
Laboratoire de l’Informatique du
Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON
no 8512

SPI

A formalization of Static Analyses in System F

Frédéric PROST January 99

Research Report No 1999-07

École Normale Supérieure de
Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37

Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : lip@ens-lyon.fr



A formalization of Static Analyses in System F

Frédéric PROST

January 99

Abstract

In this paper, we propose a common theoretical framework for type based static
functional analyses. The aim is to study the relationships between typing and
program analysis.
We present a variant of Girard’s System F called FΠ

≤: . We prove some basic
properties of FΠ

≤: such as strong normalization, Church-Rosser property, subject
reduction etc. We show how FΠ

≤: can be used to formalize various program
analyses like binding time and dead code, and to encompass previous analyses
both in expressivness (often only simply typed calculi are considered) and power
(more information can be found on some programs).
FΠ

≤: features polymorphism as well as subtyping at the level of universe extend-
ing a previous authors work where only universe polymorphism (on a simply
typed calculus). was considered

Keywords: Type Theory, Pruning, Static Analysis, Polymorphism, Subtyping

Résumé

Dans ce papier,nous proposons un cadre théorique générique pour l’analyse
statique de programmes fonctionnels. Le but poursuivi est l’étude des relations
entre typage et analyse statique de programmes.
Nous présentons une variante du système F de Girard : FΠ

≤: . Nous montrons
que ce système satisfait les propriétés standards de normalisation forte, de
confluence et d’auto-réduction. Nous utilisons ensuite ce système pour forma-
liser différentes analyses statiques (comme l’analyse des temps de liaison ou
bien la recherche de code mort). Nous montrons aussi que ce système permet
de simuler de précédentes analyses de la littérature, et même de les dépasser à
la fois en expressivité (souvent ne sont considérés que des calculs simplements
typés) et en puissance (plus d’informations peuvent être déterminées sur un
programme donné).
FΠ

≤: est caractérisé par la présence simultanée de sous-typage et de polymor-
phisme au niveau des univers. Ce travail étend de précédents travaux de l’au-
teur où seul le polymorphisme (de plus sur un calcul simplement typé) était
considéré.

Mots-clés: Théorie des types, Analyse statique, Polymorphisme, Sous-typage



A formalization of Static Analyses in System F

Frédéric Prost

LIP, Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon

Cedex 07 (France)
email: Frederic.Prost@ens-lyon.fr

Abstract In this paper, we propose a common theoretical framework
for type based static functional analyses. The aim is the study of rela-
tionships between typing and program analysis.
We present a variant of Girard’s System F called FΠ

≤: . We prove basic

properties of FΠ
≤: such as strong normalization, Church-Rosser, subject

reduction etc. We show how FΠ
≤: can be used to formalize various pro-

gram analyses like binding time and dead code, and to encompass pre-
vious analyses both in expressivness (often only simply typed calculi are
considered) and power (more information can be inferred).

FΠ
≤: features polymorphism as well as subtyping at the level of universe

extending previous author work where only universe polymorphism (on
a simply typed calculus) was considered

1 Introduction

The aim of this paper is to provide a theoretical framework for static typed
functional analyses. Static functional analyses such as dead code or binding time
are important to perform valuable program optimizations. Many type inference
based systems have been proposed for those analyses. This work is an attempt
to provide a uniform approach for type inference based systems.

1.1 Static functional program analysis

Two approaches are used for static program analysis in the functional pro-
gramming world: semantic based approach, via abstract interpretation (see
[CC77, Hun91]), and inference based approach. In this paper, we focus on
inference based approach. It has become more and more popular during the
early ’90s. Many annotated type systems have been proposed, see for instance
[Hei95, Sol95, NSN94, HM94, DP98, TJ92], for many analyses like Binding Time,
Strictness, Dead Code, Control Flow etc. Common features can be found in all
these systems. A typed programming language is given. The type system is then
modified by the addition of annotations on types or term constructors. Those
annotations denote semantical properties of the programs (for a survey see the
introduction of [Sol95]). The general picture of this approach is as follows: the
programmer writes a typed program, then his program is automatically re-typed



under a slightly different type system which includes annotations. In this setting,
typing information is meant to be useful for the analysis.

Curry-Howard isomorphism can be used to build programs from proof of
their specifications. Nevertheless, code produced this way contain a lot of useless
parts from an algorithmic point of view. Indeed, a program just contain what is
worthy to implement an algorithm. On the contrary a proof formalizes a great
deal of information which is not needed to compute the final result. For instance
a proof of the Euclidean division gives for any integers a, b a couple q, r which
verify a = bq + r and r ≤ b − 1. From a computational point of view only q, r
are valuable, their properties might be seen as dead code.

The work of C. Paulin (see [Pau89, PM89]) might be seen as a forerunner of
type based systems for this kind of dead code analysis. In this work a system
to extract Fω programs from Calculus of Constructions (CC for short) proofs is
developed. From a programming language point of view, there is no difference
between CC and Fω . Dependent types of CC can only be used to reason about
program properties. Therefore, a syntactical difference between Fω and CC parts
of a term is introduced. It is done by the duplication of the calculus: one part,
typed on universe Prop is used to denote purely logical parts while the other one
typed on universe Spec denotes computational parts of the term (parts which
may be typed on Fω). The extraction process consists in the erasure of parts
typed on Prop. It can also be seen as dead code removal.

A major drawback of typed systems lies in their lack of flexibility. For instance
consider:

p = (λxN .(+ (λyN .5 x) x) 4)

One may like to prove that the first occurrence of x is dead, hence typed on
Prop (if we adopt [PM89] conventions). The problem comes from the second
occurrence of x which is alive and hence should be typed on Spec. Now, since
a term must have a single type and since the analysis must be conservative,
x has to be typed on Spec. Eventually, in order to keep type consistency, the
first occurrence of x cannot be proved dead. A method to overcome this problem,
following [Ber93], is to introduce a dummy term ∅, which is the single inhabitant
of a dummy type U (N might be seen has the type of naturals built over Spec
and U the type of naturals built over Prop). The term:

p′ = (λxN .(+ (λyU .5 ∅) x) 4)

is well typed. p′ can be proved equivalent to p (see [Ber93]), and p′ is an improved
version of p since it contains less code.

Limitations of type inference based systems come from redexes: (λf.t t′).
Variable f must be of the same type that t′, but may be used in different situ-
ations in t, and each of this situation . Consider for instance:

p1 = (λfN→N .(g f (f 4)) λxN .3)

where g is variable of type (N → N ) → (N → N ). Dead code analysis shows
that f is a constant function, therefore that 4 is dead. Now, following [Ber93], if



we replaced dead code by the dummy constant, we would obtain the optimized
program:

p′1 = (λfU→N .(g f (f ∅)) λxU .3)
p′1 is ill typed since f is the argument of g and so should be of type N → N
while f is of type U → N .
To overcome these limitations several paths have been explored. In particular,
subtyping (see. [BB95]), ML polymorphism (see [DHM95, Pro97]), conjunctive
types (see [DP98]) have been tried out to relax constraints imposed by inference
based systems.

1.2 Multi universe system

We take as programming language Girard’s System F , later just called F . This
choice is relevant from our theoretical point of view since via impredicative
encoding, there is no need to define constants. Naturals, booleans, product types
etc. can be built inner the system.

We modify F by the introduction of two different universes from which types
may be built. Following C. Paulin, those two universes may be seen as Prop and
Spec. In the following of the paper we will rather use the notation ⊥ and � for
Prop and Spec, since our use of those two universes is rather different from the
one of [Pau89]. The originality of our system lies on two points:

1. We define an inclusion relation between the two universes, namely ⊥≤:�,
from which we derive a subtyping relation on types.

2. We introduce a notion of universe variable, which is a refinement of [Pro97]
properties variables. We develop a polymorphism à la ML on universes.

A key point that the reader should keep in mind is that FΠ
≤: has two dif-

ferent kinds of polymorphism: one is on types (just as in F ), the other one is
on universes. To enlighten this notion consider for instance N = ΠX.(X →
X) → X → X , the impredicative encoding of natural type. In FΠ

≤: a type
variable X represents all types of a given universe. We would encode the type
of naturals this way: N u = ΠX : u.(X → X) → X → X, where u is an uni-
verse. As we have already said universes may be ⊥, � or a universe variable
α. Therefore, there is naturally a universe variable binder. In FΠ

≤: it is ∀. The
scheme ∀α.ΠX : α.(X → X) → X → X, denotes a type which may be instanti-
ated either to N� or to N⊥.
It seems sensible that, due to subtyping, there may be constraints between uni-
verse variables. Consider the standard subtyping rule:

t : A1 → A2 t′ : A′
1 A′

1≤:A1

(t t′) : A2

If we simply abstract over universe variables that occurs in A1, A2, A
′
1, we “for-

get” that A′
1≤:A1. This oversight can lead to type inconsistency if the type

scheme is badly instantiated. Therefore, to overcome this problem, we introduce
a notion of guarded type scheme: ∀α.C ⇒ (A) might be seen as the type A where
universe α is abstracted and such that any valid instantiation must verify the
constraint set C.



1.3 Overview

The type system FΠ
≤: , and its basic properties, are given in section 2. In section 3,

we informally discuss the semantics behind � and ⊥ universes. Then, in section
4 we see how FΠ

≤: may be used to formalize program analyses such as dead code
and binding time. Finally in section 5 we relate our work to previous ones and
conclude.

2 F Π
≤: system

In this section we present a system to reason about type inference based systems
for static analyses. It is a multi universe F . The different universes will be used
to denote different semantical properties.

2.1 Syntact

We start by defining the syntactic categories of FΠ
≤: :

Universe variables: Universe variables are

α, β

elements of an infinite set of universe variables V . Universes: The set U of FΠ
≤:

universes is given by the grammar

u ::= � | ⊥ | α

We define the relation ≤: between universes. u1≤:u2 always hold except when
u1 = � and u2 = ⊥.

Type variables: Type variables noted

X, Y, Z

are elements of an infinite set of type variable T .

Types: The pre-types of FΠ
≤: are given by

A, B ::= X | A → B | ΠX : u.A

Guarded Type Scheme: Guarded Type schemes are given by

σ ::= A | ∀α.C ⇒ (σ)

where C is a set {u1≤:u2; . . . ; un≤:un+1} of inequalities on U . By extension
we say that C holds if for each i in {1 . . . n}, ui≤:ui+1 holds. Since quan-
tifiers and constraint sets may only occur at the top level of guarded type
schemes, we do not distinguish between σ = ∀α.C ⇒ (∀β.C′ ⇒ (A)) and σ′ =
∀β.C′ ⇒ (∀α.C ⇒ (A)). Thus, for σ and σ′ we use the only notation

∀α, β.C ∪ C′ ⇒ (A).



Terms: The pre-terms of FΠ
≤: are given by

t, t′ ::= x〈S〉 | (t t′) | (t A) | λx : A.t | λX : u.t | let x : A be t in t′

where let x : A be t in t′ might be seen as a synonym for the term (λx : A.t t),
and S is a substitution from universe variables towards U elements.

Substitutions: FΠ
≤: substitutions are finite mappings from universe variables to

universes:
S ::= [α1 �→ u1, . . . , αn �→ un]

where αi are pairwise distinct. D(S) is the domain of S; it is the set of αi. Im(S)
is the image of S; it is the set of ui. A substitution S extends naturally to types
and terms as follows:

[. . . ; α �→ u; . . .](α) = u

S(ΠX : u.A) = ΠX : S(u).S(A)

S(X) = X S(A → B) = S(A) → S(B)

S(x〈S′〉) = x〈S′ ◦ S〉 S((t t′)) = (S(t) S(t′))

S(λx : A.t) = λx : S(A).S(t) S(λX : u.t) = λX : S(u).S(t)

S((t A)) = (S(t) S(A))

S(let x : A be t in t′) = let x : S(A) be S(t) in S(t′)

A substitution S preserves a constraint set C = {u1≤:u2; . . . ; un≤:un+1} if
S(C) = {S(u1)≤:S(u2); . . . ; S(un)≤:S(un+1)} holds.

Contexts: A context is an ordered sequence given by

Γ ::= ∅ | Γ, x : A | Γ, X : u

Judgments: We define three judgments:

J ::= Γ  | Γ  A : u | Γ  t : A

The first has to be read “Γ is a well formed context”, the second “Under the
context Γ , the type A is of universe u” and the third “under the context Γ , the
term t is of type A”.

Typing rules: Typing rules are lists of judgment given by

TR ::= J1 . . . Jn

Jn+1

where J1 . . . Jn are premises and Jn+1 the conclusion.



Derivation tree: are trees of typing rules. They are given by

Ξ ::= TR | Ξ1 . . . Ξn

TR

where premises J1 . . . Jn of TR are equal to Ξ1 . . . Ξn conclusions. We write:
Ξ � Γ  t : A, to mean that Ξ is a derivation tree having the conclusion
Γ  t : A.

FV is the set of free type variables and FUV is the set of free universe
variables. For instance, FUV (∀β, γ.C ⇒ (ΠX : α.X → Y → X → Z)) = α and
FV (∀β, γ.C ⇒ (ΠX : α.X → Y → X → Z)) = {Y, Z}.
Univ(A) (resp. Univ(t)) denotes the set of universes occurring in A (resp. t).
For instance Univ(λX : u.t) = {u} ∪ Univ(t).
If t is a term, by t[t1; . . . ; tn], we mean that ti are disjoint occurrences of subterms
of t. t[t′1; . . . ; t

′
n] denotes the literal replacement of t1, . . . , tn by t′1, . . . , t

′
n.

Following ML type scheme instantiation and generic instantiation (see
[CDDK86] for instance), we define two relations between guarded type schemes.

Definition 2.1 (instantiation)
A guarded type scheme σ′ is called an instance of a guarded type scheme σ

if there exists a substitution S for free universe variables such that:

σ′ = S(σ)

Definition 2.2 (Generic instantiation)
A guarded type scheme σ′ = ∀β1, . . . , βm.C′ ⇒ (A′

0) is called a generic in-
stance of a guarded type scheme σ = ∀α1, . . . , αn.C ⇒ (A0) if there exists a
substitution S such that:

1. D(S) ⊆ {α1, . . . , αn},
2. S(C) = C′ and S preserves C,
3. S(A) = A′.

If σ′ = A′ (hence m = 0), we write σ
S
�A′.

FΠ
≤: is closely related to F . The main difference between F and FΠ

≤: is that F
types are built over a single universe. There is a natural surjection |.| from FΠ

≤:

to F . It is inductively defined as follows:

– Types: |X | = X , |A → A′| = |A| → |A′|, and |ΠX : u.A| = ΠX.|A|.
– Terms: |x〈S〉| = x, |(t t′)| = (|t| |t′|), |(t A)| = (|t| |A|), |λx : A.t| =

λx : |A|.|t|, |λX : u.t| = λX.|t|, and |let x : A be t in t′| = (λx : |A|.|t| |t′|).

This surjection induces an equivalence relation on FΠ
≤: types and terms: we say

that types A, A′ (resp. terms t, t′) have the same skeleton and write A � A′

(resp. t � t′), if |A| = |A′| (resp. |t| = |t′|).



2.2 Type inference system

In this section we discuss FΠ
≤: typing rules. They differ from F typing rules on

the following points:

– Types may be built on different universes.
– Based on basic constraints over universes a subtyping relation between types

is defined.
– By means of universe variable substitutions, types are related via instanti-

ations and generic instantiations.

We first define the subtyping relation ≤: between types which is an extension
of ≤: to types.

Definition 2.3 (Subtyping)
≤: between types is defined as follows:

[Ref ]X≤:X

[→] A′
1≤:A1 A2≤:A′

2

A1 → A2≤:A′
1 → A′

2
[Π ] u2≤:u1 A1[Y := X ]≤:A2[Z := X ]

ΠY : u1.A1≤:ΠZ : u2.A2

where X is a fresh type variable (it allows ΠX : u.X≤:ΠY : u.Y ).

Let A≤:A′, we define CSet(A≤:A′) as the set of universes constraints required
to satisfy A≤:A′. CSet(.) is defined by induction on the form of A and A′:

CSet(X≤:X) = ∅
CSet(A1 → A2≤:A′

1 → A′
2) = CSet(A′

1≤:A1) ∪ CSet(A2≤:A′
2)

CSet(ΠX : u1.A1≤:ΠY : u2.A2) = {u2≤:u1} ∪ CSet(A1≤:A2)

Well-formed types and well-formed context are mutually inductively defined.
Rules are given in Fig. 1.

Well-formed terms are defined by rules given in Fig. 2. A derivation tree Ξ
is valid only if it is built with valid judgments.

In Fig. 2, C denotes any set of inequalities on U .
The intuition behind the function Gen(.), is more or less the same than the one
behind ML generalization. The idea is that the most general type of a term is
obtained by abstraction of its free variables (here universe variables). Because
of subtyping, we cannot simply abstract over free universe variables, since there
may be constraints between universe variables that may be not verified by ran-
dom instantiations. Consider the following derivation:

Γ  t : Nα1 → Nα2 Γ  x : Nα3 Nα3≤:Nα1

Γ  (t x) : Nα2

 λt : Nα1 → Nα2 .λx : Nα3 .(t x) : Nα2

where Γ = t : Nα1 → Nα2 , x : Nα3 , and N u = ΠX : u.(X → X) → X → X.
The most general type induced by this derivation, would be likely
∀α1, α2, α3.(Nα1 → Nα2) → Nα3 → Nα2 . However this scheme would lead



– Contexts:

[Ax] ∅ 

[ΓT ] Γ  X �∈ FV (Γ )
Γ, X : u  [Γt] Γ  σ : u x �∈ FV (Γ )

Γ, x : σ 
– Types:

[∀C] Γ  σ : u α �∈ FUV (Γ )
Γ  ∀α.C ⇒ (σ) : u

[→ C] Γ  A : u Γ  A′ : u′
Γ  A → A′ : u′ [Tvar] Γ, X : u 

Γ, X : u  X : u

[Tadd] Γ  A : u Γ, X : u′ 
Γ, X : u′  A : u

[tadd] Γ  A : u Γ, x : A′ 
Γ, x : A′  A : u

[ΠC] Γ, X : u  A : u′

Γ  ΠX : u.A : u′

Figure1. Rules for well-formed context and types

[Hyp] Γ, x : σ  σ
S
�A

Γ, x : σ  x〈S〉 : A
[add] Γ  t : A Γ, x : σ 

Γ, x : σ  t : A

[→ I] Γ, x : A′  t : A
Γ  λx : A′.t : A′ → A

[ΠI] Γ, X : u  t : A
Γ  λX : u.t : ΠX : u.A

[→ E] Γ  t1 : A2 → A1 Γ  t2 : A′
2 A′

2≤:A2

Γ  (t1 t2) : A1

[ΠE] Γ  t : ΠX : u.A Γ  A′ : u′ u′≤:u
Γ  (f A′) : A[X := A′]

[Poly] Ξ � Γ  t : A Γ, x : Gen(Ξ)  t′ : A′

Γ  let x : A be t in t′ : A′

Figure2. FΠ
≤: Typing rules

to type inconsistency since the substitution S = [α1 �→ �, α3 �→ ⊥] would pro-
duce the term λt : N� → Nα2 .λx : N⊥.(t x), which is not derivable from Fig.
2 rules.



Gen is defined in a mutual inductive way with the term typing judgments: if
Ξ � Γ  t : A, then

Gen(Ξ) =
{
∀α1, . . . , αn.CSet(Ξ) ⇒ (A) FUV (A) \ FUV (Γ ) = {α1, . . . , αn}
A if n=0

where CSet(Ξ) is the extension of constraint set to derivation trees. It is the
set constraints generated by subtyping assumptions in Ξ. More precisely:

CSet

(
Ξ � Γ, x : σ  σ

S
�A

Γ, x : σ  x〈S〉 : A

)
= S(C)

if σ = ∀α1, . . . , αn.C ⇒ (A0).

CSet
(
[add] Ξ � Γ  t : A Γ, x : σ 

Γ, x : σ  t : A

)
= CSet(Ξ)

CSet

(
Ξ � Γ, x : A  t : B

Γ  λx : A.t : A → B

)
= CSet(Ξ)

CSet

(
Ξ = Ξ � Γ, X : u  t : A

Γ  λX : u.t : ΠX : u.A

)
= CSet(Ξ)

CSet

(
Ξ � Γ  t1 : A2 → A1 Ξ ′ � Γ  t2 : A′

2 A′
2≤:A2

Γ  (t1 t2) : B

)
= CSet(Ξ) ∪ CSet(Ξ ′) ∪ CSet(A′≤:A)

CSet

(
Ξ � Γ  t : ΠX : u.A Ξ ′ � Γ  A′ : u′ u′≤:u

Γ  (t A′) : A[X := A′]

)
= CSet(Ξ) ∪ CSet(Ξ ′) ∪ {u′≤:u}

CSet

(
Ξ � Γ  t : A Ξ ′ � Γ, x : Gen(Ξ)  t′ : A′

Γ  let x : A be t in t′ : A′

)
= CSet(Ξ) ∪ CSet(Ξ ′)

The mutually inductive definition of Gen(Ξ) with term typing rules is sound
since derivation trees are finite and recursive calls are done on strictly smaller
derivation trees.

We say that a substitution S preserves a derivation tree Ξ � Γ  t : A if S
preserves CSet(Ξ).

The relation between F and FΠ
≤: is extended to typing derivation. We denote

F judgments by F . F typing rules are simply obtained from FΠ
≤: rules by erasing

all universes. We have the following trivial fact:

Fact 2.1 If Γ  t : A is a valid derivation tree of FΠ
≤: then |Γ |F |t| : |A|.

Fact 2.2 Conversely, for a given F well formed term, tF , there exists many well
formed FΠ

≤: terms t′, such that |t′| = tF . One can remark that “many” means at
least 2: there are the extreme cases when universes used are either all � or all
⊥.



2.3 System properties

We define a notion of reduction in this calculus. The only noticeable feature is
the reduction of let redexes. When a let binding is used, variables are introduced
together with a substitution. During the reduction this substitution is applied
to the term that substitutes the bound variable.

Definition 2.4 (Reductions) The FΠ
≤: β-reduction is defined as follows:

(λx : A.t t′) →β t[x〈S〉 := S(t′)]

(λX : b.t A) →β t[X := A]

We write =β the reflexive, transitive closure of →β , and →∗
β the transitive

closure of →β .
We now study basic properties of →β on FΠ

≤: well formed terms. First we
make a straightforward comment regarding relations between FΠ

≤: reductions and
F β-reductions.

Fact 2.3 Let t be a well formed FΠ
≤: term. If t →β t′ then |t| →β |t′| in F .

Theorem 2.1 (Strong Normalization) →β is strongly normalizing on FΠ
≤:

terms.

Proof: Fact 2.3 and F Strong Normalization implies directly FΠ
≤: S.N. �

The Church-Rosser property is not as easy to prove. Indeed, in general sub-
stitutions do not commute, hence no simple adaptation of F proof should be
expected. However, substitutions in well formed terms satisfy an important prop-
erty: if x〈S〉 and y〈S′〉 occur in a well formed term t with y �= x. Then, if S, S′

are not the identity, it means that x, y are bound by a let expression. Now,
after a correct renaming of bound variables (which are exactly the Domain of
substitutions S, S′), we can ensure D(S) ∩ D(S′) = ∅. Hence S, S′ commute.

Theorem 2.2 (Church Rosser) Let t, t1, t2 be well formed FΠ
≤: terms such

that t →β t1 and t →β t2, then there exist a term t3 such that t1, t2 →∗
β t3.

Proof: As we have seen substitutions commute, hence we can apply F result
(see for instance [GLT89]). �

We now study typing derivation properties. We first address the question of
typing judgment stability through universe substitutions.

Theorem 2.3 Let Γ  A : u, and S a substitution. Then S(Γ )  S(A) : S(u).

Proof: An easy induction. �



Theorem 2.4 (Stability of Typing judgments) Let Ξ�Γ  t : A be a valid
derivation tree of FΠ

≤: , and S a substitution preserving Ξ, then

S(Γ )  S(t) : S(A)

is a valid FΠ
≤: judgment.

Proof: The proof is naturally done by structural induction, and only three rules
need to be carefully checked:

– [Hyp] : Let Ξ � Γ  x〈Sx〉 : A. One has σ
Sx
�A for some σ =

∀α1, . . . , αn.C ⇒ (Ax) and x : σ ∈ Γ , such that A = Sx(Ax) (with Sx

preserving C). Assuming a correct renaming of bound variables, it is safe
to suppose that D(S) ∩ {α1, . . . , αn} = ∅. We define substitution Sunk such
that D(Sunk) = {α1, . . . , αn} and Sunk(αi) = S(Sx(αi)). Therefore:
• Sunk(S(αi)) = Sunk(αi) = S(Sx(αi)) for αi ∈ {α1, . . . , αn}.
• Sunk(S(β)) = S(β) = S(Sx(β)) for any β �∈ {α1, . . . , αn}.

Thus, it is clear that Sunk(S(Ax)) = S(Sx(Ax)) = S(A). Moreover, it is clear
that Sunk preserves S(C). Indeed, Sx preserves C, hence Sx(C) holds and
since S is Ξ consistent it is also Sx(C)-consistent. Thus, S(A) is an instance
of S(σ) = ∀α1, . . . , αn.S(C) ⇒ (S(A0)).

– [→ E] Let Ξ � Γ  (t1 t2) : B. One must have Γ  t1 : A2 → A1,
Γ  t2 : A′

2 and A′
2≤:A2. Now by induction hypothesis we have that S(Γ ) 

S(t1) : S(A1) → S(A2), S(Γ )  S(t2) : S(A′
2). Hence one has only to prove

that S(A′
2)≤:S(A2), which is straightforward since S preserves Ξ (thus all

inequalities remains true relatively to S).
– [Poly] Let Ξ � Γ  let x : A be t in t′ : A′. One has

Ξ ′ � Γ  t : A Γ ; x : Gen(Ξ ′)  t′ : A′

Γ  let x : A be t in t′ : A′

where Gen(Ξ ′) = ∀α1, . . . , αn.C ⇒ (A), with {α1, . . . , αn} ⊆ FUV (A) \
FUV (Γ ). Let β1, . . . , βn be out of the scope of S and not free in Γ . As-
sume S1 = S ◦ [αi �→ βi]. Then, S1(Γ ) = S(Γ ). Now we apply the induc-
tion hypothesis yielding S(Γ )  S(t) : S(A) and S1(Γ ); x : S1(Gen(Ξ ′)) 
S1(t′) : S1(A′). It is easy to check that {β1, . . . , βn} = FUV (S1(A)) \
FUV (S1(Γ )). Thus S1(Gen(Ξ ′)) = ∀β1, . . . , βn.S1(C) ⇒ (S1(A)) =
S(∀α1, . . . , αn.C ⇒ (A)) = S(Gen(Ξ ′)). Now since S(Γ ) = S1(Γ ) the induc-
tion hypotheses induce that S(Γ )  S(t) : S(A) and S(Γ ); x : S(Gen(Ξ ′)) 
S(t′) : S(A′). One has just to apply the rule [Poly] to conclude.

�

It is clear that the subject reduction property does not hold for FΠ
≤: . Indeed,

the term t = (λx : N⊥.x y) is well formed of type N⊥ under a context Γ with
y : N� ∈ Γ , but t →β y and Γ  y : N⊥ is not a valid judgment. Nevertheless,
a weaker version of subject reduction holds.



Theorem 2.5 (“Weak” Subject Reduction) Let Γ  t : A be a valid judg-
ment and t →β t′, then Γ  t′ : A′ with A′≤:A is a valid judgment.

Proof: The proof is done by showing substitution lemma for each redexes.

Lemma 2.1 1. Suppose that Γ  t0 : A′
0, Γ, x : A0  t1 : A1 and A′

0≤:A0, then
Γ  t1[x := t0] : A′

1 and A′
1≤:A1.

2. Suppose that Γ  A0 : u′
0, Γ, X : u0  t : A and u′

0≤:u0, then Γ  t[X :=
A0] : A′ and A′≤:A.

3. Suppose that Ξ0 � Γ  t0 : A0, Γ, x : Gen(Ξ0)  t1 : A1 then Γ  t1[x〈s〉 :=
s(t0)] : A′

1.

Proof:

1. It is done by induction on the form of t. We only treat the non trivial cases.
– If t1 = y. We have two cases, either y �= x or y = x. In the first case,

since t1[x := t0] = y = t1 we have Γ  t1[x := t0] : A1 which concludes.
In the other case, if t1 = x then t1[x := t0] = t0. By hypothesis we know
that Γ  t0 : A′

0 with A′
0≤:A0. Now since Γ, x : A0  t1 : A1 and since

t = x, one must have A0 = A1. Thus the result.
– If t1 = λy : Ay.t11, then A1 = Ay → A11 and Γ, x : A0, y : Ay  t11 : A11.

Now, by induction hypothesis, we have Γ, y : Ay  t11[x := t0] : A′
11 and

A′
11≤:A11. Applying rule [→ I] we obtain: Γ  λy : Ay.t11[x := t0] :

Ay → A′
11. Since Ay → A′

11≤:Ay → A11 we conclude.
– If t1 = λY : u.t11, this case is handled similarly to the previous one.
– If t1 = (t11 t12), then Γ, x : A0  t11 : A12 → A1 and Γ, x : A0 

t12 : A22 and A22≤:A12. Now, we apply induction hypothesis on both
branches and deduce
(a) Γ  t11[x := t0] : A′

12 → A11 with A12≤:A′
12 and A11≤:A1.

(b) Γ  t12[x := t0] : A′
22 and A′

22≤:A22.
So we have A′

22≤:A22≤:A12≤:A′
12, therefore we can apply rule [→ E] and

get Γ  (t11[x := t0] t12[x := t0]) : A11. Since A11≤:A1, it concludes.
– If t1 = (t11 A11), this case is handled similarly to the previous one.
– If t1 = let y : A11 be t11 in t12. Then Ξ11 � Γ, x : A0  t11 : A11 and

Γ, x : A0, y : Gen(Ξ11)  t12 : A1. Now we apply the induction hypothesis
on both branches and deduce:
(a) Ξ ′

11 � Γ  t11[x := t0] : A′
11 and A′

11≤:A11.
(b) Γ, y : Gen(Ξ11)  t12 : A′

1 and A′
1≤:A1.

Clearly Gen(Ξ11) � Gen(Ξ ′
11), thus we can apply the rule [Poly] to get

the desired result.
2. as for point 1.
3. Also by induction hypothesis.

�

Now, the proof of the proposition reduces to a simple induction on redexes.
For each case one has just to apply the correct statement of lemma 2.1. �



To prove theorem 2.6, we develop a new typing system �. The main differ-
ences between  and � lies in context building. In � we consider Π binders as
universe variable binders. It not allows to share universe variables: all universe
variables introduced are unique. In order to enforce this uniqueness we introduce
marks in context statements. We define new syntactic categories

– Marks: Marks are given by the grammar

m ::= ◦ | •

– Statements: A statement is the triplet formed by a mark, a type and a
universe.

s ::= mA : u

– Marked contexts: Marked contexts are lists of statements:

∆ = ∅ | ∆; mA : u

Marked contexts may be seen as lists of well formed types. In these lists, all
types are marked either with ◦ or •. ◦ denotes a “free” type, i.e. a type that has
never be used in a judgment, whereas • denotes a type that has already be used
in a judgment.

The idea is the following. Suppose that you want to introduce variable x of
type N → N in context. The most general way to do it is introduce it with the
type Nα1 → Nα2 with α1 �= α2. To do this, we record in marked context what
types have been built. ◦ will denote free types of the context that may be used
to build a type. • denotes types having already been used.
We define an equivalence relation between marked contexts: •=. ∆1

•=∆2, means
that ∆1 and ∆2 are equivalent except for marks.

– ∅ •=∅,
– if ∆1

•=∆2 then ∆1; ◦A : b
•=∆2; ◦A : b,

– if ∆1
•=∆2 then ∆1; •A : b

•=∆2; ◦A : b.

We now define an operator ∧ between two marked contexts. This operator
build the inf of two contexts.

– ∅ ∧ ∅ = ∅.
– (∆; ◦A : u) ∧ (∆′; ◦A : u) = ∆ ∧ ∆′; ◦A : u.
– (∆; •A : u) ∧ (∆′; •A : u) = ∆ ∧ ∆′; •A : u.
– (∆; ◦A : u) ∧ (∆′; •A : u) = ∆ ∧ ∆′; •A : b.
– (∆; •A : u) ∧ (∆′; ◦A : u) = ∆ ∧ ∆′; •A : b.

With Γ⊕∆ we denote the concatenation of a context Γ and a marked context
∆. In Fig. 3, we give context formation rules for �.

Four rules change from  context formation rules:

1. [Γ
]: Type variables are introduced in context with fresh universe variables.
Thus no ⊥ nor � may occur in well formed contexts.



– Contexts:

[Ax
] ∅ ⊕ ∅ �
[ΓT 
] Γ ⊕ ∆ �

X �∈ FV (Γ )
α �∈ FUV (Γ ∪ ∆)

Γ, X : α ⊕ ∆ �

[Γt
] Γ ⊕ ∆ �σ : u x �∈ Γ
Γ, x : σ ⊕ ∆ �

– Types:

[Tvar
] Γ, X : b ⊕ ∆ �

Γ, X : b ⊕ ∆ �X : b

[∀C
] Γ ⊕ ∆  σ : u α �∈ FUV (Γ )
Γ ⊕ ∆  ∀α.C ⇒ (σ) : u

[→ C
] Γ ⊕ ∆ �A : u Γ ⊕ ∆′ �A
′ : u′ ∆

•=∆′

Γ ⊕ ∆ ∧ ∆′ �A → A′ : u′

[∆•] Γ ⊕ ∆, ◦A : u, ∆′ �

Γ ⊕ ∆, •A : u, ∆′ �A : u

[∆◦] Γ, X : u ⊕ ∆ �A : u′

Γ ⊕ ∆, ◦ΠX : u.A : u′ �

[Tadd
] Γ ⊕ ∆ �A : u Γ, X : u′ ⊕ ∆ �

Γ, X : u′ ⊕ ∆ �A : u

[tadd
] Γ ⊕ ∆ �A : u Γ, x : A′ ⊕ ∆ �

Γ, x : A′ ⊕ ∆ �A : u

Figure3. � context formation rules

2. [→ C
]: This rule weakens marked context by taking the ∧ of the two marked
contexts used to build both parts of an arrow type.

3. [∆◦]: It denotes the use of a type. Before its use the type was marked “free”
(with a ◦ mark) and after it is marked with • because this type has occurred
in the right side of �. Once marked with • the type can no longer be used
in future derivations.

4. [∆•]: This rule allows the introduction of new types in the marked context.
It is the only way to build product types.

We now show that � formation context is a special case of  formation
context.



Proposition 2.1 for all type context ∆ and context Γ

Γ ⊕ ∆ � =⇒ Γ 

Γ ⊕ ∆ �A : α =⇒ Γ  A : α

Proof: The proof is done by mutual induction on the form of the context and
on the form of the type derived.

For context formation:

– If Γ = ∅, it is straightforward.
– If Γ = Γ ′, X : α. Then by rule [ΓT 
], we know that X does not occur in Γ ′.

By induction hypothesis, we know that Γ ′ , thus Γ ′, X : α  by rule [ΓT ].
– If Γ = Γ ′, x : σ. By [Γt
], we know that x does not occur in Γ and Γ⊕∆ �σ :

u. By induction we have that Γ  σ : u, and we can apply rule [Γt].

For type formation:

– If Γ ⊕ ∆ �X : u. It means that X : u occurs in Γ , which by induction
hypothesis is such that Γ . Thus Γ  X : u.

– If Γ ⊕ ∆ �ΠX : u.A : u′. One can note that the only to introduce a Π
binders comes from the rule [∆◦]. Moreover, if Γ ⊕∆ �ΠX : u.A : u′, then
the rule ∆• must have been applied. Therefore the � derivation tree has
the following form :

Γ, X : u ⊕ ∆ �A : u′

Γ ⊕ ∆, ◦ΠX : u.A : u′ �

...
Γ, ∆, ◦ΠX : u.A : u′, ∆′ �

Γ, ∆, •ΠX : u.A : u′, ∆′ �ΠX : u.A : u′

We apply the induction hypothesis on Γ, X : u⊕∆ �A : u′, thus Γ, X : u 
A : u′ and we conclude by the application of rule [ΠI].

– If Γ ⊕ ∆ �A → A′ : u, it is straightforward from the application of the
induction hypothesis on both branches A, A′.

– If Γ ⊕ ∆ �∀α.C ⇒ (σ) : u. Then from rule [∀C
] we have Γ ⊕ ∆ �σ : u.
We can apply the induction hypothesis to conclude (since α does not occur
in Γ ).

�

� is a constructive way to build contexts. Indeed, for a given F context,
there exists only one (up to universe substitution) � context.

Proposition 2.2 Let Γ ⊕∆ �, Γ ′⊕∆′ � and Γ ′ � Γ . Then, there exists S, S′

such that S(Γ ) = Γ ′ and S′(Γ ′) = Γ .



[Hyp
] Γ, x : σ ⊕ ∆ � σ
S
�A

Γ, x : σ ⊕ ∆ �x〈S〉 : A

[add
] Γ ⊕ ∆ �t : A Γ, x : σ ⊕ ∆ �

Γ, x : σ ⊕ ∆ �t : A

[→ I
] Γ, x : A ⊕ ∆ �t : A′

Γ ⊕ ∆ �λx : A.t : A → A′

[ΠI
] Γ, X : α ⊕ ∆ �t : A
Γ ⊕ ∆ �λX : α.t : ΠX : α.A

[→ E
] Γ ⊕ ∆ �t1 : A1 → A2 Γ ⊕ ∆ �t2 : A′ A′≤:A1

Γ ⊕ ∆ �(t1 t2) : A2

[ΠE
] Γ ⊕ ∆ �t : ΠX : u.A Γ ⊕ ∆ �A
′ : u′ ΠX : u.A≤:ΠX : u′.A

Γ ⊕ ∆ �(t A′) : A[X := A′]

[Poly
] Ξ � Γ ⊕ ∆ �t : A Γ, x : Gen(Ξ) ⊕ ∆ �t
′ : A′

Γ ⊕ ∆ �let x : A be t in t′ : A′

Figure4. � Typing rules

Proof: straightforward since universes introduced are all fresh universe variables.
�

We define the judgment Γ ⊕ ∆ �t : A to be red, under the context Γ and
marked context ∆, t is well formed of type A. The rules are given in Fig. 4

Proposition 2.3

– Suppose that Γ ⊕ ∆ �t : A then Γ  t : A is a valid derivation.
– Let Γ ⊕ ∆ �. Then Γ  t : A implies Γ ⊕ ∆ �t : A.

Proof: From proposition 2.1, we now that if Γ is a well formed context for �

then Γ is a well formed context for . Now, � typing rules (see Fig 4) are
exactly the same than  typing rules, except the fact that a marked context
occurs in � typing rules. Since marked context does not play any role in typing
rules we have the result. �

Propositions 2.1 and 2.3, show that � is a restriction of . Indeed, except for
context formation, � is equivalent to . � context formation has the following
properties:



– only universe variable are used in valid derivation (i.e. � derivations are
analyses),

– closed types are built on distinct universe variables.

Proposition 2.4 1. Let Γ , then there exists Γgen such that for some marked
context ∆ and Γgen ⊕ ∆ � there exists a substitution S and S(Γgen) = Γ .

2. Let Γ � Γ ′ be well formed  contexts, there exists a context Γgen, substi-
tutions S, S′, type context ∆ such that Γgen ⊕ ∆ � and S(Γgen) = Γ and
S′(Γgen) = Γ ′.

Proof:

1. It is done by induction on the form of Γ .
– If Γ is empty, it is straightforward.
– If Γ = Γ ′, X : u. By induction we have that Γ ′

gen ⊕ ∆ � and
S(Γ ′

gen) = Γ ′. Now, X �∈ Γ ′ implies X �∈ Γ ′
gen. Therefore if α �∈

FUV (Γ ′) ∪ FUV (∆), Γ ′, X : α ⊕ ∆ �. S[α �→ u](Γ ′, X : α) = Γ .
– If Γ = Γ ′, x : A. By induction we have that Γ ′

gen ⊕ ∆ � and S(Γ ′
gen) =

Γ ′. Now, by proposition 2.1 we have that Γ ′
gen . By theorem 2.3, Γ ′

gen 
A′ : u′ and S(A′) = A S(u′) = u. Thus, by proposition 2.3, Γgen′ ⊕∆′ 
A′ : u′. Hence the result.

2. It is a simple application of the first point and proposition 2.2.

�

We are now ready to prove the following theorem.

Theorem 2.6 (Most General Derivation) Suppose that ΓF F tF : AF .
Then, there exists a most general derivation (MGD for short) such that :
Γgen ⊕ ∆ �tgen : Agen, with |Γgen| = ΓF , |tgen| = tF and |Agen| = AF .

Proof:
Suppose that ΓF F tF : AF . We know that there exists Γ  t : A such that

|Γ | = ΓF , |t| = tF and |A| = AF from fact 2.2. Now, from propositon 2.4 the
result follows immediately.

�

The implications of theorem 2.6 are clear. Suppose given tF , a well formed
F term. We know from the theorem that there exists a valid derivation of some
term tgen for � such that |tgen| = tF . It is easy to see that from propositions
2.3,2.1 and 2.4, and due to the stability of typing judgments via substitutions
that any valid derivation of Γ  t : A in FΠ

≤: is such that S(Γgen) = Γ , S(tgen) = t
and S(Agen) = A.



3 Behind the scene

In this section, we provide the intuitions that led to the definition of a multi
universe typing system. We also informally discuss how FΠ

≤: can be used to
formalize static analyses.

One way of interpreting types is to think of them as partial equivalence
relation over an untyped domain D. These interpretations, called PER inter-
pretation, combines a way of interpreting untyped lambda terms as elements of
some set D with a way of interpreting types as PER on D (see [Mit90]). The
underlying idea is to see the PER interpreting a type A as a typed equality
between terms of A. Thus, in standard PER interpretations, the partial equi-
valence considered are restriction of the equality over the domain of the type.
Now, imagine that instead of equality, types are interpreted as restrictions of
the trivial relation which relates all elements to all. Under this interpretation it
would be impossible to distinguish a term of another one. We claim that types
build on universe � (we will talk about positive types) are interpreted in a
standard way whereas types build on universe ⊥ (we will talk about negative
types) are interpreted as trivial PER. This idea was used both for dead code
analysis [BB95] and binding time analysis [Hun91], in simply typed calculi.

The reason why FΠ
≤: may be used for program analyses becomes now clear.

Suppose that a term t is a function which takes an argument of a negative type
to give back a result of positive type. It means, under the previous semantic,
that whatever is the input of t, its result will remain unchanged. In other words
t is a function constant on its argument.

The originality of our approach lies in the use of universe variables. The
idea, already present in [Pro97], is that the sharing of universe variables allows
to represent constraints across the term. Thus, the most general type of a term
might be seen as a description of the minimal requirements for an analysis to be
sound. Once done, the analysis schema can be instantiated to several analyses.
In the following section we consider dead code and binding time analyses.

4 Program Analysis

In this section we show how FΠ
≤: can be used for various static analyses. We only

consider closed terms, called programs. We start by the definition of an observa-
tional equivalence between FΠ

≤: programs. We introduce simplified terms. They
are terms whom negative subterms have been replaced by dummy constants.
Then, we study relationships between observational and simplification relation.
We show how dead code and binding time can be formalized and proved correct
in our setting. Finally, we give some examples of program analyzes.

4.1 Observational equality and Simplified terms

We define observational equivalence, which serves as semantics of FΠ
≤: pro-

grams. Two programs are equivalents if no observation (i.e. any program that
takes programs as input and give back a boolean) is able to distinguish them.



We define Boolu
def
= ΠX : u.X → X → X , the impredicative encoding of

boolean type. We also define the two inhabitants of this type:

Trueu def
= λX : u.λx1 : X.λx2 : X.x1

and
Falseu def

= λX : u.λx1 : X.λx2 : X.x2

Definition 4.1 (observational equivalence) Let t1, t2 be two programs such
that  t1 : A and  t2 : A, then

t1 =obs t2 ⇐⇒ for all closed t of type A → Bool� (t t1) =β (t t2)

For any negative type A we introduce a dummy constant dA.

[d] Γ  A : ⊥
Γ  dA : A

It is easy to check that the extended system shares the same properties than
FΠ

≤: .
We now introduce a simplification relation based on dummy terms.

Definition 4.2 The simplification relation � on terms is inductively defined on
well formed terms as follows:

– dA�t, for any well formed term of negative type A.
– x〈S〉�x〈S〉.
– λx : A.t1�λy : A.t2 if t1[x := z]�t2[y := z].
– λX : u.t1�λY : u.t2 if t1[X := Z]�t2[Y := Z].
– (t1 t′1)�(t2 t′2) if t1�t2 and t′1�t′2.
– (t1 A)�(t2 A) if t1�t2.
– let x : t1 be A in t′1�let x : t2 be A in t′2, if t1�t2 and t′1�t′2.

The simplification relation states that a term t is a simplified version of a
term t′ if t is obtained by the substitution of some negative subterms by a dummy
constant of the corresponding type.

We now study the behavior of the simplification relation and observational
equality.

Lemma 4.1 If t, t′ are well formed terms of type Bool� in normal form and
t�t′ then t = t′.

Proof: Up to α-conversion the only closed terms of type Bool� in normal form
are True� and False�. �

Lemma 4.2 Suppose Ξ0 � Γ  t0 : A0, Ξ ′
0 � Γ  t′0 : A0, σ0 = Gen(Ξ0),

σ′
0 = Gen(Ξ ′

0), and t0�t′0. We have:



1. If Γ, x : A  t1 : A1, Γ, x : A  t′1 : A1, t1�t′1, A0≤:A. Then, t1[x :=
t0]�t′1[x := t′0].

2. If Γ, X : u  t1 : A1, Γ, X : u  t′1 : A1, t1�t′1, Γ  A : uA, and uA≤:u.
Then, t1[X := A]�t′1[X := A].

3. If Γ, x : σ0  t1 : A1, Γ, x : σ′
0  t′1 : A1, t1�t′1. Then, t1[x〈S〉 :=

S(t0)]�t′1[x〈S〉 := S(t′0)].

Proof:

1. It is an induction on the form of t1:
– If t1 = dA1 , straightforward.
– If t1 = y, then t′1 = y. If y = x, then respectively t1[x := t2] = t2 and

t1[x := t′2] = t′2. By hypothesis t2�t′2. Else y �= x and t1[x := t2] = t1
and t1[x := t′2] = t′1. Hence the result by � reflexivity.

– If t1 = (t11 t12), then t′1 = (t′11 t′12), and result follows immediately
from induction hypothesis on t11, t

′
11 and t22, t

′
22.

– If t1 = (t11 A), then t′1 = (t′11 A), and result follows immediately from
induction hypothesis applied.

– If t1 = λx : Ax.t11, then t′1 = λy : Ay.t′11. Then, the result follows from
the application of induction hypothesis on t11[x := z] and t′11[y := z].

– If t1 = λX : u.t11. Then t′1 = λY : u.t11. The result follows from the
application of the induction hypothesis on t11.

– If t1 = let x : A be t11 in t12, since types play no role, it is showed as for
t1 = (λx : A.t11 t12).

2. It is a simple induction on the form of t1. Since types do not interfere with
�, it is immediate.

3. Since types do not interfere with prune, substitutions neither. Therefore the
proof is the same as in point 1.

�

Using the previous lemma, we are able to show that � and →β commutes.

Theorem 4.1 Let t1�t2 be two well formed programs. If t2 →β t′2 then, there
exists t′1 such that t1 →∗

β t′1, and t′1�t′2.

Proof: � is compatible with term formation. So we can safely only consider
terms which are β-redexes. The proof is then a case analysis on the form of the
redex. �

As first application of this theorem, we show that well formed programs
related by the simplification relation and having type Bool� have the same
normal form.

Theorem 4.2 Let t1�t2 be well formed programs of type Bool�. Then t1 =β t2.

Proof: Since FΠ
≤: is strongly normalizing let us call tnf

1 and tnf
2 the respective

normal forms of t1, t2. By lemma 4.2, we know that tnf
1 �tnf

2 . Now applying
lemma 4.1 we have that tnf

1 = tnf
2 which implies directly t1 =β t2. �



4.2 Binding Time Analysis

As stated in [Hun91], “given a description of the parameters in a program that
will be known at partial evaluation time, a binding time analysis must determine
which parts of the program are dependent solely on these parts (and therefore
also known at partial evaluation time)”. We show that if a function t of positive
type, takes a term of negative type A, then the application of this function to
any term of type A are observationnaly equivalent. In other words: t is static
relatively to its argument.

Theorem 4.3 If t is a program of type A1 → A2, with A1 a negative type and
A2 a positive type. Then, for any t1, t2 programs of type A1, we have (t t1) =obs

(t t2).

Proof: Clearly, (t dA1)�(t t1) and (t dA1)�(t t2).
Now, if A2 is Bool�, we have directly from theorem 4.2 that (t dA1) =obs

(t t1) and similarly that (t dA1)�(t t2). Hence by transitivity of =obs,
(t dA1)�(t t1) =obs (t dA1)�(t t1).

If, A2 is not Bool�. For any closed term tobs of type A2 → Bool�, we can
apply the last reasoning for (tobs (t t1)) and (tobs (t t2)) which are of type
Booltop. Therefore (t t1) =obs (t t2) by the definition of observational equival-
ence. �

Therefore, binding time analysis of a well formed F term t is done as follows in
FΠ

≤: . First, using � the most general derivation of t is built. Then, all universe
variables of known parameters are set to �, and unknown parameters to ⊥.
Using the constraint set of the most general derivation, � and ⊥ are propagated
through the term.

4.3 Dead Code analysis

Instead of being based on its inputs, as binding time analysis is, Dead code
analysis is rather based on its output. Indeed, it aims at finding what part of the
program may be removed without altering its output. For this analysis, we use
[Ber93] principle. In our setting it amounts to show that all negative subterms
of a positive program might be seen as dead code.

Theorem 4.4 Let t1�t2 be two well formed programs of positive type A. Then,
t1 =obs t2.

Proof: If A is Bool�, then theorem 4.2 allows to conclude.
Else if A is not of type Bool�. For any program t of type A → Bool�, we have

(t t1)�(t t2), since � is compatible with term formation. Now if tnf
1 and tnf

2 are
the respective normal forms of (t t1) and (t t2), we have by direct application
of theorem 4.1 that tnf

1 = tnf
2 which concludes. �



Theorem 4.4 states that if we replace a negative subterm of a positive pro-
gram with a dummy constant, the observational behavior of the program does
not change. It means that negative subterms are dead since their value has no
influence over the observational behavior of the program.

Let t be a well formed program of system F . We can use FΠ
≤: to detect

dead code in t in the following way. Theorem 2.6 states that there exists tgen of
type Agen, such that for any FΠ

≤: term t′ such that |t′| = t, there exists S′
t and

St′(tgen) = t′. Now, one has just to find a substitution Sdead, such that Sdead

preserves the most general derivation tree and Sdead(Agen) is a positive type.
Then, all negative subterms of Sdead(tgen) are dead and may be replaced with
dummy constants.

4.4 Examples

Consider the following F program:

p0
def
= let x : N β be p in (+ x (λy : N .5 x))

in which N def
= ΠX.(X → X) → X → X is the impredicative encoding of

natural types, the constant 5 has to be red λX.λs : X → X.λz : X.(s (s . . . z))
as the impredicative encoding of this integer, and p a closed term of type N .

In p0 the variable x is used in 2 places. Its second occurence is dead since it is
the argument of a constant function. Let us consider the following FΠ

≤: derivation
of this program:

Ξ

Γ � + : Nα0 → Nα0 → Nα0 Γ � x : Nα0

Γ � (+ x) : Nα0 → Nα0

Γ ′ � 5 : Nα0

Γ � λy : Nα1 .5 : Nα1 → Nα0 Γ � x : Nα2

Γ � (λy : Nα1 .5 x) : Nα0

Γ � (+ x (λy : Nα1 .5 x)) : Nα0

� let x : Nβ be p in (+ x (λy : Nα1 .5 x)) : Nα0

where Ξ denotes a derivation tree for p (we suppose, for the sake of simplicity
that Ξ generates no constraints on β). Let us call this program p∗0. Now consider
the following substitution:

S = [α0 �→ �; α1 �→ ⊥]

If we apply this substitution to the derivation tree of p∗0, we obtain:

S(Ξ)

Γ � + : N� → N� → N� Γ � x : N�

Γ � (+ x) : N� → N�

Γ ′ � 5 : N�

Γ � λy : N⊥.5 : N⊥ → N� Γ � x : Nα2

Γ � (λy : N⊥.5 x) : N�

Γ � (+ x (λy : N⊥.5 x)) : N�

� let x : Nβ be p in (+ x (λy : N⊥.5 x)) : N�

Now, since S(p∗0) is of positive type, and since the second occurence of x in
S(p∗0) is of negative type theorem 4.4 states that it may safely be replaced with



a dummy term. Let psimpl = let x : N β be p in (+ x (λy : N⊥.5 dN⊥)), then
psimpl�p∗0 and is of type N�.

This trivial example illustrates well the mechanisms of program analyzes in
FΠ

≤: . We left as exercise to the reader the following program:

p1
def
= (λF (N→N→N )→N→N→N .(+ (F λxN , yN .x m n)

(F λxN , yN .y o q))
λfN→N→N , zN , vN .(f z v))

where m, n, o, q are any closed term of type N . Types are given in super-
script for notational convenience. Using FΠ

≤: it is possible to prove that n, q are
dead code. It is impossible to prove it using [BB95]. Another example worth of
consideration is the following one:

p2
def= (λFN→N → N → N .(F λyN .5 m)

λfN→N , xN .(f (f x)))

where m is any closed term of type N . Using FΠ
≤: it is possible to prove that

m is dead code while it is impossible to prove it in [Pro97].

5 Conclusion

We have presented a variant of system F in which types are build on different
universes. ML-Polymorphism at the level of universe as well as subtyping, derived
from a basic inclusion between � and ⊥, are available in FΠ

≤:Ẇe have shown the
basic properties of this system : Strong Normalization, Confluence, stability of
typing through substitutions, Subject Reduction and the existence of a most
generic typing derivation. We have also exposed how it can be used to formalize
program analyzes (construction of the most generic typing) and studied some
applications for dead code and binding time.

Our work differs from earlier studies where polymorphism and/or subtyping
are used for program analyzes. First, our underlying type system is a poly-
morphic λ-calculus, whereas previous works only consider simply typed lambda-
calculi (except [Boe94] but there is nor polymorphism no subtyping in it ). It
makes possible to avoid had-oc typing rules for constants such as if then else
construct, natural numbers, booleans and basic operations on them (like Suc-
cessor,+ etc), through their impredicative encoding. Second, previous works are
generally linked (excepted [Ber93, BB95, Boe94]) to a given reduction strategy.
In our setting only β-reduction is considered. It makes our study valid under
any reduction strategy.

From a theoretical point of view, this work provides an abstract approach of
type based program analyses. It enlightens the relationships between type infer-
ence and program analyses. By few means (different universes and an inclusion
rule between universes), we have shown that it is possible to formalize different
analyses.



Possible further work includes the definition of a suitable semantics for FΠ
≤: ,

based on the intuition developed in section 3. There are also no fundamental
reasons to limit the number of universes to two. For strictness and totality analsis
for instance one could imagin a variant of FΠ

≤: with three universes. Another
direction is to try the idea of variable universes to Fω or even the Calculus
of Constructions. Indeed, the Calculus of Construction is the underlying type
system of proof checkers as Coq (see [BBC+96]) and Lego (see [LP92]). These
proof checkers allow to build programs as proof of their specifications through
extraction. Extraction might more or less be seen as dead code elimination (which
is not entirely true since extraction provides a proof that the extracted program
verifies its specification). It is likely that our dead code analysis would improve
existing extractions.

Acknowledgments

I thank Christine Paulin who suggested the inclusion ⊥≤:�, I also thank Stefano
Berardi for discussions where he gave me valuable intuitions about the implica-
tions of the inclusion for dead code analysis.

References

[BB95] S. Berardi and L. Boerio. Using subtyping in program optimization. In
Proceedings of TLCA’95, LNCS 902. Spinger-Verlag, 1995.

[BBC+96] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, H. Herbelin,
G. Huet, P. Manoury, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring,
A. Säıbi, and B. Werner. The Coq Proof Assistant Reference Manual Ver-
sion 6.1. INRIA-Rocquencourt-CNRS-ENS Lyon, December 1996.

[Ber93] S. Berardi. Pruning simply typed λ–terms. Technical report, Turin Univer-
sity, 1993.

[Boe94] L. Boerio. Extending pruning techniques to polymorphic second order λ–
calculus. In D. Sanella, editor, Proceedings of ESOP’94, LNCS 788, pages
120–134. Springer-Verlag, April 1994.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the 4th ACM Symposium on Principles
of Programming Languages (POPL ’77 ), pages 238–252, New York, 1977.
ACM Press.

[CDDK86] D. Clément, J. Despeyroux, T. Desperoux, and G. Kahn. A simple applic-
ative language: Mini-ML. Technical Report 529, INRIA-Sophia Antipolis,
May 1986.

[DHM95] D. Dussart, F. Henglein, and C. Mossin. Polymorphic recursion and subtype
qualifications: Polymorphic binding-time analysis in polynomial. In Alan
Mycroft, editor, SAS’95: 2nd Int’l Static Analysis Symposium, volume 983
of Lecture Notes in Computer Science, pages 118–135, Glasgow, Scotland,
September 1995. Springer-Verlag.



[DP98] F. Damiani and F. Prost. Detecting and removing dead code using rank-
2 intersection. In International Workshop:”TYPES’96”, selected papers,
LNCS 1512. Spinger-Verlag, 1998.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
University Press, 1989.

[Hei95] N. Heintze. Control-flow analysis and type systems. In Alan Mycroft,
editor, Proceeding of SAS 1995, LNCS 983, pages 189–206. Springer-Verlag,
1995.

[HM94] C. Hankin and D. Le Métayer. A type-based framework for program ana-
lysis. In Proceedings of the Static Analysis Symposium, LNCS 864, pages
380–394. Springer-Verlag, 1994.

[Hun91] S. Hunt. Abstract Interpretation of functionnal languages : from theory to
Practice. PhD thesis, Department of Computing, Imperial College, London,
1991.

[LP92] Z. Luo and R. Pollack. Lego proof development system : User’s manual.
Technical Report ECS-LFCS-92-211, University of Edinburgh., 1992.

[Mit90] J.C. Mitchell. A type inference approach to reduction properties and se-
mantics of polymorphic expressions. In G. Huet, editor, Logical Founda-
tions of Functionnal programming, pages 195–211. Addison-Wesley, 1990.
(Chapter 9).

[NSN94] H.R. Nielson, K.L. Solberg, and F. Nielson. Strictness and totality analysis.
In Static Analysis, LNCS 864, pages 408–422. Springer-Verlag, 1994.

[Pau89] C. Paulin. Extraction de programmes dans le calcul des constructions. PhD
thesis, Université Paris 7, January 1989.

[PM89] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus
of Constructions. In Sixteenth Annual ACM Symposium on Principles of
Programming Languages, Austin, January 1989. ACM.

[Pro97] F. Prost. Using ML type inference for dead code analysis. Research Report
RR97-09, LIP, ENS Lyon, France, May 1997.

[Sol95] K. Lackner Solberg. Annotated Type Systems for Program Analysis. PhD
thesis, Odense University, July 1995.

[TJ92] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In IEEE
Computer Society Press, editor, Proceedings of the 1992 Conference on Logic
in Computer Science, 1992.

This article was processed using the LATEX macro package with LLNCS style


