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We show that deciding whether an algebraic variety has an irreducible component of codimension at least d is an NP C -complete problem for every xed d (and is in the Arthur-Merlin class if we assume a bit model of computation). This is the rst part of a paper which w i l l eventually provide similar results for semi-algebraic sets.

Introduction

It was shown in 8] that computing the dimension of algebraic varieties is NP Ccomplete in the Blum-Shub-Smale model of computation, and that in the bit model this problem is in AM (the Arthur-Merlin class) assuming the Generalized Riemann Hypothesis. The dimension of a variety is the dimension of its largest irreducible component, and the dimensions of smaller components may a l s o b e of interest. We g i v e here similar results for the codimension problem CODIM d C : determining whether a variety has an irreducible component of codimension at least d, where d is a given integer. For previous work on the algorithmic aspects of the decomposition of a variety i n to its irreducible components, see 1, 2, 3] (the rst two papers assume a bit model of computation), and 4] for the determination of isolated points.

NP C -Completeness

An instance of CODIM d C consists of a variety V C n de ned by a system f 1 (x) = 0 : : : f s (x) = 0

(1) of polynomial equations (we assume that the f i 's have their exponents coded in unary). An instance is positive i f V has an irreducible component of codimension at least d.

Theorem 1 For every d 0, CODIM d C is NP C -complete. For the bit model of computation we h a ve the following result.

Corollary 1 For every d 0, CODIM d is NP-hard and if we assume the Generalized R iemann Hypothesis, CODIM d is in AM. The NP-hardness of CODIM d follows from the same reduction as in the complex model of computation (see below for the details of the complex case). The second part of Corollary 1 is a direct consequence of Theorem 1 and of a general fact: Theorem 2 Assuming GRH, BP(NP C ) AM.

Proof. Let A be a boolean problem in NP C . W e can assume that the corresponding complex machine is parameter-free by the elimination result of 7]. It is thus possible to reduce A to HN in polynomial time in the bit model (this follows basically from the NP C -completeness of HN C ). Since HN 2 AM under GRH (see the long version of 6]), the same is true of A.

Note that if we only want to apply this result to CODIM d , the elimination result of 7] is not needed since the NP C algorithm for CODIM d C exhibited in the proof of Theorem 1 is parameter-free.

The NP C -hardness of CODIM d C follows from a simple reduction from HN C to CODIM d C . T o decide whether a system of the form (1) is satis able, we i n troduce d new variables x n+1 : : : x n+d . The variety o f C n+d de ned by f 1 (x) = 0 : : : f s (x) = 0 x n+1 = 0 : : : x n+d = 0 is a positive instance of CODIM d C if and only if (1) is satis able (indeed, the empty set does not have a n y irreducible component). If you are uncomfortable with proofs that rely too heavily on the properties of the empty set, write down a system of equations for the variety ff 1 (x) = 0 : : : f s (x) = 0 x n+1 = 0 : : : x n+d = 0 g f x n+d = 1 g and you will be convinced that CODIM d C is NP C -hard for d 2.

The proof that CODIM d C 2 NP C relies on the Dimension Theorem, a classical result from algebraic geometry [START_REF] Giusti | La d etermination des points isol es et la dimension d'une vari et e a l g ebrique peut se faire en temps polynomial[END_REF], Chapter 1, Proposition 7.1).

Theorem 3 Let U V C n be two irreducible varieties of dimension p and q, respectively. Any irreducible component of U \V has dimension at least p+q;n. This implies in particular that U \V has dimension at least p+q;n if U \V 6 = .

We also need a more algorithmic tool.

Theorem 4 For every xed n, t h e p r oblem of deciding whether V C n has an insolated p oint is in P C .

In fact, Giusti and Heintz 3] have p r o ved a much more general result: the equidimensional components of V can be constructed in time s O(1) D O(n 2 ) , w h e r e D is the maximum degree of the f i 's. Due to the use of (non-constructive) \correct test sequences", their algorithm is nonuniform. These sequences help determine whether certain polynomials computed by straight-line programs are identically 0. However, in xed dimension, it turns out that these polynomials remain of polynomially bounded degree, and correct test sequences are therefore no longer needed (to determine whether a polynomial is identically 0, we can simply compute the list of its coe cients). This explains why the algorithms of Theorem 4 are uniform.

Proposition 1 Let V C n be a nonempty variety. The following properties are equivalent:

(i) There exists an a ne subspace E of dimension d such that V \E has an isolated p oint.

(ii) There exists an a ne subspace E of dimension d such that V \ E has an isolated p oint.

(iii) V has an irreducible component of codimension d.

Proof. We rst show that (i) implies (ii). Let E be an a ne subspace of dimension d such t h a t V \E has an isolated point x 0 . L e t F beany d-dimensional subspace of E going through x 0 . T h i s p o i n t i s a fortiori isolated in V \ F. Next, we s h o w that (ii) implies (iii), or rather that the negation of (iii) implies the negation of (ii). Let V 1 : : : V r be the irreducible components of V , and d i = dimV i . I f d i n ; d + 1 then by the Dimension Theorem the components of V i \ E are of dimension at least 1. It follows that if (ii) does not hold, V \ E is a (possibly empty) union of irreducible varieties of dimension at least 1, and therefore has no isolated point.

Finally, to see that (iii) implies (i) let V i be a component of dimension d i n ; d, a n d E a su ciently \generic" a ne subspace of dimension n ; d i . Then V i \E is nite and nonempty, and moreover for any j 6 = i, ( V i \E)\(V j \E) = (the genericity o f E implies directly the rst assertion, and also implies the second assertion if we observe t h a t d i m (V i \V j ) < d i by the irreducibility o f V i ). Therefore the elements of V i \ E are isolated in V \ E. 

  = a + P d i=1 i v i in (1). Verifying that V \ E has an isolated point requires only polynomial time since the dimension d is xed. This completes the proof of Theorem 1 since we h a ve already seen that CODIM d C is NP C -hard. 3 Final Remarks A most natural question is whether the codimension problem remains in NP C if d is no longer xed, but rather is given as input. In fact, even if we make the restriction d = n, w e do not know if the resulting problem (deciding whether a v ariety has an isolated point) is in the polynomial hierarchy P H C . ZC C is another related problem which is not known to be inside or outside PH C : given a basic constructible set S (de ned by a conjunction of polynomial equalities and disequalities), decide whether S is Zariski closed. All these problems are also open in the bit model of computation.

	Proof of Theorem 1. The NP C algorithm for CODIM d C is based on the equivalence between (ii) and (iii) in Proposition 1: we guess an a ne subspace E of dimension d and decide with the algorithm of Theorem 4 whether V \ E has an isolated point. More precisely, w e guess a v 1 : : : v d 2 C n and check (in polynomial time) that E = a + V ect(v 1 : : : v d ) has dimension d. T h e n w e obtain a system of equations for V \ E in d variables 1 : : : d by performing the substitution
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