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Abstract

We give a fast algorithm for computing a lower bound on the dis�
tance between a straight line and the points of a regular grid� This
algorithm is used to �nd worst cases when trying to round the ele�
mentary functions correctly in �oating�point arithmetic� which con�
sists in returning the machine number that is the closest �there are
other rounding modes� to the exact result�

Keywords� elementary functions� �oating�point arithmetic� rounding

R�esum�e

Nous donnons un algorithme rapide permettant de calculer une mi�
noration de la distance entre un segment de droite et les points d�une
grille r�eguli	ere� Cet algorithme est utilis�e pour trouver les pires cas
lorsque l�on arrondit exactement les fonctions �el�ementaires en arith�
m�etique 	a virgule �ottante� ce qui consiste 	a renvoyer le nombre
machine le plus proche �il existe d�autres modes d�arrondi� du r�esul�
tat exact�

Mots�cl�es� fonctions �el�ementaires� arithm�etique virgule��ottante� arrondi
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� Introduction

Our goal is to provide exactly rounded elementary functions in �oating�point
arithmetic� That is� when computing f�x�� where f is exp� log� sin� cos� etc� � �
and x is a 
machine number�� we want to always get the machine number that
is the closest� to f�x� ��� To do this� we �rst compute �with a precision that is
somewhat higher than the 
target� precision� an approximation to f�x�� Then
we round the approximation� The problem is to know if we get the same result
as if we had rounded the exact value f�x�� Indeed� if the approximation to f�x�
is not accurate enough� we cannot ensure that f�x� is correctly rounded� this
problem is known as the Table Maker�s Dilemma� To solve this problem� we
must know with which precision we must carry out the intermediate calculations�
that is� we must know the smallest possible non�zero value of jf�x�� yj where
x is a machine number and y is either a machine number or the average of two
consecutive machine numbers� depending on the rounding mode�

For a given x� the above distance jf�x� � yj is denoted d� We split the
considered domain into very small intervals� and in each interval I� we look for
the set SI of machine numbers x for which d is less than a given real �I � we can
choose �I small enough such that SI is generally empty� but large enough so
that we can approximate the function by degree� polynomials� i�e�� segments�
Approximating the function can be performed quickly enough� the part that
takes most of the time is the tests themselves� As the total number of points
x is very large� e�g�� of the order of ��� for the double�precision numbers� we
need a very fast algorithm�

In the chosen domains� the machine numbers are regularly spaced� so that
we can multiply the numbers by powers of two to consider that they are� in
fact� integers� Thus the problem is now� what are the points on the given
segment such that the x�coordinate is an integer and the distance between the

�We also consider other �rounding modes�� e�g�� we may want to get the largest machine
number that is less than or equal to f�x��





y�coordinate and the integers is less than a given �� We recall that in most
cases� there are no such points �from the choice of ���

The naive approach consists in testing each point whose x�coordinate is an
integer� each iteration requires an addition and a comparison by calculating
modulo  �this is possible if one uses the integer arithmetic of the processor��
and shifting the segment by � upwards� with only one unsigned comparison� we
can test if a given point is in the interval ��� ���� The time required by the other
operations can be neglected�

If the number of points to test� denoted N � is large enough �e�g�� ��� or
larger�� there exists a faster method� using the fact that the set SI is generally
empty� we can look for a lower bound on the distance d� and if d is larger than
�� then SI is empty� otherwise� we can split the interval into subintervals and
use this method with di�erent parameters or use the naive approach�

The segment has an equation of the form y � ax � b� where x is restricted
to a given interval� e�g�� � � x � N � In Section �� we give some mathematical
preliminaries and notations� In Section �� we study the distribution of the
points k�a modulo � where k is an integer satisfying an inequality � � k � n�
in particular� we mention a theorem known as the three�distance theorem ���
�� ��� In Section �� we give the algorithm� based on the properties described in
Section ��

� Mathematical Preliminaries � Notations

R � Q � Z� N respectively denote the sets of real numbers� rational numbers�
integers and non�negative integers�

R�Z is the additive group of the real numbers modulo � This set can be
viewed as a circle� or the segment ��� � where both points � and  are identi�ed
�i�e�� reals � and  represent the same point�� With this second representation�
the point represented by � �or � can be regarded as an origin� If a � R�Z and
k � N � k is said to be the �group� index of k�a �in the group generated by a��

If a � R � its image in R�Z will also be denoted a� as there is no possible
confusion�

�x� y� represents an interval of real numbers �open� if one has round brackets��
��x� y�� represents an interval of integers� The symbol � denotes the cardinality
of a �nite set�

� Properties of k�a mod �

In this section� we study the properties of the points y � k�a modulo � where
a is a given real number and k is an integer restricted to a given interval� e�g��
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satisfying � � k � N �where N is a given positive integer�� Since RnQ is dense
into R and thanks to topological properties� we can suppose that a �� Q for the
mathematical study� thus we avoid casual equalities �see below�� The numbers
a and y may be regarded as elements of R�Z � Let us take for n � N �

En � fk�a � R�Z � k � N � k � ng�

Since a �� Q � the set En has exactly n elements� i�e�� there is no multiple�order
point� On examples� we can see that the distribution of the points of En has
very interesting properties� In particular� we will look for a construction of En

based on distances between consecutive points on R�Z �

An example is given on the following �gure� We chose a rational number
������ for a to make the notations simpler and multiplied the rational numbers
by �� to get integers� and instead of dealing with R�Z � we deal with Z���Z � Of
course� in our example� we have chosen n small enough to avoid the problems
mentioned above �casual equalities� � � ��

For � � i � n� the en�i�s denote the images of the points of En in ��� ��
in increasing order� We de�ne en�n � � which represents the same point as
en�� � �� The distances between two consecutive points on the segment ��� �
�or the circle R�Z� are the values en�i�� � en�i for � � i � n�

We now give a new construction of En �the equivalence will be proved later��
based on distances� For all n � �� we de�ne a sign sn � f���g and a sequence
Sn of n ��tuples

Sn � �dn�i � rn�i � jn�i � kn�i���i�n

where dn�i is a positive real number representing a distance� rn�i is a positive in�
teger representing a rank associated with the distance� and both jn�i and kn�i are
elements of N representing group indices� Let us take Dn � fdn�i � � � i � ng�
which is the set of the distances in Sn� hn � maxDn and �n � minDn� we
will show that Dn has two or three elements only �this is the three�distance
theorem�� The sequence Sn and the sign sn are de�ned by�

d��� � a� d��� � � a� r��� � r��� � � s� � sign�� �a��

j��� � �� k��� � � j��� � � k��� � ��

and the following transformation� Let i be the unique index such that dn�i � hn
and the rank rn�i is minimal� The ��tuple �dn�i � rn�i � jn�i � kn�i� is replaced by
two consecutive ��tuples de�ned below� the other terms of the sequence remain
unmodi�ed and in the same order� The distances of the two ��tuples are �n
and hn � �n but the order is determined by sn� �n then hn � �n� if sn � ��
hn � �n then �n� if sn � �� The new ranks are the smallest positive integers
such that all the ranks associated with the distance are di�erent� i�e�� all the
couples �d� r� in the sequence are di�erent� note that hn � �n �� �n since a is
irrational� The group indices �jn�i � kn�i� are replaced by �jn�i � n� and �n � kn�i��
Finally� we take sn�� � sn � sign�hn � ��n�� i�e�� the sign of sn changes if and
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only if �n�� � �n� this choice ensures that intervals having the same length are
split in the same way �see �gure��

We can associate a function fn � ���� n� �� � R�Z with each sequence Sn�
such that each function fn is a restriction of a function f � N � R�Z with
f��� � � and f�k�� f�j� � d �mod � for each �d� r� j� k� of a sequence Sn�

Let us take the last example� For n � �� we have two points on the cir�
cle Z���Z � with respective coordinates f��� � � and f�� � � �modulo ����
These two points form two intervals� The �rst interval has length �� the left
end is point �� the right end is point � and the rank is  �initial interval��
thus �d� r� j� k� � ��� � �� �� The second interval has length �� � � � ���
the left end is point � the right end is point �� and the rank is also � thus
�d� r� j� k� � ���� � � ��� Now� let us consider the n � � to � iteration� For
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n � �� we have f��� � �� f�� � �� and f��� � ��� The interval of length
h� � � and the minimal rank is I � ��� � �� �� This ��tuple is replaced by
I � � ��� � �� �� and I �� � �� �� �� � respectively� Since d� � d�� � d� j� � j�
k�� � k� and k� � j�� � n� this transformation de�nes a new point f��� � ��

We now give the theorem showing that both constructions �En and Sn� are
equivalent� It will be proved later�

Theorem � For all n � � and � � i � n� we have� dn�i � en�i�� � en�i�
en�i � jn�i�a and en�i�� � kn�i�a� i�e�� � k � �� f�k� � k�a�

Let us take Cn � �fi � dn�i � hng and de�ne a sequence ��i� �i��

���� ��� � �a� � a�� ��i��� �i��� � �minf�i� �ig� j�i � �ij��

i�e�� at each iteration� one keeps the smaller element and replaces the larger one
by the di�erence�

The following theorem says that some sequences Sn contain only two di�erent
distances� and the next pair of distances is obtained by replacing the larger
distance with the di�erence� Between such two sequences� there is a transient
period� where the three distances �both distances of the initial sequence� and
the di�erence� are present�

Theorem � There exists a strictly increasing function � � N � N such that

���� � �� and for all i � ��

D��i� � f�i � �ig� and for ��i� � n � ��i� �� Dn � f�i � �i � �i��g�

For all i and n such that ��i� � n � ��i � �� one has ��i � � � n � Cn� In

particular� ��i� �� ��i� � C��i��

� Proof� Theorem � is a direct consequence of the construction of the sequences
Sn� we only use the fact that� at each iteration� an interval of length hn is
replaced by two intervals of lengths �n and hn � �n� �

Theorem  will be deduced from the following lemma�

Lemma � For all n such that �Dn � �� i�e�� n � ��N ��

�� rn�� � rn�n�� � �

�� if sn � �� then dn�� � �n and dn�n�� � hn�
if sn � �� then dn�� � hn and dn�n�� � �n�

�� jn�� � kn�n�� � ��
kn�� � �fi � dn�i � dn�n��g�
jn�n�� � �fi � dn�i � dn��g�
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�� for all �d� r� j� k�� the values j� r and k� r only depend on the value of d�

� Proof� This lemma can be proved by induction on n� The main points are given
in this proof� Details are left to the reader�

For the proof� �i�m� denotes the point i of the lemma for n � m � � i � ��
m � ���

We can easily verify that� from the de�nition of S�� the lemma is true for
n � ��

Assume that the lemma is true for a given n � ��N �� Let us prove that it is
still true for the next value n� � ��N �� We recall that� from the initial value n
to the next value n�� each interval of length hn is split into two intervals�

First� let us see what happens for n � � The interval of length hn and
rank  is split into two intervals of lengths �n and hn � �n� From point �� n��
this interval is adjacent to an end point of ��� �� From the construction of Sn���
the two new intervals are placed in such a way that the interval of length hn��n
is adjacent to the end point� This proves point �� n��� therefore point �� n���
Using point ��� n� and the fact that s has changed if and only if � has changed�
this also proves point ��� n���

Now� let us consider point �� From the construction of the sequences� both
indices jm�� and km�m�� will still be zero for m � n�� and one of the indices
km�� and jm�m��� depending on the value of sn� will not change from m � n to
m � n�� Let us denote this index by 	�m� and the other index by 	��m�� From
points ��� n� and ��� n�� this index 	�m� is equal to �fi � dn�i � hng� which is
equal to �fi � dn��i � hn � �ng� this proves the part of point ��� n�� concerning
	�n��� The other index 	��n�� will be added when m � n�� therefore it will be
equal to n� And we have

�fi � dn��i � �ng � �fi � dn�i � �ng��fi � dn�i � hng � �Sn � n�

which proves the last part of point ��� n���

Concerning point �� let us start with d � �n� By symmetry� we can take
sn � � �the opposite case is similar�� For all ��n� r� j� k�� where  � r � jn�n���
we have j � r �  and k � kn�� � r � � The new ��tuple ��n� jn�n�� � � j� k�
in Sn�� will satisfy j � jn�n�� and k � n� Thus we still have j � r �  and
k � �Sn � kn�� � jn�n�� � kn�� � r � � Distance d � hn � �n �the other
distance in Sn�� is new in Sn��� so that there is nothing else to verify for the
moment� We have just proved point ��� n � �� Points ��� n � �� to ��� n�� can
be deduced from point ��� n� � and the construction of the sequences� �

Now� we can prove Theorem �

� Proof of Theorem �� We prove Theorem  by induction� in a way similar to
the proof of the lemma� For n � �� Theorem  is true�
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Assume that the theorem is true for a given n � ��N �� Let us prove that it
is true for n� � then for the other values up to the next value in ��N ��

By symmetry� we assume that sn � �� According to the lemma� we have
jn�n�� � kn�� � n� Therefore

f�n� � jn�n���a� �n � jn�n���a� dn�� � jn�n���a� kn���a � n�a�

and the theorem is true for n� � Considering the interval �hn� r � � j� k�� we
have j � jn�n�� � r since j � r is a constant �according to the lemma�� Thus

f�n� r� � j�a� �n � �jn�n�� � r��a� kn���a � �n� r��a

and the theorem is true for n� r � � �

� Algorithm

We will consider the successive D��i�� and memorize the position of point b in
the interval that contains this point �the distance from b to the lower bound of
the interval� and the way in which the intervals are split� i�e�� the values hn� �n
and sn� where n � ��i�� We recall that� at each iteration� the intervals of length
hn are split into two intervals of lengths �n and hn � �n �in the order given by
sn�� and the intervals of length �n remain unchanged� We stop when n � N �
where N is the initial number of values to be tested� Then we can calculate the
distance from b to the two ends of the interval�

In fact� we want to know whether the distance between the segment and Z�

is larger than � or not� To avoid calculating the distance from b to the upper
end of the interval� we apply the algorithm to b�� instead of b� i�e�� the segment
is shifted by � downwards� and we only need to know the distance from b to the
lower end of the interval� which is directly given by the algorithm�

Note that with this algorithm� we consider more points than wanted� But
the number of considered points is bounded from above by twice the initial
number of points� i�e�� �N � which is not too large for our problem� since the
value of N can be chosen such that the probability that the test fails is still
small�

In order to avoid copying or swapping values and testing 
status variables�
�such as s�� we will replace the variables � and h by the variables x � dn�� and
y � dn�n�� �thus we avoid swapping � and h each time h becomes less than ��
and we will remove status variables� like s� by duplicating the code� one part
for s � � and one part for s � �� Thus we will know the position of h and �
without any test� �x� y� � ��� h� in the part where s � �� and �x� y� � �h� �� in
the part where s � �� Instead of comparing � and h� and updating s� we will
compare x and y and perform a conditional branch�

We de�ne two new variables� u and v� which denote the number of intervals
of respective lengths x and y� they are only used for calculating n� The variable
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b will be modi�ed in such a way that it always contains the distance from the
considered point to the lower end of the interval�

Of course� we will apply the algorithm to rational values� whereas the math�
ematical study considered irrational values for practical reasons� The algorithm
remains the same� but we must be careful concerning the particular cases �h � ��
then � � �� and ensure there is no in�nite loop�

We have four possible states�

	 h�� the interval containing the point has length h and s � ��
	 h�� the interval containing the point has length h and s � ��
	 ��� the interval containing the point has length � and s � ��
	 ��� the interval containing the point has length � and s � ��

In fact� we will group h� and �� �point b in the interval of length x�� as well
as h� and �� �point b in the interval of length y�� The algorithm given below
can be implemented in di�erent ways� an optimization may require that some
instructions are moved� removed or added�

Initialization� x � a� y � � a� u � v � �
In	nite loop�

if �b � x�
while �x � y�

if �u� v � N� exit
y �� x� u �� v�

if �u� v � N� exit
x �� y� v �� u�

else

b �� x�
while �y � x�

if �u� v � N� exit
x �� y� v �� u�

if �u� v � N� exit
y �� x� u �� v�

If b is larger than ��� then the distance between the segment and Z� is larger
than �� Otherwise the test fails� and we need a more accurate test �e�g�� by
splitting the segment or using a slower algorithm��

We notice that this algorithm 
contains� Euclid�s algorithm� which is used
to compute the development of a into a continued fraction�

When one of the �rst partial quotients of the continued fraction of a is very
large� the above algorithm is rather slow� for instance� x is much smaller than
y �a partial quotient is large� and u is small �the partial quotient is one of the
�rst ones�� thus the number u of points added at each iteration is small� and
many iterations are needed� It is possible to speed up the algorithm in these
cases� however it will slow it down in the general case� which occurs much more
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often� Di�erent solutions are possible� but they depend on the context in which
the algorithm is applied�

� Conclusion

The algorithms have been implemented on Sun SparcStations to �nd the value
of x� among the double�precision �oating�point numbers in � �� � �� for which the
distance between expx and a machine number or a number equidistant to two
consecutive machine numbers is minimal� The naive algorithm required � cycles
per argument in average� The method described in this paper allowed to deal
with �� arguments per cycle in average �with non�optimal parameters��

With the above algorithm� we obtained a speed�up of �� over the naive
algorithm� This can still be improved by choosing better parameters� and by
improving the implementation �e�g�� using the fact that the slope of the segment
increases very slowly for this particular problem�� Thanks to this algorithm� we
will be able to solve the Table Maker�s Dilemma in a reasonable time�
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