Vincent Lef

An Algorithm that Computes a Lower Bound on the Distance Between a Segment and Z 2

Keywords: elementary functions, oating-point arithmetic, rounding R fonctions el ementaires, arithm etique virgule-ottante, arrondi

We give a fast algorithm for computing a lower b o u n don the distance b e t ween a straight line and the p o i n ts of a regular grid. This algorithm is used to nd worst cases when trying to round the elementary functions correctly in oating-point arithmetic, which consists in returning the machine numb e rthat is the closest (there are other rounding modes) to the exact result.

Introduction

Our goal is to provide exactly rounded elementary functions in oating-point arithmetic. That is, when computing f(x), where f is exp, log, sin, cos, etc. . . and x is a \machine number", we want to always get the machine numb e rthat is the closest1 to f(x) 1]. To do this, we rst compute (with a precision that is somewhat higher than the \target" precision) an approximation to f(x). Then we round the approximation. The problem is to know if we get the same result as if we had rounded the exact value f(x). Indeed, if the approximation to f(x) is not accurate enough, we cannot ensure that f(x) is correctly rounded this problem is known as the Table Maker's Dilemma. To solve this problem, we must know with which precision we must carry out the intermediate calculations that is, we must know the smallest possible non-zero value of jf(x) ; yj where x is a machine numb e rand y is either a machine numb e ror the average of two consecutive machine numbers, depending on the rounding mode.

For a given x, the above distance jf(x) ; yj is denoted d. We split the considered domain into very small intervals, and in each interval I, we look for the set S I of machine numb e r sx for which d is less than a given real " I we can choose " I small enough such that S I is generally empty, but large enough so that we can approximate the function by degree-1 polynomials, i.e., segments. Approximating the function can b eperformed quickly enough the part that takes most of the time is the tests themselves. As the total numb e rof points x is very large, e.g., of the order of 10 20 for the double-precision numbers, we need a very fast algorithm.

In the chosen domains, the machine numbers are regularly spaced, so that we can multiply the numbers by p o wers of two to consider that they are, in fact, integers. Thus the problem is now: what are the p o i n ts on the given segment such that the x-coordinate is an integer and the distance b e t ween the y-coordinate and the integers is less than a given "? We recall that in most cases, there are no such p o i n ts (from the choice of ").

The naive approach consists in testing each p o i n t whose x-coordinate is an integer: each iteration requires an addition and a comparison by calculating modulo 1 (this is possible if one uses the integer arithmetic of the processor), and shifting the segment by " upwards: with only one unsigned comparison, we can test if a given point is in the interval 0 2"]. The time required by the other operations can b eneglected.

If the numb e rof p o i n ts to test, denoted N, is large enough (e.g., 1000 or larger), there exists a faster method, using the fact that the set S I is generally empty: we can look for a lower b o u n don the distance d, and if d is larger than ", then S I is empty otherwise, we can split the interval into subintervals and use this method with di erent parameters or use the naive approach.

The segment has an equation of the form y = ax ; b, where x is restricted to a given interval, e.g., 0 x < N. In Section 2, we give some mathematical preliminaries and notations. In Section 3, we study the distribution of the p o i n ts k : amodulo 1, where k is an integer satisfying an inequality 0 k < n in particular, we mention a theorem known as the three-distance theorem 2, 3, 4]. In Section 4, we give the algorithm, based on the properties described in Section 3.

2 Mathematical Preliminaries { Notations R , Q , Z, N respectively denote the sets of real numbers, rational numb e r s , integers and non-negative integers.

R =Z is the additive group of the real numb e r smodulo 1. This set can b e viewed as a circle, or the segment 0 1] where b o t hp o i n ts 0 and 1 are identi ed (i.e., reals 0 and 1 represent the same p o i n t). With this second representation, the p o i n t represented by 0 (or 1) can b eregarded as an origin. If a 2 R =Z and k 2 N , k is said to b ethe (group) index of k : a(in the group generated by a). If a 2 R , its image in R =Z will also b edenoted a, as there is no possible confusion.

x y] represents an interval of real numb e r s(open, if one has round brackets). x y]] represents an interval of integers. The symb o l# denotes the cardinality of a nite set.

3 Properties of k : a mod 1

In this section, we study the properties of the p o i n ts y = k : amodulo 1, where a is a given real numb e rand k is an integer restricted to a given interval, e.g., satisfying 0 k < N (where N is a given positive integer). Since R nQ is dense into R and thanks to topological properties, we can suppose that a = 2 Q for the mathematical study thus we avoid casual equalities (see below). The numb e r s a and y may b eregarded as elements of R =Z. Let us take for n 2 N :

E n = fk : a2 R =Z : k 2 N k < ng:

Since a = 2 Q , the set E n has exactly n elements, i.e., there is no multiple-order p o i n t. On examples, we can see that the distribution of the p o i n ts of E n has very interesting properties. In particular, we will look for a construction of E n based on distances b e t ween consecutive p o i n ts on R =Z.

An example is given on the following gure. We chose a rational numb e r (17=45) for a to make the notations simpler and multiplied the rational numb e r s by 45 to get integers, and instead of dealing with R =Z, we deal with Z=45Z. Of course, in our example, we have chosen n small enough to avoid the problems mentioned above (casual equalities. . .).

For 0 i < n, the e n i 's denote the images of the p o i n ts of E n in 0 1), in increasing order. We de ne e n n = 1, which represents the same p o i n t as e n 0 = 0. The distances b e t ween two consecutive p o i n ts on the segment 0 1] (or the circle R =Z) are the values e n i+1 ; e n i for 0 i < n.

We now give a new construction of E n (the equivalence will b eproved later), based on distances. For all n 2, we de ne a sign s n 2 f;1 +1g and a sequence S n of n 4-tuples S n = (d n i r n i j n i k n i) 0 i<n where d n i is a positive real numb e rrepresenting a distance, r n i is a positive integer representing a rank associated with the distance, and both j n i and k n i are elements of N representing group indices. Let us take D n = fd n i : 0 i < ng, which is the set of the distances in S n , h n = max D n and `n = min D n we will show that D n has two or three elements only (this is the three-distance theorem). The sequence S n and the sign s n are de ned by: d 2 0 = a d 2 1 = 1 ; a r 2 0 = r 2 1 = 1 s 2 = sign(1 ; 2a) j 2 0 = 0 k 2 0 = 1 j 2 1 = 1 k 2 1 = 0 and the following transformation. Let i b ethe unique index such that d n i = h n and the rank r n i is minimal. The 4-tuple (d n i r n i j n i k n i) is replaced by two consecutive 4-tuples de ned b e l o w the other terms of the sequence remain unmodi ed and in the same order. The distances of the two 4-tuples are `n and h n ; `n but the order is determined by s n : `n then h n ; `n, if s n = +1 h n ; `n then `n, if s n = ;1. The new ranks are the smallest positive integers such that all the ranks associated with the distance are di erent, i.e., all the couples (d r) in the sequence are di erent note that h n ; `n 6 = `n since a is irrational. The group indices (j n i k n i) are replaced by (j n i n) and (n k n i).

Finally, we take s n+1 = s n sign(h n ; 2`n), i.e., the sign of s n changes if and only if `n+1 < `n this choice ensures that intervals having the same length are split in the same way (see gure).

We can associate a function f n : 0 n ; 1]] ! R =Z with each sequence S n , such that each function f n is a restriction of a function f : N ! R =Z with f(0) = 0 and f(k) ; f(j) = d (mod 1) for each (d r j k) of a sequence S n .

Let us take the last example. For n = 2, we have two p o i n ts on the circle Z=45Z, with respective coordinates f(0) = 0 and f(1) = 17 (modulo 45).

These two p o i n ts form two intervals. The rst interval has length 17, the left end is point 0, the right end is p o i n t 1, and the rank is 1 (initial interval) thus (d r j k) = (17 1 0 1). The second interval has length 45 ; 17 = 28, the left end is p o i n t 1, the right end is p o i n t 0, and the rank is also 1 thus (d r j k) = (28 1 1 0). Now, let us consider the n = 3 to 4 iteration. For n = 3, we have f(0) = 0, f(1) = 17, and f(2) = 34. The interval of length h 3 = 17 and the minimal rank is I = (17 1 0 1). This 4-tuple is replaced by I 0 = (6 1 0 3) and I 00 = (11 2 3 1) respectively. Since d 0 + d 00 = d, j 0 = j, k 00 = k, and k 0 = j 00 = n, this transformation de nes a new p o i n t f(3) = 6.

We now give the theorem showing that both constructions (E n and S n) are equivalent. It will b eproved later.

Theorem 1 For all n 2 and 0 i < n, we have: d n i = e n i+1 ; e n i , e n i = j n i :a and e n i+1 = k n i :a, i.e., 8 k 0 f(k) = k : a .

Let us take C n = #fi : d n i = h n g and de ne a sequence (i i): (0 0) = (a 1 ; a) (i+1 i+1) = (minf i i g j i ; i j)

i.e., at each iteration, one keeps the smaller element and replaces the larger one by the di erence.

The following theorem says that some sequences S n contain only two di erent distances, and the next pair of distances is obtained by replacing the larger distance with the di erence. Between such two sequences, there is a transient p e r i o d ,where the three distances (both distances of the initial sequence, and the di erence) are present.

Theorem 2 There exists a strictly increasing function ' : N ! N such that '(0) = 2, and for all i 0: D '(i) = f i i g and for '(i) < n < '(i + 1) D n = f i i i+1 g: For all i and n such that '(i) 6 n < '(i + 1), one has '(i + 1) = n + C n . In particular, '(i + 1) ; '(i) = C '(i) .

Proof. Theorem 2 is a direct consequence of the construction of the sequences S n : we only use the fact that, at each iteration, an interval of length h n is replaced by two intervals of lengths `n and h n ; `n. Theorem 1 will b ededuced from the following lemma.

Lemma 1 For all n such that #D n = 2, i.e., n 2 '(N):

1. r n 0 = r n n;1 = 1 2. if s n = +1, then d n 0 = `n and d n n;1 = h n if s n = ;1, then d n 0 = h n and d n n;1 = `n 3. j n 0 = k n n;1 = 0, k n 0 = #fi : d n i = d n n;1 g, j n n;1 = #fi : d n i = d n 0 g 4. for all (d r j k), the values j ; r and k ; r only depend on the value of d.

Proof. This lemma can b eproved by induction on n. The main points are given in this proof. Details are left to the reader.

For the proof, (i m) denotes the p o i n t i of the lemma for n = m (1 i 4, m 2).

We can easily verify that, from the de nition of S 2 , the lemma is true for n = 2.

Assume that the lemma is true for a given n 2 '(N). Let us prove that it is still true for the next value n 0 2 '(N). We recall that, from the initial value n to the next value n 0 , each interval of length h n is split into two intervals.

First, let us see what happens for n + 1. The interval of length h n and rank 1 is split into two intervals of lengths `n and h n ; `n. From p o i n t (1 n), this interval is adjacent to an end p o i n t of 0 1]. From the construction of S n+1 , the two new intervals are placed in such a way that the interval of length h n ;`n is adjacent to the end p o i n t. This proves p o i n t (1 n + 1) , therefore p o i n t (1 n 0). Using p o i n t (2 n) and the fact that s has changed if and only if `has changed, this also proves p o i n t (2 n 0). Now, let us consider p o i n t 3. From the construction of the sequences, b o t h indices j m 0 and k m m;1 will still b ezero for m = n 0 , and one of the indices k m 0 and j m m;1 , depending on the value of s n , will not change from m = n to m = n 0 . Let us denote this index by (m) and the other index by 0 (m). From p o i n ts (2 n) and (3 n), this index (m) is equal to #fi : d n i = h n g, which is equal to #fi : d n 0 i = h n ; `ng this proves the part of p o i n t (3 n 0) concerning (n 0). The other index 0 (n 0) will b eadded when m = n + 1 , therefore it will b e equal to n. And we have #fi : d n 0 i = `ng = #fi : d n i = `ng + #fi : d n i = h n g = #S n = n which proves the last part of p o i n t (3 n 0).

Concerning p o i n t 4, let us start with d = `n. By symmetry, we can take s n = +1 (the opposite case is similar). For all (`n r j k), where 1 r j n n;1 , we have j = r ; 1 and k = k n 0 + r ; 1. The new 4-tuple (`n j n n;1 + 1 j k) in S n+1 will satisfy j = j n n;1 and k = n. Thus we still have j = r ; 1 and k = #S n = k n 0 + j n n;1 = k n 0 + r ; 1. Distance d = h n ; `n (the other distance in S n 0) is new in S n+1 , so that there is nothing else to verify for the moment. We have just proved p o i n t (4 n + 1). Points (4 n + 2) to (4 n 0) can b ededuced from p o i n t (4 n + 1) and the construction of the sequences. Now, we can prove Theorem 1.

Proof of Theorem 1. We prove Theorem 1 by induction, in a way similar to the proof of the lemma. For n = 2, Theorem 1 is true.

Assume that the theorem is true for a given n 2 '(N). Let us prove that it is true for n + 1, then for the other values up to the next value in '(N).

By symmetry, we assume that s n = +1. According to the lemma, we have j n n;1 + k n 0 = n. Therefore f(n) = j n n;1 :a + `n = j n n;1 :a + d n 0 = j n n;1 :a + k n 0 :a = n:a and the theorem is true for n + 1. Considering the interval (h n r + 1 j k), we have j = j n n;1 + r since j ; r is a constant (according to the lemma). Thus f(n + r) = j:a + `n = (j n n;1 + r):a + k n 0 :a = (n + r):a and the theorem is true for n + r + 1.

Algorithm

We will consider the successive D '(i) , and memorize the position of p o i n t b in the interval that contains this p o i n t (the distance from b to the lower bound of the interval) and the way in which the intervals are split, i.e., the values h n , `n and s n , where n = '(i). We recall that, at each iteration, the intervals of length h n are split into two intervals of lengths `n and h n ; `n (in the order given by s n), and the intervals of length `n remain unchanged. We stop when n N, where N is the initial numb e rof values to b etested. Then we can calculate the distance from b to the two ends of the interval.

In fact, we want to know whether the distance b e t ween the segment and Z 2 is larger than " or not. To avoid calculating the distance from b to the upper end of the interval, we apply the algorithm to b+" instead of b, i.e., the segment is shifted by " downwards, and we only need to know the distance from b to the lower end of the interval, which is directly given by the algorithm.

Note that with this algorithm, we consider more p o i n ts than wanted. But the numb e rof considered p o i n ts is bounded from above by twice the initial numb e rof p o i n ts, i.e., 2N, which is not too large for our problem, since the value of N can b echosen such that the probability that the test fails is still small.

In order to avoid copying or swapping values and testing \status variables" (such as s), we will replace the variables `and h by the variables x = d n 0 and y = d n n;1 (thus we avoid swapping `and h each time h becomes less than `) and we will remove status variables, like s, by duplicating the code: one part for s = +1 and one part for s = ;1. Thus we will know the position of h and ẁithout any test: (x y) = (` h) in the part where s = +1, and (x y) = (h `) in the part where s = ;1. Instead of comparing `and h, and updating s, we will compare x and y and perform a conditional branch.

We de ne two new variables: u and v, which denote the numb e rof intervals of respective lengths x and y they are only used for calculating n. The variable often. Di erent solutions are possible, but they depend on the context in which the algorithm is applied.

Conclusion

The algorithms have b e e nimplemented on Sun SparcStations to nd the value of x, among the double-precision oating-point numbers in 1 2 1], for which the distance b e t ween exp x and a machine numb e ror a numb e requidistant to two consecutive machine numbers is minimal. The naive algorithm required 3 cycles p e rargument in average. The method described in this paper allowed to deal with 30 arguments p e rcycle in average (with non-optimal parameters).

With the above algorithm, we obtained a speed-up of 90 over the naive algorithm. This can still b eimproved by choosing better parameters, and by improving the implementation (e.g., using the fact that the slope of the segment increases very slowly for this particular problem). Thanks to this algorithm, we will b eable to solve the Table Maker's Dilemma in a reasonable time.

We also consider other \rounding modes", e.g., we may want to get the largest machine numb e rthat is less than or equal to f (x).

b will b emodi ed in such a way that it always contains the distance from the considered p o i n t to the lower end of the interval.

Of course, we will apply the algorithm to rational values, whereas the mathematical study considered irrational values for practical reasons. The algorithm remains the same, but we must b ecareful concerning the particular cases (h = `, then `= 0) and ensure there is no in nite loop.

We have four possible states: h+: the interval containing the p o i n t has length h and s = +1.

h;: the interval containing the p o i n t has length h and s = ;1. `;: the interval containing the p o i n t has length `and s = ;1.

`+: the interval containing the p o i n t has length `and s = +1. In fact, we will group h; and `+ (point b in the interval of length x), as well as h+ and `; (point b in the interval of length y). The algorithm given below can b eimplemented in di erent ways an optimization may require that some instructions are moved, removed or added.

If b is larger than 2", then the distance b e t ween the segment and Z 2 is larger than ". Otherwise the test fails, and we need a more accurate test (e.g., by splitting the segment or using a slower algorithm).

We notice that this algorithm \contains" Euclid's algorithm, which is used to compute the development of a into a continued fraction.

When one of the rst partial quotients of the continued fraction of a is very large, the above algorithm is rather slow for instance, x is much smaller than y (a partial quotient is large) and u is small (the partial quotient is one of the rst ones), thus the numb e ru of p o i n ts added at each iteration is small, and many iterations are needed. It is possible to speed up the algorithm in these cases however it will slow it down in the general case, which occurs much more