N
N

N

HAL

open science

A Proposal for a Heterogeneous Cluster ScaLAPACK
(Dense Linear Solvers)
Vincent Boudet, Fabrice Rastello, Yves Robert

» To cite this version:

Vincent Boudet, Fabrice Rastello, Yves Robert.

parallélisme. 1999, 2+16p. hal-02101810

HAL Id: hal-02101810
https://hal-lara.archives-ouvertes.fr /hal-02101810
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A Proposal for a Heterogeneous Cluster ScalLA-
PACK (Dense Linear Solvers). [Research Report] LIP RR-1999-17, Laboratoire de l'informatique du

https://hal-lara.archives-ouvertes.fr/hal-02101810
https://hal.archives-ouvertes.fr

%

Laboratoiredel’ I nformatique du Parall&isme

4 P CENTRE NATIONAL
Ecole Normale Supérieure de Lyon DE LA RECHERCHE

Unité Mixte de Recherche CNRS-INRIA-ENS LYON 1 5668 SCIENTIFIQUE

A Proposal for a Heterogeneous
Cluster ScaLAPACK (Dense Linear
Solvers)

Vincent Boudet, Fabrice Rastello and

February 1999
Yves Robert y

Research Report N° 1999-17

Ecole Normale Supérieure de Lyon
46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ip@ens-lyon.fr

- SPI
EEEEN
EEEEN

%I INRIA

A Proposal for a Heterogeneous
Cluster ScaLAPACK (Dense Linear Solvers)

Vincent Boudet, Fabrice Rastello and Yves Robert

February 1999

Abstract

This paper discusses some algorithmic issues when computing with a
heterogeneous network of workstations (the typical poor man’s parallel
computer). How is it possible to efficiently implement numerical linear
algebra kernels like those included in the ScaLAPACK library 7 Deal-
ing with processors of different speeds requires to use more involved
strategies than purely static block-cyclic data distributions. Dynamic
data distribution is a first possibility but may prove impractical and
not scalable due to communication and control overhead. Static data
distributions tuned to balance execution times constitute another possi-
bility but may prove inefficient due to variations in the processor speeds
(e.g. because of different workloads during the computation). There
is a challenge in determining a trade-off between the data distribution
parameters and the process spawning and possible migration (redistri-
bution) policies. We introduce a semi-static distribution strategy that
can be refined on the fly, and we show that it is well-suited to paral-
lelizing several kernels of the ScaLAPACK library such as LU or QR
decomposition.

Keywords: heterogeneous networks, distributed-memory, different-speed processors, scheduling,
mapping, numerical libraries.

Résumé

Dans ce rapport, nous nous intéressons a des problemes algorithmiques
liés & I'exécution de programmes sur un réseau de stations hétérogene
(la machine paralléle du programmeur pauvre). Comment implémenter
les algorithmes de calcul linéaire, de maniere efficace, comme ceux inclus
dans la librairie ScaLAPACK? Si dans le cadre d’un réseau de machines
hétérogenes, une distribution cyclique purement statique des données
est souvent optimale, elle n’est pas du tout adaptée a cette nouvelle
configuration. Une distribution dynamique ne constitue pas non plus la
solution a notre probléme, & cause du surcoiit de communications lié a
la présence d’'un maitre ou a la présence incessante de redistributions.
Une solution purement statique reste limitée a de courtes exécutions
durant lesquelles la charge des processeurs ne varie pas. Nous propo-
sons donc un algorithme semi-statique, quasi optimal dans le cas ou la
charge des processeurs ne varie pas, et permettant toutefois des redistri-
butions au vol de temps en temps le cas échéant. Ainsi, nous montrons
par des tests effectués sur 2 plateformes différentes que cette approche
constitue probablement une solution bien adaptée & la parallélisation de
plusieurs noyaux de la librairie ScaLAPACK, comme par exemple les
décompositions LU ou QR.

Mots-clés: plateforme hétérogene, mémoire distribuée, processeurs de vitesses différentes,
ordonnancement, distribution, librairies de calcul numérique.

1 Introduction

Heterogeneous networks of workstations are ubiquitous in university departments and companies.
They represent the typical poor man’s parallel computer: running a large PVM or MPI experiment
(possibly all night long) is a cheap alternative to buying supercomputer hours. The idea is to make
use of all available resources, namely slower machines in addition to more recent ones.

The major limitation to programming heterogeneous platforms arises from the additional dif-
ficulty of balancing the load when using processors running at different speed. In this paper,
we explore several possibilities to implement linear algebra kernels on heterogeneous networks of
workstations (NOWSs). Our goal is to come up with a first proposal for a heterogeneous “Clus-
ter ScaLAPACK?” library devoted to dense linear system solvers: how to efficiently implement
numerical kernels like LU or QR decompositions on a heterogeneous NOW?

Consider a heterogeneous NOW: whereas programming a large application made up of several
loosely-coupled tasks can be performed rather easily (because these tasks can be dispatched dy-
namically on the available processors), implementing a tightly-coupled algorithm (such as a linear
system solver) requires carefully tuned scheduling and mapping strategies. Distributing the com-
putations (together with the associated data) can be performed either dynamically or statically,
or a mixture of both. At first sight, we may think that dynamic strategies are likely to perform
better, because the machine loads will be self-regulated, hence self-balanced, if processors pick up
new tasks just as they terminate their current computation. However, data dependences, commu-
nication costs and control overhead may well lead to slow the whole process down to the pace of the
slowest processors. On the other hand, static strategies will suppress (or at least minimize) data
redistributions and control overhead during execution. To be successful, static strategies must obey
a more refined model than standard block-cyclic distributions: such distributions are well-suited
to processors of equal speed but would lead to a great load imbalance with processors of different
speed. The design of static strategies that achieve a good load balance on a heterogeneous NOW
is one of the major achievements of this paper.

The rest of the paper is organized as follows. In Section 2 we discuss a purely static strategy
to allocate data and computations to heterogeneous processors. We propose an allocation based
upon a dynamic-programming algorithm, to evenly distribute independent chunks of computations
to different-speed processors. We analyze this strategy both theoretically and experimentally: in
Section 3 we report PVM experiments run for LU and QR on two different heterogeneous NOWs.
These experiments fully demonstrate the usefulness of our approach. In Section 4, we investigate
several dynamic allocation strategies for implementing dense linear solvers on a heterogeneous
NOW. Our goal is both to compare the static and dynamic approaches, and to present refined
strategies based upon a mixture of static and dynamic allocations. We give some final remarks and
conclusions in Section 5.

2 Static distribution

In this section we investigate static strategies for implementing ScaLAPACK routines on hetero-
geneous NOWs. Static strategies are less general than dynamic ones but constitute an efficient
alternative for heavily constrained problems. The basis for such strategies is to distribute com-
putations to processors so that the workload is evenly balanced, and so that no processor is kept
idle by data dependences. We start with the simple problem of distributing independent chunks of
computations to processors, and we propose an optimal solution for that problem in Section 2.1.
We use this result to tackle the implementation of linear solvers. We propose an optimal data

distribution in Section 2.2.

2.1 Distributing independent chunks

To illustrate the static approach, consider the following simple problem: given M independent
chunks of computations, each of equal size (i.e. each requiring the same amount of work), how
can we assign these chunks to p physical processors Pi, P, ..., P, of respective execution times
t1, ta, ..., tp, so that the workload is best balanced? Here the execution time is understood as
the number of time units needed to perform one chunk of computation. A difficulty arises when
stating the problem: how accurate are the estimated processor speeds? won’t they change during
program execution? We come back on estimating processor speeds later, and we assume for a while
that each processor P; will indeed execute each computation chunk within ¢; time units. Then
how to distribute chunks to processors? The intuition is that the load of P; should be inversely
proportional to ¢;. Since the loads must be integers, we use the following algorithm to solve the
problem:

Algorithm 2.1: Optimal distribution for M independent chunks, over p processors of
speed tq,... ,t,
Initialization: Approximate the ¢; so that ¢; x t; & Constant, and ¢1 +c2 +... + ¢, < M.
1
forallie {1,... ,p}, ¢; = {% X MJ .
i=1 E
lteratively increment some ¢; until ¢y +co + ...+ ¢, =M
form=c +co+...+¢c, toM
find k € {1,... ,p} such that ¢; X (cx + 1) = min{t; X (¢; + 1))}
ce =cp+ 1

Proposition 1 Algorithm 2.1 gives the optimal allocation.

Proof Consider an optimal allocation denoted by o1,. .. , 0,, and let j be such that Vi € {1,... ,p},
o;t;. To prove the correctness of the algorithm, we prove the invariant

(C) Vi € {1, R ,p},citi < o4t

1

After the initialization, ¢; < < x M. We have M = >7_ o < ojt; x 37_ . Hence,

k=17 b
cit; < % < 0t;, and condition (C) holds.
k=1t

We use alrcl induction to prove that condition (C) holds after each incrementation. Suppose that
at a given step some ¢ will be incremented. Before that step, %, ¢; < M, hence there exists
k' e {1,...,p} such that ¢xr < op. We have ty(cp +1) < tyrop < t;joj, and the choice of k implies
that tx(ck + 1) < tgpr(crr +1). Condition (C) does hold after the incrementation.

Finally, the time needed to compute the M chunks with the allocation c1, ... , ¢y is max{t;x¢;} <
0;tj, and our allocation is optimal. [|

Complexity and use Since, ¢i+c2+...4+c¢, > M —p, there are at most p steps of incrementation,
so that the complexity of Algorithm 2.1 is' O(p?). This algorithm can only be applied to simple load

!Using a naive implementation. The complexity can be reduced down to O(plog(p)) using ad-hoc data structures.

Ojtj 2

balancing problems such as matrix-matrix product on a processor ring. Indeed, such an algorithm
can be decomposed into successive communication-free steps. The communication between steps are
reduced to a simple shift across the ring of processes. Each step consists of a bunch of independent
chunks that can be distributed using Algorithm 2.1. Consider a toy example with 3 processors of
respective cycle-times t1 = 3, to = 5 and t3 = 8. We aim to compute the product C = A x B,
where A and B are of size 2496 x 2496. The matrices can be decomposed into 78 x 78 square
blocks of size 32 x 32 (32 is a typical blocksize for cache-based workstations [2]). Hence, M = 78
blocks of columns have to be distributed among the processors, and M = 78 independent chunks
will be computed at each step. Table 1 applies Algorithm 2.1 to this load balancing problem. A
few different steps for matrix multiplication are represented in Figure 1. Our simple allocation is
quite sufficient for matrix multiplication, because each step is optimally load-balanced.

Steps c1 | c2 | c3 | max;(cit;)
Init, m=76 || 39 | 23 | 14 | 117
m="77 40 | 23 | 14 | 120
m=M=T78 40 | 24 | 14 | 120

Table 1: Steps of algorithm 2.1 for 3 processors with ¢t; =3, to =5 and t3 =8, and M =78

15t step:

oep: Clx,1:40]+ = Al*,1] x B[1,1 : 40]; i ‘

opo: Ck,41 : 64]+ = A[+,41] x B[41,41 : 39 _Scfep-l e — AT 39T B39, 1+ 40
64] *p1: [*a .]+ - [*a]X [)Lt]
ep3: C[x,65 : 78]+ = A[x, 65] x B[65,65 :

78].

Figure 1: Different steps of matrix multiplication on a platform made of 3 heterogeneous processors
of respective cycle-times t; = 3, to = 5 and t3 = 8. All indices in the figure are block numbers.

When processor speeds are accurately known and guaranteed not to change during program
execution, the previous approach provides the best possible load balancing of the processors. Let
us discuss the relevance of both hypotheses:

Estimating processor speed. There are too many parameters to accurately predict the actual
speed of a machine for a given program, even assuming that the machine load will remain

the same throughout the computation. Cycle-times must be understood as normalized cycle-
times [4], i.e application-dependent elemental computation times, which are to be computed
via small-scale experiments (repeated several times, with an averaging of the results).

Changes in the machine load. Even during the night, the load of a machine may suddenly and
dramatically change because a new job has just been started. The only possible strategy is
to “use past to predict future”: we can compute performance histograms during the current
computation, these lead to new estimates of the ¢;, which we use for the next allocation. See
the survey paper of Berman [1] for further details.

In a word, a possible approach is to slice the total work into phases. We use small-scale
experiments to compute a first estimation of the ¢;, and we allocate chunks according to these
values for the first phase. During the first phase we measure the actual performance of each
machine. At the end of the phase we collect the new values of the ¢;, and we use these values to
allocate chunks during the second phase, and so on. Of course a phase must be long enough, say
a couple of seconds, so that the overhead due to the communication at the end of each phase is
negligible. Each phase corresponds to B chunks, where B is chosen by the user as a trade-off: the
larger B, the more even the predicted load, but the larger the inaccuracy of the speed estimation.
We come back to estimating processor speeds in Section 4.5.

2.2 Linear solvers

Whereas the previous solution is well-suited to matrix multiplication, it does not perform efficiently
for LU decomposition. Roughly speaking, the LU decomposition algorithm works as follows for a
heterogeneous NOW: blocks of r columns are distributed to processors in a cyclic fashion. This is
a CYCLIC(r) distribution of columns, where r is typically chosen as r = 32 or r = 64 [2]. At
each step, the processor that owns the pivot block factors it and broadcasts it to all the processors,
which update their remaining column blocks. At the next step, the next block of r columns become
the pivot panel, and the computation progresses. The preferred distribution for a homogeneous
NOW is a CYCLIC(r) distribution of columns, where r is typically chosen as r = 32 or r = 64.

Because the largest fraction of the work takes place in the update, we would like to load-balance
the work so that the update is best balanced?. Consider the first step. After the factorization of the
first block, all updates are independent chunks: here a chunk consists of the update of a single block
of r columns. If the matrix size is n = M X r, there are M — 1 chunks. We can use Algorithm 2.1
to distribute these independent chunks.

But the size of the matrix shrinks as the computation goes on. At the second step, the number
of blocks to update is only M — 2. If we want to distribute these chunks independently of the first
step, redistribution of data will have to take place between the two steps, and this will incur a lot of
communications. Rather, we search for a static allocation of columns blocks to processors that will
remain the same throughout the computations, as the elimination progresses. We aim at balancing
the updates of all steps with the same allocation. As illustrated in Figure 2, we need a distribution
that is kind of repetitive (because the matrix shrinks) but not fully cyclic (because processors have
different speeds).

Looking closer at the successive updates, we see that only column blocks of index 2+ 1 to M are
updated at step i. Hence our objective is to find a distribution such that for each i € {2,... , M}, the
amount of blocks in {7,... , M’} owned by a given processor is approximately inversely proportional

2See Section 4.4 for more refined strategies.

40 24 14

>—2——692—>

Figure 2: 33" step of LU decomposition (indices are block numbers): with the former distribution,
the computation becomes less balanced. Here, after factoring block 33, processor 1 has 7 updates
and works for 7 x 3 = 21 units of time, while processor 2 works 24 x 5 = 120 units of time.

to its speed. To derive such a distribution, we use a dynamic programming algorithm which is best
explained using the former toy example again:

Number of chunks || ¢; | ¢ | ¢g | Cost || Selected processor
0 0]0 |0 1
1 110 |0 |3 2
2 1 |11 (0 |25 1
3 2 |1]0 |2 3
4 2 |1 |1]2 1
) 3 |1 |1 |18 2
6 3 12 |1 |1.67 (|1
7 4 |2 |1 |171 |1
8 5 2 |1 |1.87 |2
9 5 |3 |1 |1.67 ||3
10 5 13 |2 |16

Table 2: Running the dynamic programming algorithm with 3 processors: t; = 3, to = 5, and
t3 = 8.

A dynamic programming algorithm In Table 2, we report the allocations found by the al-
gorithm up to B = 10. The entry “Selected processor” denotes the rank of the processor chosen
to build the next allocation. At each step, “Selected processor” is computed so that the cost of
the allocation is minimized. The cost of the allocation is computed as follows: the execution time,
for an allocation C = (ci,c2,...,¢p) is maxi<ij<p ¢;t; (the maximum is taken over all processor
execution times), so that the average cost to execute one chunk is

maxi<i<p € tz'

P
i=1Ci

cost(C) =

For instance at step 4, i.e. to allocate a fourth chunk, we start from the solution for three chunks,

Chunk number 1123456789110
Processornumber | 1 {2 |1 (3 (12112 3

Table 3: Static allocation for B = 10 chunks.

ie. (c1,c2,c3) =(2,1,0). Which processor P; should receive the fourth chunk, i.e. which ¢; should
be incremented? There are three possibilities (¢; + 1,c9,¢3) = (3,1,0), (c1,¢2 + 1,¢3) = (2,2,0)
and (c1,c2,c3 + 1) = (2,1,1) of respective costs & (P is the slowest), 12 (P, is the slowest), and 2
(P5 is the slowest). Hence we select 7 = 3 and we retain the solution (¢1,c2,¢3) = (2,1, 1).

Of course, if we are to allocate 10 chunks, we can use Algorithm 2.1 and find that 5 chunks
should be given to processor 3 to P, and 2 to P;. But the dynamic programming algorithm returns

the optimal solution for allocating any number of chunks, from 1 chunk up to B chunks:

Proposition 2 (see [3]) The dynamic programming algorithm returns the optimal allocation for
any number of chunks up to B.

The complexity of the dynamic programming algorithm is O(pB), where p is the number of
processors and B, the upper bound on the number of chunks. Note that the cost of the allocations
is not a decreasing function of B.

Application to LU decomposition For LU decomposition we allocate slices of B blocks to
processors, as illustrated in Figure 3. B is a parameter that will be discussed below. For a matrix
of size n = m X r, we can simply let B = m, i.e. define a single slice.

Within each slice, we use the dynamic programming algorithm for s = 0 to s = B in a “reverse”
order. Consider the toy example in Table 1 with 3 processors of relative speed t; = 3, to = 5 and
t3 = 8. The dynamic programming algorithm allocates chunks to processors as shown in Table 3.
The allocation of chunks to processors is obtained by reading the second line of Table 3 from right
to left: (3,2,1,1,2,1,3,1,2,1) (see Figure 4 for the detailed allocation within a slice). As illustrated
in Figure 3, at a given step there are several slices of at most B chunks, and the number of chunks
in the first slice decreases as the computation progresses (the leftmost chunk in a slice is computed
first and then there only remains B — 1 chunks in the slice, and so on). In the example, the reversed
allocation best balances the update in the first slice at each step: at the first step when there are
the initial 10 chunks (1 factor and 9 updates), but also at the second step when only 8 updates
remain, and so on. The updating of the other slices remains well-balanced by construction, since
their size does not change, and we keep the best allocation for B = 10. See Figure 4 for the detailed
allocation within a slice, together with the cost of the updates.

I=

done

Figure 3: Allocating slices of B chunks.

average time average time

LU-decomposition LU-decomposition

P1
Py

Static allocation Cyclic distribution

Figure 4: Comparison of two different distributions for the LU-decomposition algorithm on a
heterogeneous platform made of 3 processors of relative speed 3, 5 and 8. The first distribution
is the one given by our algorithm, the second one is the cyclic distribution. The total number of
chunks is B = 10.

2.3 A proposal for a cluster ScaLAPACK

We are ready to propose a first solution for a heterogeneous cluster ScaLAPACK library devoted
to dense linear solvers such as LU or QR factorizations. It turns out that all these solvers share the
same computation unit, namely the processing of a block of r columns at a given step. They all
exhibit the same control graph: the computation processes by steps; at each step the pivot block
is processed, and then it is broadcast to update the remaining blocks (see Section 4.1 for a more
precise statement of this property).

The proposed solution is fully static: at the beginning of the computation, we distribute slices
of the matrix to processors in a cyclic fashion. Each slice is composed of B chunks (blocks of r
columns) and is allocated according to the previous discussion. The value of B is defined by the
user and can be chosen as M if n = m X r, i.e. we define a single slice for the whole matrix. But we
can also choose a value independent of the matrix size: we may look for a fixed value, chosen from
the relative processor speeds, to ensure a good load-balancing. We come back on the usefulness of
this parameter B when discussing extensions to this proposal (Section 4.5).

A major advantage of a fully static distribution with a fixed parameter B is that we can use
the current ScaLAPACK release with little programming effort. In the homogeneous case with p
processors, we use a CY CLIC(r) distribution for the matrix data, and we define p PVM processes.
In the heterogeneous case, we still use a CYCLIC(r) distribution for the data, but we define B
PVM processes which we allocate to the p physical processors according to our load-balancing
strategy. The experiments reported in the next section fully demonstrate that this approach is
quite satisfactory in practice.

3 PVM Experiments

In this section we report several PVM experiments that fully demonstrate the usefulness of the
static approach explained in Section 2.2 .

Description In this section, we report experiments on two different heterogeneous NOWs pre-
sented in Tables 4 and 5. The first network is made of 6 different workstations of the LIP laboratory,
interconnected with Ethernet/IP (we call this network /ip). The second network is made of 3 pro-
cessors, interconnected with Myrinet/IP (we call this network lhpc). We compare the ScaLAPACK
implementation of the standard purely cyclic allocation (CY CLIC(r) to be precise) with a PVM
implementation of our static distribution (with B = 9). We use two different matrix decomposition
algorithms, namely LU and QR . Matrices are of size n x n, and they are divided into blocks of
r = 32 columns.

As already pointed out, these experiments have been obtained with little programming effort,
because we did not modify anything in the ScaLAPACK routines. We only declared several PVM
processes per machine. We did pay a high overhead and memory increase for managing these
processes. This is a limitation in the use of our program as such: we chose the value B =9 instead
of B = 7, which would have led to a better allocation. A refined implementation (maybe using
MPT kernels) would probably yield better results.

We mentioned in Section 2.1 that processor cycle-times are to be computed via small-scale
experiments (repeated several times, with an averaging of the results). Hence, for each algorithm,
we have measured the computation time on different matrix sizes. The measure of processor speeds
for LU decomposition on the lhpc network is reported in Figure 5.

x10° Pr speed for LU ition on a network (myrinet/IP) of 3 processors.

Ratio (execution time)/(N*N*N)
o
T
I

approximated speed for Inpcb T

1 I I I I I I I
0 200 400 600 800 1000 1200 1400 1600

Value of N. Matrix of size NxN.

Figure 5: For each application (LU, QR), we have evaluated the different processor speeds by
running these applications on different problems sizes (lhpc network). We take ti5,c; = 353, tipper =
143 and tlhpcb = 100.

Now, we investigate the value of the “reasonable” speedups that should be expected. We use the
example of LU decomposition on the lip network. Processor speeds are described in Table 4. One
can say that on a heterogeneous NOW, asymptotically, the computation time for LU decomposition
with cyclic distribution is imposed by the slowest processor. Hence, in the example, a cyclic(6)

LU on lip Average time
per column
block

farot Ultra 1 100
arnica Sparc 5 326
smirnoff Sparc 5 303
loop Sparc 5 297
arquebuse Sparc 20 161
xeres ELC 284
B=1 farot 100
B=2 arquebuse 80
B=3 farot 66
B=4 xeres 71
B=5 loop 59
B=6 farot 50
B=7 smirnoff 43
B=8 arquebuse 40
B=9 arnica 36
T
B=0 | Erdrd btk |5
Cyclic(6) 328 54

Table 4: Processor speeds of these 6 workstations (/ip) have been measured by computing the same
LU decomposition on each machine separately. The speed of farot has been set to the value 100 for
reference. The time for the purely cyclic distribution is obtained by noting that the computation
time is imposed by the slowest processor.

LU on lhpc Average time
per column
block

lhpcb Pentium BiPro | 100
lhpcf Pentium 143
lhpci Pentium 353
B=1 lhpcb 100
B=2 lhpef 71
B=3 lhpcb 66
B=4 lhpef 71
B=5 lhpcb 60
B=6 lhpci 59
B=T7 lhpcb 57
B=8 lhpef 54
B=9 lhpcb 55
T
B=co r——— 50
Cyclic(3) 3 118

Table 5: Processor speeds of these 3 workstations (/hpc) have been measured by computing the same
LU decomposition on each machine separately. The speed of lhpcb has been set to the value 100 for
reference. The time for the purely cyclic distribution is obtained by noting that the computation
time is imposed by the slowest processor.

distribution of column blocks to processors will lead to the same execution time as if computed with
6 identical processors of speed 101. Let ¢ be the slowest processor, i.e. suppose that Vi, t, > t;.
The best computation time that can be achieved on the heterogeneous NOW would be Zyptima; =
1 P : toptimal ., 16.8
Tﬁ X . % teyelic(p)- Hence, in our example, m ~ T0E-
One also can approximate the computation time of our distribution by
p
max;_; Gt; p
thetero(B) r =) X tcyclic(p) = ttheoretical -
B tq

Experiments

For each algorithm (LU, QR), we represent on the same graph the execution time for:
e cyclic distribution: it is the ScaLAPACK/PVM implementation.

e our distribution: 9 processes are created on different processors according to the distri-
bution given by the dynamic programming algorithm. Then we use the ScaLAPACK/PVM
implementation with a CY CLIC(32) distribution onto the 9 processes.

e optimal algorithm: it is a theoretical computation time, proportional to the cyclic distri-
bution computation time. The ratio is calculated as previously explained.

Discussion As one can see, we get a better speedup on the [hpc (Myrinet) network than on the
lip (Ethernet) network. It is easily explained by the fact that the “optimal” speedup has been

10

LU decomposition. Execution time on a Network (myrinet/IP) of 3 processors.
T T T

1500 T T T T T
+
/
/
/
cyclic distribution (+) /
! x
+ ’
/ /
1000 / ! B
@
] /
s ! /
2 / /
o 4 "
g / ’
S 7z
§ ,/ /
3 R /8
£ ’.
% 500 . g
L , % 4
/ s
7 e
heterogeneous distribution (x) s
2 .
a -3
P -
¥ _ 20 “optimal” algorithm (d)
%
P
R 5 N
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Squarred matrix of size NxN. Value of N.

Figure 6: For LU decomposition on lhpc, the relative speeds of the processors have been found
to be: (lhpci:1060, lhpcf:430, lhpcb:300). Hence, the distribution for hetero(9) is cyclic(lhpc-

b,f,b,i,b,f;b,E,b). The ratio teyeric(s) OVer toprimat is 2.3 and 22l — 93

ttheoretical

LU decomposition. Execution time on a Network (ethemet/IP) of 6 workstations.
1000 T T T T T

800 q

700 cyclic distribution (+) xq

600~ / ’ I

500 , 4

Execution time (seconds)

400+ v s 1

_ ,/45’ “"optimal" algorithm (d)
atattl I I 1 1
500 1000 1500 2000 2500 3000 3500
Squarred matrix of size NxN. Value of N.

Figure 7: For LU decomposition on lip, the relative speeds of the processors has been found to
be: (arnica:101, smirnoff: 94, xeres:90, loop:92, arquebuse:50, farot:31). Hence, the distribution
for hetero(9) is cyclic(arnica, arquebuse, smirnoff, farot, loop, xeres, farot, arquebuse, farot). The
ratio teycric(s) OVer toptimal 18 1.6 and Levelie© 1 5

ltheoretical

11

QR decomposition. Execution time on a Network (myrinet/IP) of 3 processors.

1800 T T T T T T T
+
/
1600 - / q
T, / a
cyclic distribution (+) S ;
1400 /)/ N
+ /
/ /
1200 , /]
o) /
E ! /
§ / O/
8 1000+ { / B
© , x
£ , /
= 7
S 800f / 6/ 4
5
] g X
o / ’
600 "optimal" algorithm (d) / o7 -
/ X
/+/ .
400 , Q7 4
-
,
+ -
200 E
_F _ g heterogeneous distribution (x)
S
0 e =87 L I I L
0 500 1000 1500 2000 2500 3000 3500 4000

Squarred matrix of size NxN. Value of N.

Figure 8: For QR decomposition on [hpc, the relative speeds of the processors has been found to be:
(Ihpci:160, lhpcf:121, Thpceb:59). Hence, the distribution for hetero(9) is cyclic(lhpe-b,i,b,f,b,b,i,f,b).

tcyclic(?)) =1 4

The ratio teyeric(6) OVer toptimal 18 1.7 and —

QR decomposition. Execution time on a Network (ethernet/IP) of 6 workstations.
1800 T T T T T

1600
1400
1200 cyclic distribution (+)
1000

800

Execution time (seconds;

600

400
-

200 “optimal" algorithm (d)

‘K/
X

I I I
1500 2000 2500
Squarred matrix of size NxN. Value of N.

I
3000 3500

Figure 9: For QR decomposition on lip, the relative speeds of the processors has been found to
be: (arnica:200, smirnoff:190, xeres:165, loop:161, arquebuse:107, farot:72). Hence, the distribution
for hetero(9) is cyclic(farot,arquebuse,arnica,smirnoff,xeres,loop,farot,arquebuse,farot). The ratio

teyclic(6) OVeT toptimal is 1.5 and

tcyclic(6)

Ltheoretical

=1.4.

12

calculated without considering the communications. Hence, since in both cases, communications
are not overlapped with computations, the impact of communications is much more important on
lip than on [hpc. The effects of cache size, and of the pivoting computations make our algorithm
faster than the theoretical approximation does predict. It means that we should take such effects
into account to improve our algorithm (see Section 4.4).

4 Dynamic scheduling

Dynamic solutions are more general than static ones. In this section, we investigate several dynamic
allocation strategies for implementing dense linear solvers on a heterogeneous NOW. Our goal is
twofold: we aim at comparing the static and dynamic approaches, but we also have the objective
to present refined strategies based upon a mixture of static and dynamic allocation.

4.1 Task graph

The task graph of blocked algorithms for dense linear solvers has been studied by several authors,
see [8, 6] among others. We represent this task graph in Figure 4.1. A task represents the processing
of a column block at a given step. Factor tasks (denoted as F') represent the processing of the current
column block (the pivot block in LU). The new value of this block is used to update the remaining
blocks (updates are denoted as U tasks). In Figure 4.1 arrows represent dependences. There
are broadcast dependences between a factor task and all the following update tasks, and vertical
dependences between two consecutive accesses to the same column blocks. QR decomposition obeys
the same control graph as LU decomposition. The only difference resides in the task durations [5].

Figure 10: The task graph of LU and QR decompositions

Tasks will be allocated to processors according to a scheduling and allocation strategy. Com-
munications will occur each time that a given task and one of its predecessors are not allocated to
the same processor. Next, we define a level in a task graph as a set of tasks which are independent,
i.e. there are no data dependences between the tasks of the same level. In Figure 4.1 we check that
a factor task is the single element of a level, and that all the update tasks following the same factor
task are in the same level.

13

4.2 Master-slave paradigms

A first approach is to implement a master-slave solution. Such a solution can be organized by level:
the master computes the the factor task and then dispatches all update tasks of the level to the
slaves. There are two different possibilities according to the memory management policy:

Centralized solution A first possibility is to allocate all column blocks in the memory of the
master. The master computes the factor task and informs the slaves that there are ready tasks
to compute. The slave processors pick up new update tasks just as they become idle. But for
computing each task, they need two column blocks, the one that they update and the pivot, hence
a lot of communication overhead. This overhead can be reduced by broadcasting the pivot, so that
it is communicated only once to each processor. Still, all updates imply a communication from and
to the master. Moreover, with this solution, the size of the problem that can be solved is limited
by the memory of the master.

Decentralized solution The second possibility to allocate the column blocks is to distribute
them cyclically (or randomly) at the beginning to balance the load. Then a column block belongs
to the processor which has been the last to update it. This implies that the master must keep
tracks of block owners. The algorithm is the same: the master computes the pivot and informs the
slaves when update tasks are available. The pivot block is broadcast. A free processor picks up a
new task, but he needs to know the owner of the block to update. Contrary to the first solution,
we are not limited by the memory of the master, but we have to carefully manage the memory of
all the processors, because we have to know at every time who is the owner of every block. The
implementation would be very difficult. As many communications as in the first solution would
take place.

4.3 Scheduling heuristic by levels

In this section we describe the heuristic of Maheswaran and Siegel [9] to map a task graph on
a heterogeneous NOW. We suppose that we already have an initial mapping of the tasks on the
cluster of machines. We consider a set of p machines, where m; be the j-th machine. The tasks are
denoted as sj, 1 < j < T. The estimated (expected) computation time of subtask s; on machine
m; is given by e; ;. The earliest time at which machine m; is available is stored in A[j].

First we compute the critical path of each task using a bottom-up traversal of the graph. We
examine the tasks from the last level up to the first level. The method to compute the critical path
is the following: consider a task s; assigned to a machine m, by the initial mapping. Let iss(s;)
be the immediate successor set of task s;. If s; is an immediate successor of s;, c;; is the data
transfer time for s; to get all the relevant data items from s;. The value of ¢; ; depends on the
machines assigned to tasks s; and s;. On a heterogeneous NOW we can let ¢; ; be zero if the two
machines are the same, and be proportional to the amount of data to be communicated otherwise.
The critical path is given by:

cp(si) = €ip + max (cij+ cp(s)))
s;€iss(s;)
Recursively, we compute the critical path for each task in the graph.
During the execution of the heuristic, we want to change the initial mapping dynamically. The
remapper starts examining the level k of the graph while the task belonging to the previous level
(k — 1) begin their execution. The remapping algorithm is the following: within a level, the tasks

14

are ordered on a priority based on the critical path. We examine the tasks from the highest priority
to the lowest priority. We want for each task to minimize the partial completion time. Let pct(s;,)
denote the partial completion time of task s; on machine m,, dr(s;) be the time at which the last
data item required by s; to begin its execution arrives at my,, and let ips(s;) be the immediate
predecessor set of task s;.

For any task s; in level 0, pct(s;,) = e;,. For any task s; not in level 0, where s; € ips(s;)
and s; is mapped onto machine m,, we have

dr(s;) = max (c;;+ pct(sj,y))
5;€ips(s;)

pct(si, x) = e; , + max(Az], dr(s;))

The task s; is remapped onto the machine m, that gives the minimum pct(s;, z) and Alz] is updated
using pct(s;,). Then the next task from the list is considered for remapping.

We use again the toy-example of Section 2.2: we have 3 machines of respective cycle-times 3,
5 and 8. We report in Figure 11 the output of the heuristic for LU decomposition of a matrix of
size 20. For the sake of comparison, we also report the static allocation of Section 2.2, and another
optimized allocation that is described below.

As for the heuristic, we point out that there are many partial redistributions of column blocks
between levels, so that an actual implementation would be very difficult: we have to keep track of
the owners of the column blocks, because many blocks are moved dynamically during the execution
from one machine to another. Allocating and managing memory will be challenging.

To compare the performance of the heuristic with that of the static approach, we have run
simulations using matrix sizes ranging from 1000 to 2000. The cycle-times of the three machines
are 3, 5 and 8. The cost for a task is proportional to its number of arithmetic computations, while
the cost of a communication between any two processors is proportional to the size of the message
we have to send. We simply took the same value for the elemental computation and elemental
communication times. We sum up all the costs needed to finish the program for every machine and
we keep the maximum time of these costs as the estimated computation time. Results are reported
in Figure 12.

The simulation shows that there is little benefit to expect from the dynamic approach. Its
performances are quite similar to that of our static distribution. Furthermore, in an actual imple-
mentation of the heuristic, we would pay an additional price for the memory management ad the
control overhead. In a word, the dynamic approach offers extra flexibility but cannot compete with
the static solution, due to the numerous dependence constraints in the task graph.

4.4 Optimized distribution

We briefly discuss an optimized version of the static distribution. Contrarily to the previous
solution, all factor tasks will be executed by the fastest processor. To minimize communications, we
request that the fastest processor also executes each update task that is the immediate predecessor
task of a factor task. To keep an optimal allocation, we have to modify our dynamic programming
algorithm to compute the distribution.

Assume that the fastest processor is the first one. Instead of beginning with an allocation
C =(0,0,---,0) we start with C = (2,0,---,0). This corresponds to allocating the first two tasks
on each level to the faster processor. The rest of the algorithm is unchanged. The effect of this

15

3

3535833583533853358 5335833538533538353 3853358335385335385
3 8 3
335538353853358335 335833538533538353 353358335385335385
3 5 3
335563883535833538 35833538533538353 33358335385335385
3 3 3
5353835385335383 5833538533538353 3358335385335385
5 3 3
353835383535383 833538533538353 358335385335385
5 5 3
33853358353385 33538533538353 38335385335385
3 8 3
3538533583353 3538533538353 3335385335385
8 3 3
533538533583 538533538353 335385335385
3 3 3
53835353835 38533538353 353856335385
3 5 3
8353538353 8533538353 3385335385
8 3 3
353538353 533538353 385335385
3 8 3
58353385 33538353 35335385
3 5 3
3583533 3538353 3335385
5 3 3
833538 5383563 335385
5 3 3
33583 38353 35385
3 5 3
5385 8353 3385
3 3 3
353 353 385
8 8 3
53 53 35
3 3 3
5 3 3

Figure 11: Allocation found by the heuristic (left), by the static approach of Section 2.2, and by
the optimized allocation.

16

5.5e+09 T
Our algorithm ——
Siegel ----
5e+09 - Optimized algorithm -----.-4q
4.5e+09 |- e
4e+09 | E
@ /,
£
6 3.5e+09 | |
= e
5
o
£ 3e+09 |- 1
Q
8
o P .
Q e
T 2.5e+00 | R
a p B
w
2e+09 s B
1.5e+09 | 1
1e+09 | .
Se+08 L ‘ ‘ ‘ ‘
1000 1200 1400 1600 1800 2000

Size of the matrix

Figure 12: Comparison of the (simulated) execution times of the three schedules

strategy is to balance all the update tasks of a given level together with the factor task of the next
level.

This new allocation strategy is illustrated in Figure 11. Note that the amount of communications
generated by the program has been increased. In the previous version, we had to broadcast the
pivot block at each level. Now, we still need a broadcast at each level, but there are additional
communications. Each time that we have to compute an update and its following factor task, this
computation is done by the fastest processor. Hence the the processor which originally owns the
corresponding column block has to send it to the fastest processor. When the computations are
done, the fastest processor sends the column block back to the original owner. So, for each level,
we have two additional communications.

4.5 A semi-static strategy

Towards a “Computational Grid” ScaLAPACK When discussing the optimized algorithm,
we have pointed out that this algorithm implies several redistributions of column block on the fly,
as the elimination progresses. Implementing this algorithm would require a major rewriting of the
ScalLAPACK library. Basically, we would need to define two basic kernels:

e one kernel aimed at factoring a given column block
e one kernel aimed at updating a given column block with the input of the factored block

The tools to write these kernels are there: these are nothing but BLAS3 operations. The tools
to organize the communications between kernels are there too, namely the BLACS subroutines.
What seems unavoidable is a change in the philosophy: we would access pointers to local arrays
rather than addressing a shared-memory global matrix as in the current ScaLAPACK distribution.
Anyway, we believe that such a major change is a sine-qua-non to tackle the implementation
of ScaLAPACK on the computational grid [7]: it does not seem reasonable to emulate a global
addressing on a collection of heterogeneous NOWs or parallel servers that are scattered all around
the world. We believe that a hierarchical approach based on the ideas of our optimized algorithm
will prove very efficient to solve this challenging problem.

17

Variations in the machine loads and speeds When discussing all the static distributions pre-
sented in this paper, we make the implicit hypothesis that the (estimated) speeds of the processors
will remain the same throughout the computation. As discussed in Section 2.1, the only possible
strategy to take speed variations (maybe due to variations in the machine loads) into account is
to split the work into phases and to use the actual processor speeds computed in a given phase to
load-balance the work for the next phase.

Translated to dense linear solvers, this implies a redistribution of the data at each phase. We
would redistribute the remaining column blocks to account for a new estimation of the processor
speeds. Owing to the parameter B that bounds the number of chunks that are allocated (as defined
in Section 2.3), we can redistribute on the fly without any information on the problem size: only the
estimations of the cycle-times ¢; are needed to recompute the allocation of B consecutive column
blocks. So-to-speak, we would end up with a semi-static strategy: the allocation is static within
each phase but is recomputed between phases (and an inter-phase redistribution may well take
place).

5 Conclusion

In this paper, we have discussed static allocation strategies to implement dense linear system solvers
on heterogeneous computing platforms. Such platforms are likely to play an important role in the
future. We have shown both theoretically and experimentally (through PVM experiments) that
our data and computation distribution algorithms were quite satisfactory.

We also have compared the static approach with dynamic solutions, and we have show that
we could reach comparable (or even better) performances, while retaining the simplicity of the
implementation.

The next project would be to target a collection of heterogeneous NOWs rather than a single
one. Implementing linear algebra kernels on several collections of workstations or parallel servers,
scattered all around the world and connected through fast but non-dedicated links, would give rise
to a “Computational Grid ScaLAPACK?”. Our results constitute a first step towards achieving this
ambitious goal.

References

[1] F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, pages 279-309. Morgan-Kaufmann, 1998.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, , and R. C. Whaley. ScaLAPACK Users’
Guide. STAM, 1997.

[3] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, and F. Vivien. Algorithmic issues for hetero-
geneous computing platforms. Technical Report RR-98-49, LIP, ENS Lyon, 1998. Available at
www.ens-lyon.fr/LIP/1lip/publis/publis.us.html.

[4] Michal Cierniak, Mohammed J. Zaki, and Wei Li. Scheduling algorithms for heterogeneous
network of workstations. The Computer Journal, 40(6):356-372, 1997.

18

[5]

8]

[9]

J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker. ScaLPACK: Linear algebra software
for distributed memory architectures. In T. L. Casavant, P. Tvrdik, and F. Plasil, editors,
Parallel Computers: Theory and Practice, pages 267-282. IEEE Computer Society Press, 1996.

J. J. Dongarra and D. W. Walker. Software libraries for linear algebra computations on high
performance computers. SIAM Review, 37(2):151-180, 1995.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1998.

Apostolos Gerasoulis and Tao Yang. On the granularity and clustering of directed acyclic task
graphs. IEEE Trans. Parallel and Distributed Systems, 4(6):686-701, 1993.

M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm for hetero-
geneous computing systems. In Seventh Heterogeneous Computing Workshop. IEEE Computer
Society Press, 1998.

19

