finite; in MAJ}", they must be finite.
These definitions might appear ad hoc, but they express precisely the constraints
needed in some of our results. A further interest of MAY" is that its definition
is purely syntactic. Both MA;r and MAJY" are Turing complete, and contain
processes that are not image-finite.

We describe the main contributions of the paper. We write =p to indicate
the process equivalence induced by the logic, whereby two terms are equated if
they satisfy the same sets of formulas. First, we exhibit two operational char-
acterisations of =y, on MA, which do not mention the logic. Characterisations
of the equivalence of a logic allow us to understand the notion of equality on
processes — a fundamental notion in process calculi — induced by the logic. One
characterisation is coinductive, as a form of labelled bisimilarity. The other is
inductive, and uses a well-founded measure on the structure of processes.

Second, we prove that =y coincides with structural congruence on MA?%:“.
This gives us an axiomatisation of =7, on MAT.". This axiomatic characterisa-
tion is false on the larger class MA[p.

Our third contribution is the construction of characteristic formulas for
equivalence classes for =7 in MAjp. We define, for any process P € MAjp,
a formula Fp such that QE=Fp holds iff Q=L P, for all Q € MA. The result
shows that we can talk about the discriminating power of the logic from within
the logic itself, at least under some image-finiteness conditions. A corollary is
the undecidability of the model-checking problem on MAJ}" and richer calculi.

Our fourth contribution is on (un)decidability. As a consequence of the
inductive characterisation of =, we can prove that =y, is decidable on MAr
and MAJY". However, if we drop the image-finiteness conditions of MAg, then
=1, becomes undecidable. We show this via an encoding of the halting problem
of Turing Machines. The encoding of Turing Machines is actually in MA",
which is thus proved to be Turing Complete. This result is not in contradiction
with the decidability of =z, in MAr and MAJS", because the encoding is correct
for reductions but not behaviourally (the process encoding a machine and its
derivatives do not need to be in the relation =r,).

Most of the results mentioned above are rather different from the usual re-
sults of modal logics. Typically, the definition of characteristic formulas exploits
fixed-point operators, and the characterised processes are finite-state [14, 21].
AL, by contrast, has no fixed point operator; moreover the image-finiteness con-
dition on processes is weaker than finite-state. (‘Image-finite’ expresses finite-
ness on internal reductions, whereas ‘finite-state’ also takes into account com-
putations containing visible actions such as input and output actions.)



Also, coinductive characterisations of an inductive relation or of the equiv-
alence of a logic usually rely on either image-finiteness of the processes, or on
some infinitary operator of the logics, such as infinite conjunctions. In our case
we need none of these hypotheses. Further, the inductive relation is not the
stratification of the coinductive relation [17], but uses a structural measure on
processes. Finally, in process calculi decidability is usually unrelated to image-
finiteness: for instance, the transition relation of the m-calculus is image-finite,
yet strong bisimilarity is undecidable [20].

Also the actual form of image-finiteness that we use is non-standard. Be-
havioural equivalence in MA is insensitive to stuttering phenomena, originated
by processes that may repeatedly enter and exit an ambient. As a consequence,
a computation in which all visible actions are stuttering is semantically equiva-
lent to an internal reduction.

In the proofs of the results two groups of technical lemmas are important.
The first group is about the construction of formulas for describing all forms of
labels of the trees of MA. The formulas for the replicated labels give us (some
of) the power of the ! operator (‘of course’) of linear logic; this was somehow
unexpected, because AL has no infinitary operators, or operators that talk about
resources with infinite multiplicity. (We obtain only some of this power, because
we have to impose constraints on the replicated formulas.)

Other useful formulas that we have derived are the following: a formula ¢g,
that characterises the ephemeral processes (that is, P|=¢qy iff the tree of P has
no replicated labels); for any set S of names, a formula refersS that characterises
the processes whose set of free names is precisely S.

The second group of technical lemmas captures decomposition properties
of processes. For instance, Lemma 3.6 shows that any two processes P and
Q in the relation =1 admit decompositions P = C[P] and Q@ = D|[Q] where
the contexts C and D are of a certain syntactic form, and, moreover, both the
contexts C and D, and the continuations P and @ (more precisely, processes
obtained from appropriate transformation of these) are equivalent.

There are strong connections among all the results discussed above. For
instance, both the characterisations of =5, and the characteristic formulas talk
about the separability power of AL. The connections are explicit in the proofs:
for instance, the proof of undecidability relies on most of the other results.

Related work. Characterisations and axiomatisations of =, have already
been presented in [19], on finite MA (without replications). The proofs rely
on the ephemeral nature of the processes, precisely on the property that all
(complete) computations of a process, comprising its interactions with the en-
vironment, are finite and terminate with the 0 process. Therefore we could not
adapt these proofs to processes with replications. The need for stuttering in
MA is already pointed out in [19], but all examples use trees with unbounded
depth.

We are not aware of other axiomatisations of semantic equivalences in non-
finite higher-order process calculi, and of characteristic formulas for logics for
mobile processes. Formulas in AL, or similar logics, that characterise the free
names of processes were known [10, 2], but use additional operators (notably the
revelation operator). The undecidability of the model-checking problem of AL
— in fact of an even smaller logic — had already been established, using different
techniques [11].



2 Background

a,b,... ,n,m Names Processes

Capabilities P,QR = 0 (nil)
cap == inn (enter) | P|Q (parallel)
| outn  (exit) | cap.P (prefiring)
| openn (open) | n[P]  (ambient)

| P (replication)

Table 1: The syntax of MA

We recall here the syntax of ‘pure’ MA, from [7]. (‘Pure’ means that com-
putation is only movement; there are no communications.) Also, as in [9, 5, 6],
the calculus has no restriction operator for creating new names. The restriction-
free calculus is simpler, and has a more direct correspondence with edge-labelled
trees and semistructured data. Table 1 presents the syntax. The set of names is
infinite. Capabilities are ranged over by cap, processes by P,Q, R, S. Processes

nlinm. Pr | Byl [ mlQ] — mln[Py [ Py Q] o0

m[njout m. Py | P3] | Q] — n[Py | Py | m[Q] Red-0ut

Red-0
openn.P | n[@Q] — P | Q eatpen

P— P P— P
Red-Par ———  —  Red-Amb

PlQ—P|Q n[P] — n[P']
p=pP P —P' P'=P"
P—Pm"

Red-Str

Table 2: The rules for reduction

with the same internal structure are identified. This is expressed by means of
the structural congruence relation, =, the smallest congruence such that (0,],!)
is a multiset algebra, that is, satisfies the following rules:

P|jo=P P|lQ=Q|P
PI(Q|R) = (P|Q)|R
P ='P|P (P|Q) = 'P|!Q

n"p = 1P 10 = 0.



Relation = is decidable on MA, as well as in other calculi such as the =-
calculus [12, 13]. The rules for the reduction relation, —», are given in Table 2.
The reflexive and transitive closure of — is written =.

Definition 2.1 (Labelled transitions and stuttering) We write:
o P2 P ifP=cap. P, | P, and P' = P, | P;.

e (stuttering) p=MaMa)" if there are r > 1 and processes Py, ..., P,

with P = Py such that P, — Ai% = Ai? = Piyq foralll <t <7, and

P.— P,
. (cap) . . . . .
e Finally, = 1is a convenient notation for compacting statements involv-

(in n) (out n)

ing capability transitions. = is %; similarly "= s

in n,out n)* (open_n) .
J;L>; and — 18 —>.

Some of our results are proved by induction on the sequentiality degree of a
process, which is the maximal depth of nesting of capabilities in the process.

Definition 2.2 (Sequentiality degree, ds) The sequentiality degree of a term
is defined as follows:

e ds(0) =0, ds(P | Q) = max (ds(P),ds(Q));
e ds(n[P]) =ds(!P) = ds(P);
e ds(cap. P) =1+ ds(P).

Note that this definition relies on the presence of the ! operator (instead of
a recursion operator) in the calculus. An important property of ds(P) is the
following:

Lemma 2.3 If P—Q or P =% Q then ds(P) > ds(Q).

A == T | -A | AVB | Vz.A (cassical logic)
| A4 | 0 | nA | A|B (temporal and spatial connectives)
| A@n | A>B (logical adjuncts)

Table 3: The syntax of logical formulas

The logic. To define the set of formulas of the Ambient Logic (AL-Table 3)
we introduce an infinite set of variables, ranged over with x, y, z; 17 ranges over
names and variables. The logic has the propositional connectives, T,-A4, AV B,
and universal quantification on names, Vz. A, with the standard logical in-
terpretation. The temporal connective, ©.A has been briefly discussed in the



Introduction. The spatial connectives, 0, A | B, and n[A], are the logical coun-
terpart of the corresponding constructions on processes. A>B and .AQrn are the
logical adjuncts of A | B and 7[.A], in the sense of being, roughly, their inverse
(see below). A formula without free variables is closed.

Definition 2.4 The satisfaction relation is defined on closed formulas as fol-
lows:

PET def always true

PEVz. A ' foranyn, P E A{n/z}
PE-A ' pot P EA
PEA A % 3P, Pyst. P=P | P,

and P, E A, i =1,2
PEAVB * P-AorPEB
PeEnd % 3P st P=nPladP EA
PEO = P=0
PEOA 3P st PP and P = A
PEAen ¥ ppleA
PEAD>B ' VR, R=A implies P| R =B

The logic in [9] has also a somewhere connective that holds of a process
containing, at some arbitrary level of nesting of ambients, an ambient whose
content satisfies A. The addition of this connective would not change the results
in the paper.

We give V and A the least syntactic precedence, thus A;>Ay A A3z reads
(A1>A2) A As, and A;1>(CA2 A OA3z) reads A;>((OAz) A (OA3)). We shall
use the dual of some connectives, namely the duals of linear implication (A»B),
of the sometime modality (CJ.A), of the parallel operator (]|), and the standard

duals of universal quantification (3 z. .A) and disjunction (A A B). We also

define (classical) implication (A — B).

AANB ¥ ~(-Av-B) 04

-O-A
A=>B € —AvB AlB € ~(=A4|-B)
Jz. A ¥ wz.-A4 B Y (A>-B)
Thus P = Aw B iff there exists @ with @ = Aand P | Q = B, and P = DA iff

P’ = A for all P’ such that P = P'. The formula A7 %y || =T, from [9], is
satisfied by P iff for any @, R such that P = @ | R, it holds that Q = A.

def

Definition 2.5 (Process logical equivalence) For processes P and Q, we
write P=1Q if for all closed formulas A it holds that P = A iff Q E A.

3 Coinductive and inductive operational rela-
tions

The coinductive relation below follows the definition of intensional bisimilarity
in finite MA [19].

Definition 3.1 (Intensional bisimilarity) Intensional bisimilarity is the largest
symmetric relation ~y;s on processes such that P ~y;s QQ implies:



1. If P = Py | P, then there are Q1,Q2 such that Q = Q1 | Q2 and P; ~;s
Q;, fori=1,2.

2. If P=0 then Q = 0.
3. If P — P’ then there is Q' such that Q — @' and P’ ~;s Q'.

4. For any cap, if P =85 P’ then there is Q' such that Q =% <ca=p>> Q' and
P’ bis Ql-

5. If P = n[P'] then there is Q' such that Q@ = n[Q'] and P’ ~pis Q'.

With respect to standard bisimilarities for process calculi, ~;s has inten-
sional clauses, namely (1), (2) and (5), which allow us to observe parallel com-
positions, terminated process, and ambients. These clauses correspond to the
intensional connectives ‘|’, ‘0’, and n[.A] of the logic. The other main peculiarity
of ~; are the stuttering relations. The need for stuttering on infinite trees
(i.e., MA with a recursion operator) has been pointed out in [19]. We show that
stuttering is also needed on finite trees with replication.

Example 1 Consider the processes Py > lopen n.in n.out n.in n.out n.n[0] |

n[0], and Py 4 1open n.in n.out n.in n.out n.n[0] | in n.out n.n[0]. It holds
that Py #1is P1; however, since
P, (in_n,out n)* P (in n,out n)* P,

we have out n. Py =~ out n.P;. Without stuttering this equivalence would
not hold.

The proof of congruence of ~;s follows the proof of the analogous result in [19],
using a technique similar to Howe’s for proving congruence of bisimilarity in
higher-order languages [16].

Theorem 3.2 (Soundness of ~;;) In MA, ~,;s C =f.

Completeness — the hard implication — is proved in Section 4. Below we show
an inductive characterisation of ~p;s. The crux of this result is Lemma 3.4,
which gives us a decomposition property for bisimilar processes in terms of
special forms of contexts.

Definition 3.3 (Contexts) A context (ranged over with C,D) is a process
term with some holes []; in it, each hole occurring once. A context is active if
each hole appears underneath ezactly one capability. A coloured context C(o) is
given by an active context C and a colouring function o, assigning a colour to
each hole (we assume there are infinitely many colours available).

Structural congruence is defined on coloured contexts as on processes, but
with the additional rule for holes saying that []; = []; if the two holes have the
same colour.

Lemma 3.4 (Decomposition lemma) Suppose P ~;s Q. Then there are

two active contexts C and D, and two vectors of processes ﬁ, é such that P =
C[P],Q = D[Q] and there is a colouring function o such that



1. C(o) = D(o),

2. for anyi,j, if [|: and []; are some holes of C or D having the same colour,
then they are underneath the same capability capZ Moreover, there are

P/,Q} such that P =5 Pl ~ie Qg and Q; =5 Q) ~ie P

In the lemma, subcomponents P and é, and their derivatives P/, Q;-, have a
sequentiality degree (that is, the depth of nesting of capabilities) strictly smaller
than that of the original processes P and @ (for the derivatives, this is given
by Lemma 2.3). We can therefore exploit this result to obtain an inductive
characterisation of ~;s. Let ~j,q be this inductive relation, i.e. ~j,q is the
least relation such that whenever two active contexts C,D and two vectors of
processes P and Q satisfy the clause of the lemma, where ~;s is replaced by

~ind, then also P ~jnq @, for all processes P, Q with P = C[P ] Q= D[Q]

Theorem 3.5 Relations ~y;s and ~;nq coincide on MA.

Lemma 3.4, and therefore also the definition of ~j,q, contain a heavy hidden
universal quantification, due to the decompositions of P and @ up to =, for an
equivalence class of = contains an infinite number of processes. The following
lemma shows however that the active context decomposition of a process is
essentially unique.

Lemma 3.6 (Active context decomposition) Suppose there are processes
P, P;, and active contexts C; (i = 1,2), such that P = C;[P;]. Then there is a
colouring function o such that

1. C1(o) = Ca(0);

2. for any i,j, if [|; and []; have the same colour, then P; = Qj;, and the
two holes are underneath the same capability.

We define some subclass of processes, used in the statements of some of our
results.

Definition 3.7 (Image-finite processes, finite processes, MAr, MAJ}Y")

A process P is image finite if the set {P' | P P'}, quotiented by ~y;s, is
finite for all cap. P is finite if there is Q such that P = @ and @ has no
replication operator. The classes MAp and MATY" are obtained by adding to
the grammar of Table 1 the following constraints on the production cap. P: in
MAr, the continuation P must be an image-finite process of MArr; in MAJ",
the continuation P must be finite.

cap

All the above classes of processes are closed under transition. The inclusions
MAG" € MAr C MA are strict. The processes Py and P; in Example 1 are in
MA%n and image-finite; however out n. Py and out n. P; are in MA g but not in
MAZ". The process P = open n.(lopen a | la[b[0]]) is in MA, but not in MA,
because lopen a | la[b[0]] is not image finite.

MAZ.", and hence also MAjr, contains processes that are not image-finite:
for instance, the processes used to encode Turing Machines in Section 5.

Another consequence of Theorem 3.5 is:



Theorem 3.8 (Characterisation of ~;; on MAL") Let P € MAWL". Then
forallQ € MA, P ~;s Q iff P = Q.

The equality out n. Py ~is out n. P; of Example 1 shows that Theorem 3.8
cannot be extended to MAjp: the MAJ)" requirement of finiteness for the pro-
cesses underneath capabilities seems essential for the theorem.

4 Characteristic formulas and completeness

A characteristic formula of a process P is a formula that is satisfied by all and
only the processes ) in the relation ~;s with P. In this section we derive
characteristic formulas for the processes in MAjp.

An MA process can be viewed as a finite labelled tree in which labels can
be ambient names, capabilities, replicated ambients, and replicated capabilities.
If we can define formulas that describe all these labels, then we will be able
to derive the characteristic formulas using standard techniques for image-finite
processes with finite tree representation [14, 21]. AL has formulas n[A] that
talk about ambient labels. We have to construct the formulas for the other
labels. Formulas for capabilities are presented in [19], for finite MA; they are
also correct on MA:

Lemma 4.1 (Formulas for capabilities) There is a computable function that
associates to each capability cap and formula A a formula {(cap). A such that

P = (cap). A iff there are P' and P" such that P = cap. P’ and P’ &) pr
with P"EA.

A formula (cap). A expresses possibility (in Lemma 4.1, at least one deriva-
tive of P’ satisfies .A). We also need formulas [cap]. A for necessity (all deriva-
tives of P’ satisfy A). Such formulas are not the dual of the possibility formulas,
as in standard modal logics, because of the spatial aspects of AL. For instance,
[in n]. T is different from —(in n). = T: the latter is actually equivalent to T.
We set:

[cap]. A &of (cap). AN —(cap).—A.
The challenging part, however, is the definition of replicated formulas !4 with
the property

PEIA ff there are r > 1,s > 7, P; (1 <4< s)
such that P = ngigr!Pz’ ‘ HrJrlgiSs-Pi , (1)
and P,EAforall1<i<s,

where IT;<;<;Q; abbreviates Q1 | ... | Q.

We say that a component of a process is at top level if the component is
not underneath a capability or inside an ambient. A process is single if it is
structurally congruent to a process of the form n[P] or cap. P. The formula
1Comp def 0]l0 A =0 (from [19]) characterises the single processes.

The definition of A has two parts. The first part says that if P=.A4 then
all parallel components in P that are single and at top level satisfy A. This is
expressed by the formula

A % (1Comp — A)Y.



The second part of the definition of A addresses persistence, by saying that
there are infinitely many processes at top level that satisfy .A. We have to say
that these infinite copies are at top level: for instance, !{cap).0 (or, in fact,
any other replicated formula) should not be satisfied by cap. lcap.0. We can
talk about the top level because we can express in the logic the maximal depth
of nesting of capabilities (the sequentiality depth, Section 2) and the maximal
depth of nesting of ambients in a process. Indeed, a component of P is at top
level iff it has the same depths of nesting as P. As a consequence, however, we
have to impose a constraint on the definition of ! A: all processes that satisfy A
should have the same depths of nesting. We say that these formulas have fized
model depth.

The other constraint we need on A roughly requires that all the processes
that satisfy A should be single and have the same outermost operator. Precisely,
either P=A should imply P = cap. P’, for some cap, P’ (in this case, A is single
for cap); or PEA should imply P = n[P'], for some n, P’ (then A is single for
n). Moreover, the construction of .4 depends on such outermost operator.

The definition of A is given in Table 6, at the end of the paper (the formulas
for the Rep construction). Here we only show an example:

![open n]. A o
([open n]. A)¥ A (n[0])¥ > O ([open n]. A | T ).

Lemma 4.2 For each capability cap there is a computable function that asso-
ciates to each formula A that is single for cap and has fized model depth, a
formula A with the property (1).

The assertion for the formulas single for names is similar.

We show some concrete examples of characteristic formulas. The general
definitions are given in Table 4 at the end of the paper. A characteristic formula
for lopen n.n[0] is ![open n].n[0]. A characteristic formula for lopen n. (open n |
n[0]) is

FY A (n[0))?Y >0 (Fy | T) where
Y (open n). Fa2 A Jopen n]. (F2 V 0)
Fo % [open n].0 | n0]

and F> is a characteristic formula for open n | n[0].

Theorem 4.3 (Characteristic formulas for MAr) There is a computable
function that associates to each P € MAr a formula Fp such that for any
Q € MA,

QEFp iff P oo Q.

We shall see that ~1,;5 coincides with =, thus the result can also be formu-
lated in terms of characteristic formulas for =y..

For some of the constructions above we use some special formulas that are
of independent interest. One such formula is satisfied by precisely the finite
processes. It is derived by exploiting the lemma below, which gives us an oper-
ational characterisation of ‘finiteness’.

Lemma 4.4 P € MA is finite iff there are Q, R,n such thatn[P | Q] | R = 0.

10



Proposition 4.5 Let ¢g, = 3Ja. (T » (T»<0)@z). For any P € MA,

P |= ¢gn iff P is finite.

We can also define, for any finite set S of names, a formula satisfied by
those processes whose set of free names is precisely S. For this construction we
exploit the ability, using the modal formulas for capabilities, to detect unguarded
occurrences of names, together with Lemma 4.6. A process P is flat if the only
process underneath all capabilities and inside all ambients of P is O.

Lemma 4.6 For all P,n, n € fu(P) iff for any name m, there are some flat
processes @, R such that n ¢ fn(Q, R), and a process S with an occurrence of n
at top level such that m[P | Q] | R = mJ[S].

Proposition 4.7 There is a computable function that associates to each finite
set S of names a formula refers S such that for any P € MA
P = refers S iff S=m(P).

The definition of refers S is given in Table 4.

We derive completeness of ~;s by exploiting the formulas introduced above.
However, since we work on the whole calculus MA, we cannot assume any image
finiteness hypothesis. Instead, we rely on another form of finiteness of the
restriction-free MA.

Define cont(P) as the set of all subterms of P appearing under at least one
capability, quotiented by =. We have the following properties:

Lemma 4.8

e For any process P, cont(P) is finite.

o Let P,Q be two terms such that P — Q or P =% Q; then cont(Q) C
cont(P).

Along the lines of the definitions above, it is not difficult to define a formula
to characterise the active context of a term. The only missing information
to get a characteristic formula has then to do with the terms that should be
placed after the capabilities. We did not find a general way to express this.
However, to obtain completeness, it is enough to work with a restricted notion
of characteristic formula. Lemma 4.8 allows us indeed to establish the following
result:

Lemma 4.9 (Restricted characteristic formula) For any two terms P,Q
of MA, there ezists a formula Fpg such that for any Q' and cap satisfying

(cap)
Q = Q|
Q/ ‘: FP’Q lff Q/ bis P.
As a direct important consequence, we have:

Theorem 4.10 (Completeness of ~y;5) In MA, it holds that =, C ~ps.

Corollary 4.11 In MA, relations =1, ~pis and ~inq coincide. Further, on
MA", they also coincide with =.

11



Model-checking and tautologies. In AL, the construction of characteristic
formulas has connections with the decidability of other problems related to the
logic, namely model-checking (whether P}=.4 holds, for any given process P and
formula A) and validity (whether a given formula A is satisfied by all processes).
These problems have been addressed in [11, 4]. In particular, for AL, in [11] the
undecidability of tautologies is established on a small fragment of the logic, a
result that entails the undecidability of model-checking.

Using characteristic formulas, we can derive results similar, albeit weaker,
to those in [11] proceeding the other way around (they are weaker because
undecidability is established on a larger language). Indeed, we have, for all
P,Q,R € MAY™:

PEFg N OFg if P= Q= R.
Now, since = is undecidable on MAJ}" (as will be shown in Section 5), so is
the model checking problem.

More generally, the existence of characteristic formulas allows us to consider
validity and model-checking to be equivalent decision problems. To see why,
first remark that validity can be encoded inside model-checking [9], thanks to
the > connective. Conversely, we can encode the model-checking problem inside
validity using characteristic formulas as follows (recall that Fp is the character-
istic formula of process P):

for all P € MAyp, forall A, PEA iff + Fp— A.

In [11] and [4], model-checking and validity turn out to be either both decid-
able or both undecidable, the key issue being the presence of name quantification
in the logic. We do not know at present whether characteristic formulas could
be derived in the setting of [4].

5 (Un)decidability of the logical equivalence

The undecidability of =, on MA is obtained via an encoding of Turing Machines
(TM’s) in the subcalculus MAR.".

The encoding and its correctness proof are conceptually simple. The proof,
however, is long and tedious, due to the complexity of the TM encoding. Our
encoding follows the ideas of Cardelli and Gordon’s [7]. We had however to
add or expand some components, because: (1) we do not have the restriction
operator, used in [7]; (2) we cannot use coarse behavioural equivalences such as
testing or barbed equivalence to reason on processes, as customary in process
calculus encodings; we are only allowed to use =, which is a very strong equiva-
lence (on MAJ", = and =p, coincide, Theorem 3.8); therefore, for instance, we
cannot algebraically garbage collect deadlocked processes: we have to add into
the encoding special processes that explicitly perform garbage collection; (3) we
need the simulation of a TM to be (almost) deterministic; to obtain this, we
have to add some components that force sequentialisations. We are not aware
of correctness results concerning the encoding of [7].

A TM is defined by a ribbon, a transition relation on some set of states, initial
and accepting states. A ribbon is a finite sequence of cells, each containing a
binary information. In the encoding, a ribbon of length k is represented by a
nesting of k ambients named cell. Each such ambient has a subambient d[0],
where d € {tt, ff'} represents the content of the cell. The Turing machine moves

12



left and right by exercing in cell and out cell capabilities. After each movement,
an ambient representing the head of the machine reads the value of the current
cell, rewrites it, and triggers the next movement.

For the correctness, the central result roughly says that if a given Turing
machine M in state Sy recognises a word w of input and terminates in a state
S; with a word w’ on the ribbon, then

TM(w, Sp) ~* TM(w',S),

where TM(v, S) represents the encoding of the TM in state S and with v as
content of the ribbon, and the relation ~»* is defined as follows: write P ~» @
if P— @ and for any Q' such that P — @', either Q' /— or @ = Q'; then
~»* is the reflexive and transitive closure of ~». Thus P ~* @ says that P
can reduce to @ and, moreover, the reduction is almost deterministic. (What
prevents pure determinism are blocking states that arise in the encoding of
if-then-else statements in the TM.)

Moreover, we relate the halting problem of TM’s to the existence of certain
loops: given a Turing machine M and an input word w, there are appropriate
processes Py and P; obtained from the encoding of the TM such that

M halts on input w if Py— P — P,. (2)
Theorem 5.1 =j, is an undecidable relation on MA.

Proof: Consider processes Py and P; from (2). These processes are in MA".
Using Corollary 4.11, the definition of ~,;5, and Theorem 3.8, we have:

open n. Py =1, open n. P;

iff open n.FP; ~;s open n.P;

iff P() = ~his P1 = bis Po
(from Theorem 3.8, = ~y;s is = on MAJY"). Then undecidability follows
from (2). |

Proposition 5.2 (Decidability of =, on MAr and MAT") = is a de-
cidable relation on MAr and MAR".

Proof: These results are proved using the inductive characterisation of =g
(Corollary 4.11) and the image-finiteness conditions in the definitions of the
calculi. For MAJ." the result also follows directly from Theorem 3.8. O

The encoding of TM’s only uses processes in MA}". The language MAT." is
therefore proved to be Turing complete. This might seem in contradiction with
the decidability of =7 in MAJ.". The proof of Theorem 5.1 does not work for
MAJY" because open n. Py and open n. P; do not belong to this language. In-
deed, concerning MAJ}" we can only derive, from (2), that reachability (whether
P = P’ holds, for any P, P') is undecidable.

Busi and Zavattaro [1] have independently obtained an encoding of Ran-
dom Acces Machines in MAJ}" (although this sublanguage is not explicitely
mentioned in the paper).

6 Extensions
The syntax of MA in [9] also includes communication, i.e., operators (V) for

the emission of a value, and (z)P for reception. The value V' can be a name, a
capability, or a path of capabilities (a string of capabilities).

13



The results we have presented can be extended to MA with communication
of names. In the statement of the results, the main difference is that on MA",
=, coincides with =g, the (decidable) relation obtained by adding the eta-

equality

(@)((x) | (1)P) = ()P
to the axioms of = (a similar result was known for finite MA [19]). We believe
that also the addition of communication of capabilities is easy to handle.

Recent work on spatial logics [3] considers a one-step semantics for the &
construct, recovering the many-steps semantics by means of a recursion operator
in the logic. We believe that in such a framework =, coincides with = on the
whole MA.

Usually [7, 8], the syntax of MA also has the restriction operator. In [10],
Cardelli and Gordon propose an extension of AL with logical connectives to
describe restriction. We do not know at present whether our results continue to
hold with such an extension. In particular, the proof technique involved for the
completeness result without image-finiteness does not seem to be extensible to
a calculus with name restriction, since it would allow infinite name generation
and would break the finiteness property of the set of continuation terms. Also,
we do not know whether the results hold for an MA calculus with a recursion
operator instead of replication, since recursion gives us trees with infinite depth.

Acknowledgments. This work has been supported by european project FET-
Global computing PROFUNDIS.

References

[1] N. Busi and G. Zavattaro. On the expressiveness of Movement in Pure
Mobile Ambients. submitted, 2002.

[2] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In
Proc. of TACS’01, LNCS. Springer Verlag, 2001.

[3] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II).
submitted, 2002.

[4] C. Calcagno, H. Yang, and P. O’Hearn. Computability and Complexity Re-
sults for a Spatial Assertion Language for Data Structures. In Proceedings
of FSTTCS ’01, volume 2245 of LNCS. Springer Verlag, 2001.

[6] L. Cardelli. Describing Semistructured Data. SIGMOD Record, Database
Principles Column, 30(4), 2001.

[6] L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic.
In Proc. of ESOP’01, volume 2028 of LNCS, pages 1-22. Springer Verlag,
2001. invited paper.

[7] L. Cardelli and A. Gordon. Mobile ambients. In Proc. FoSSaCS 98, volume
1378 of Lecture Notes in Computer Science, pages 140-155. Springer Verlag,
1998.

[8] L. Cardelli and A. Gordon. Types for mobile ambients. In Proc. 26th
POPL, pages 79-92. ACM Press, 1999.

14



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In Proc. 27th POPL. ACM Press, 2000.

L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In
Proc. of TLCA’01, volume 2044 of LNCS. Springer Verlag, 2001.

W. Charatonik and J.-M. Talbot. The Decidability of Model Checking
Mobile Ambients. In Proc. of CSL’01, LNCS. Springer LNCS, 2001.

S. Dal-Zilio. Structural Congruence for Ambients is Decidable. In Proc. of
ASTAN’00, volume 1961 of LNCS. Springer Verlag, 2000.

J. Engelfriet and T. Gelsema. Multisets and structural congruence of the
m-calculus with replication. Report 2/95, Leiden University, 1996.

S. Graf and J. Sifakis. A modal characterization of observational congruence
on finite terms of CCS. Information and Control, 68:125-145, 1986.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32:137-161, 1985.

D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103-112, 1996.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge
University Press, 1999.

D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. In
Proc. of 28th POPL, pages 4-17. ACM Press, 2001.

D. Sangiorgi and D. Walker. The mw-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

B. Steffen and A. Ing6lfsdéttir. Characteristic formulae for processes with
divergence. Information and Computation, 110(1):149-163, 1994.

15



Aw

m
fla
fla

toplevelcond n

=n
tm

tcond n

L (n[T)@m (this formula is from [9])
[in m].0 V Jout m].0 VvV [Jopen m].0 V m]0]
Im. ~(m=n) A flat m)“

refersl n 4f ¥m. flatcond n » ( flatcond n » O mjtoplevelcond n] )@m
refers {n,,... ,nk} o Ni_o prefersl ng A V. referslz — \/,_, ,z=n;
Table 4: Formulas for free names

1Comp 0 A 0|0

1Cap def 1Comp A —3z. z[T]

(inn). A ¥ 1Cap A Va. (n[0] > © nfz[A]])@z

(outn). A % 1Cap A Vm. ((Om[A]|n[0])@n)@m

(open n). A € 1Cap A Vm. (n[m[0]] > © m[0] | A)

[cap]. A ef (cap). T A —(cap).~A for any capability cap

Table 5: Formulas for (ephemeral) capabilities

16

inn). T V (outn). T V (openn).T V n[T]) | T




Repi, ,.(A) CAY A Ym. (—refersl m) —
(Jout n].0)* > ( n[0] > OC (n[m[A | T]]))@m

Repous »(A) LAY A vm (—refersl m) —
([in n].0)* > (n[0] > O O(m[A | T]|n[0]))@m

RePopen n(A) & AY A (n[0)* >0 (A | T)
Repyg(A) < (n[A)* A ([open n].0)% > O (n[A] | T)

Table 6: Formulas for persistent single terms

def def
fn[P] = TL[}-P] fcaP-P = <Cap>']:P A [[cap]]' V{P’, P==P'}/ny;, Fr

def
'7:!71/[P] é Repn[](]:P) ]:!‘:aP~P déf Repcap(j:capp)

Table 7: Charateristic formulas

17



