Lo C Prylli

Distributed simulation of parallel computers

Keywords: simulation, parallel computers, performance analysis R esum e

Our work deals with simulation of distributed memory parallel computers. The tool we realized allows to take an application written for say a n I n tel Paragon and run it on a workstations cluster by j u s t recompiling the code. The hardware of the target machine is simulated so that the behavior of your application on the workstations is identical to a native run on the simulated computer (except for total execution time!). We present h e r e t h i s t o o l a s w ell as a mathematical analysis of the conditions required about the simulation host, the simulated host and the application to be able to distribute e ciently the simulation.

Nous nous int eressons ici a l a s i m ulation distribu ee d'ordinateurs eux-mêmes parall eles. Nous avons r ealis e un outil permettant d'ex ecuter une application d evelopp ee pour une machine parall ele (par exemple le Paragon d'Intel) sur un r eseau de stations de travail par le simple biais d'une recompilation. Les composantes mat erielles de la machine cible sont s i m ul ees, de sorte que le comportement de l'application est identique a celui obtenu p a r u n e e x ecution native s u r l a machine simul ee (hormis le temps total d'ex ecution !). Nous pr esentons ici cet outil ainsi qu'une analyse math ematique des conditions sur la machine simulante, l'application et la machine simul ee qui permettent de distribuer e cacement l a s i m ulation.

Mots-cl es: simulation, ordinateurs parall eles, analyse de performances

Introduction

As parallel computers have become more widely available, a lot of tools have been developed for them. These tools try to ll several needs: studying application performances, load-balancing and e ective exploitation of parallelism and problems related to the communications network (contention, links utilization).

What we propose is a new tool that hopefully has its place in this domain. It allows to simulate a MIMD computer on a workstations cluster and to run real parallel applications with just recompiling the source code. We try to be as general as possible so that we can simulate a wide range of parallel computers and provide as well several application programmer interfaces (including Chorus, NX, PVM and MPI). A virtual clock (representing the time on the simulated computer) is maintained and the result of the simulation can be exploited either by a trace-le generated during the simulation (which can be visualized with classical tools like P aragraph), or by time measurements made inside the application that will re ect the virtual clock.

What is new is our approach is the parallelization of the simulation itself. This avoids a severe limitation of traditional simulators: the limited amount o f memory of one workstation and the elapse time. By using a network, we c a n now deal with larger problems and decrease as well the time of execution of the simulation.

This document will present the tool as well as a theoretical study of the e ciency we can hope to achieve b y distributing the simulation.

1 Backgrounds

Why i s s i m ulation useful?

To develop and optimize parallel applications, the most used methods have b e e n instrumentation and runtime tracing. There are a lot of di erent w ays to do this, instrumentation can be done more or less automatically, and there are a lot of di erent approaches to visualization. The main problem with observational analysis is neutrality. It is actually di cult to instrument and collect data without perturbing a lot the timings of the target application. In the worst case, even the behavior of the application can be changed due to the non-determinism introduced by parallelism. So a lot of e orts have been made, in software as well as in hardware to ensure as much neutrality as possible. Another problem that come with instrumentation and tracing is that, like w orkstations, parallel computers tends to become multi-tasked and multi-user. So the study of the application will be disturbed by e v ents external to the application So although observational analysis is useful, simulation can be more suited in some cases and of moreover both can be combined to insure neutral observation. Parallel simulation allows also new features :

It insures neutral observation. It allows developing without access to the real machine. It allows to design and study a machine without (or before) building it. It allows testing massive parallelism on real applications without requiring a h uge execution time.

Parallel programming on workstations

Some tools already exist to ease the development of parallel applications on a cluster of workstations. But they aim at executing as fast as possible a parallel application without bothering simulating a peculiar MIMD computer.

PVM GBD + 94] : This is a library that allows to developp parallel applications using a message passing paradigm. It is available either on networks of workstations or on real parallel machines.

NXLib SLL93] : Y ou can use this environment to execute applications written for the Paragon. But, although it does provides the application programmer interface of the paragon it doesn't simulate the behavior of this machine.

Trollius BDV94, B u r 8 8] : T rollius is both an operating system and an API for parallel programs. You can use the trollius environment o n w orkstations with \Trollius-LAM" which p r o vides also the MPI interface.

Tools to simulate a parallel computer

Some tools already exists to simulate execution of a parallel application on some peculiar hardware. The application is transformed either manually or automatically, in a sequential program. This program will simulate all events that would have occurred on the target machine during a real run of the application. The result of the simulation can be examined with the appropriate tools.

Prot eus Bre92, BDCW91] : This tool allows a quite realistic simulation.

First at compile time the cost of each basic block of the application is evaluated and some code is inserted to be able to take i t i n to account during simulation time. Then the application is sequentially simulated with a simulation engine, which is responsible for: maintaining a virtual clock. sharing the CPU of the simulating machine among the di erent virtual nodes simulated. simulating the communications.

EPPP simulator RHS94] : EPPP is a complete programming environment, including a simulator based on Prot eus. The evaluation of computation time had been improved by doing the compile-time analysis of each basic block o f the assembly code generated for the target machine.

Beside those cited, some other works have been done :

EGP-sim PY93], Tango DGH91], PEET GNS + 92].

2 Speci cation of the simulation tool

Our work aims at providing a tool able to simulate a wide range of parallel computers, so it has to be quite parameterizable. Moreover, we w ant t o b e able to simulate real applications, that is to say, applications that deal with a great amount of data and also that are quite demanding on CPU power. Consequently we w ant to parallelize the simulation (of a machine that is itself a parallel computer) and this is probably the main speci city o f o u r w ork. Last, we w ant it to be portable. Nevertheless, even if we w ant to deal with big applications, the main objective is the accuracy of the simulation and the time necessary to do the simulation comes only second. Of course, it has to be enough reasonable to test applications with massive parallelism.

Trace generation is a major feature of the simulator. The generated trace les can then be analyzed with classical tools (cf. 6).

This work is original for two reasons, until now there is no general tool that allow s i m ulating a parallel computer at the application level that's to say answer at the question: \how m uch time this application will take on this computer?". Well, others work are in progress, but either dedicated to only one machine, or they focus on very high accuracy at of simulation at the hardware level and so they are restricted to simulate \toy" applications. The second speci city is that we are the rst one to parallelize the simulation, which eliminate the necessity o f a h uge computer to deal with real applications, in fact there is some theoretical reasons (cf.x4.1) that probably prevented other people to do so before. But we will show h o w w e can circumvent these in our speci c case.

Modeling of an architecture

We deal exclusively with distributed memory machines, linked with a classical communication network: point t o p o i n t, multi-stage, or crossbar.

The tool has to be enough parameterizable to model the target machine in a xed format. Here are the parameters we c hose:

The power of the computing processors, The topology of the communication n e t work and the routing strategy, The protocol used for communication (circuit-switched, store-andforward, worm-hole), The bandwidth of the links, The switching time of the routers, The timings associated with the initialization of a transmission (without taking CPU time), The CPU timings associated with a transmission, The packet size if packeting is used, The it size in the case of worm-hole routing, And some ad-hoc options to deal with peculiar bu ering schemes.

All these parameters are simply given by the user in a con guration le, that is read at the beginning of the simulation.

Let's look more closely at these di erent options:

Power of computing processors: Our choice is quite simple, the computing processor is modeled just by one scalar (for instance the M ops as given by the Linpack benchmark). This choice is a limitation, the relative timings of di erent CPU depends also of the type of computation. An approach l i k e t h e one used in the EPPP project allows more accuracy but is beyond the scope of our approach. Nevertheless for a wide range of problems, an estimation of the computation time for a processor obtained with the scaling of the computation time regarding the simulator's processor gives an acceptable accuracy, this is particularly true for processors of the same family (for instance RISC). And in fact, the lack of precision introduced is not greater than those obtained when you change from one compiler to an other for the same processor, or when you just change compiler options. The table 1 shows the worst case where we compare e ciency of some processors in very distinct domains: with the Linpack b e n c hmark (dense linear algebra), the whetstone benchmark (aggregate melting of integer and oating-point operations), and the dhrystone benchmark (integer operations Communication network protocol: The simulator can simulate di erent routing protocols: worm-hole with a speci ed it size, circuit-switched or a theoretical idealized protocol with which y ou don't really simulate the physical transmission on the network but instead you assume that the transfer time follows the law +L +d where L is the length of the message and d is the number of links between the two and , ,tau are numerical constants characterizing the network. Also it takes into account a s w ell half duplex link or full-duplex links.

Numerical constants for the network: There is little to say about that, you can simply notice that we h a ve t a k en into account separately the operations that require the computing processor and those that occur in parallel with it.

Packet size: This optional parameter allows to signal that a message is cut into xed size fragments before transmission on the network.

Others parameters: It is necessary to do a compromise between having a generic tool dealing with a wide range of parallel computers and simulating as accurately as possible a peculiar machine. That's why w e i n troduce some ad-hoc parameters that are useful to take i n to account features speci c to one machine, for instance:

The iPSC860 bu ering protocol to insure that room is available on the destination node before sending a message Int].

The behavior of the Paragon that has also a peculiar bu ering protocol. PR94].

The available application programmer interfaces

It is important to deal with existing applications but they are written for di erent m a c hines with di erent APIs (CMMD, NX, PVM, MPI, .. .). So we decided to provide several APIs.

For historical reasons, we rst provide a library conforming to the Chorus interface speci cation. For practical reasons, the other interfaces have b e e n implemented on top of the Chorus ones with the help of some functions to insure that the introduction of a intermediate level doesn't introduce any discrepancies in the simulation.

At this time, the Chorus and the NX interfaces are available.

Related issues

In this part we will not consider the message-passing facilities as part of the operating system. Otherwise saying, the \operating system" will name the functionality p r o vided to the application by the execution environment, exception made of the message-passing library. We h a ve seen so far how w e model an architecture and what range of applications we can simulate, it appears that we h a ve left the modeling of the operating system of the target machine. This is something important so far, as the operating system can in uence dramatically a machine performance in some cases. On a multi-tasked node, it will determine the scheduling policy. On some systems it manages a virtual memory space with eventually paging or swapping. Given the number of di erent operating systems, it is not reasonable to take i n to account all possibilities in a general tool. So we adopt a conservative approach, we made some simple choices (for instance, we assume a simple round-robin scheduling if there is several threads or processes on one node) we assume no swapping or paging. Anyway, our approach seems acceptable for several reasons: Most parallel applications don't rely on paging because generally to provide acceptable performance, it is necessary that all code and data can be stored in physical memory. So system impact due to memory management will generally be negligible and it appears reasonable to ignore it in simulation. Most parallel applications using message-passing doesn't rely much o n t h e operating system except at load time and for input-output operations. In particular, most of the time there is only one application process per node which eliminates problems related to scheduling policies. As regards inputoutput operations, that is true that our simulator will not give a n y hint for applications where such operations are predominant o ver computation. On machine that allow only a single application at a time, the operating system has hardly any in uence on the behavior of the application. On multi-user machine which tends to spread, the operating system introduces \random" perturbations, but in the scope of our project we are not interested by reproducing this kind of perturbations. On the contrary, they make analysis and performance tuning of the application more dicult. So the fact that the machine we simulate is more deterministic that the real one is most of the time an advantage.

Simulation by discrete events

We will present here the method of simulation we used, an overview is rst given at an abstract level and then the notion introduced will be further explained just after.

Structure of the simulation engine

First we n e e d a s e t o f v ariables that represent the global state of the simulated computer at a given time. Simulation progress by w ay of transitions, one transition modify the variables to represent a new state of the machine, and increase the time by a speci c amount, so in fact the global state of the machine is changed only at precise countable points in time (that's why w e s p e a k of discrete events simulation). One important structure that is maintained is a queue of events, t wo attributes are associated with each e v ent, the nature of this event and the time at which it will occur (called the time-stamp of the event). Events are unavoidable to simulate a complex system where some parts evolves separately and interacts at certain times, they are in fact a representation of these interactions as will show the examples below.

We consider all changes to the state of the system to be atomic. Then actions that last will be represented in the model by t wo c hanges, one at the beginning of the action and one at the end, the evolution of the real system in between should not be meaningful in the scope of the simulation.

At a given time t, let Q be the queue of events and S be the state of the system. The simulation engine consist basically in the following algorithm:

1. Remove a n e v ent e from Q with the smallest time-stamp. 2. Modify S by t a k i n g i n to account the occurrence of e. During this modication, events can be created that are inserted into Q. At e a c h stage of the algorithm, the virtual time of the simulation is given by the time-stamp of the event e we are dealing with.

Simple example of simulation

Let's took a simple example with the following situation: we h a ve a computer with three nodes A, B, C on a row. Node A and node B each compute something and then send the result to C. W e will took in this section an oversimpli ed model. To communicate three steps are necessary, rst we m ust acquire successively the links necessary to reach the destination node. If a link is free, we can acquire it instantaneously. Then the communication time is constant. Let's suppose the computation of A lasts 2 unit of time and the one of B lasts 1 units, the communication lasts 2.

Here follows the di erent stages of the simulation:

A state B state A $ B link B $ C Q - -

Choice of a time scale

When doing discrete event simulation you have generally to choose either a discrete time model where time increases by m ultiple of a speci ed time unit or a c o n tiguous time model where the time can take a n y v alue. In our case, in a parallel machine every node are asynchronous, so there is no appropriate discrete time (as for instance a global clock signal) on which to base the simulation, so we choose a contiguous time model (in fact this can be considered as an extreme case of the discrete time case where the chosen unit would be very small compared to the typical intervals of time used in the model).

Simultaneous occurrence of two e v ents: In a contiguous time model, the probability o f t wo e v ents occurring simultaneously is zero (unless a strong dependency exists between them, but this is taken into account in the model).

So we c hoose to ignore this kind of situation if it occurs in our simulation (events can always be ordered). But in a computer there are a lot of things based on clocks, so for some hardware parts, all events occurring in one period should be considered simultaneous. We don't take i n to account this kind of thing because it will be inconsistent with the level of our model.

Representing the state of the machine

After having presenting the general concepts, we will now describe more precisely how w e apply them in our case.

The representation of the state of a machine depends a bit of its architecture, but we can roughly decompose the state of all machines entering in the classi cation of section 2.1 as follows:

For each link of the communication n e t work, we store his state: active o r idle, and at the attached routers the list of messages blocked, waiting the availability o f t h i s l i n k . For each message in transit on the network, we m ust know the list of links it is currently monopolizing. The real code of an application process is in fact executed in a real process with a library that redirects message-passing calls to interact with the simulation engine.

For each node, we maintain a list of requests blocked waiting for some resources to be processed, a list of received messages not already grabbed by an application process, and some others structures depending on which ow c o n trol protocol is used. This is a simple model, but note that we can extend it easily, for example if the routing function is not xed then the router must maintain some additional state, etc . ..

Some examples of events

We will now describe the most representative t ypes of events that can occur and the corresponding actions that must be taken when treating them (they depend on the architecture we are simulating). We will use again the notation Q to design the set of events managed by the simulation engine (cf. x3.1).

Treatment of an application send request. This one is generated when an application process reach a \send" library call. If the packet-splitting option is on, the message is rst cut and transformed into several requests each c o r r esponding to a new event o f t ype internal transmission. It is also here that we eventually deal with special bu ering protocols.

circuit-switched case

Treatment o f a n i n ternal transmission request. Let s be the source site, t the sending date, d the target site. The following work: Acquire on s the resources needed for emission, eventually this can lead to \sleep" (see explanation below) if the resource is not at once available. Compute t 0 the date at which the resources are ready to use (there can be a switch time associated with some resources). Insert into Q an event a t date t 0 of type routing.

The action we described here is atomic if we don't need to \sleep". If we have t o w ait for the availability of some resources, then we insert the information necessary to do the rest of the processing into the queue of blocked requests associated with the resource. It will be processed when another event frees the resource.

Treatment of a routing event. Let n b e t h e n o d e o n w h i c h the message is arriving.

If n is the nal destination of the message then try to acquire on this node the resources needed for delivery like in the case of a transmission event, compute the time at which the delivery will be terminated and insert in Q an event o f type \end of transmission".

If n is an intermediate node, then compute the next node n 0 with the appropriate routing function. Then wait for the availability of the resource corresponding to the link between n and n 0 , add a switch time to obtain the nal date at which to insert a event o f t ype routing in Q (for the node n 0) .

Treatment of end of transmission. All resources used for this message are freed (in particular the links along the path between sender and receiver). This can lead to execute some actions that were waiting for the corresponding resources. Depending on the required simulation precision, the resources can be freed successively instead of all at one time, in this case several events are in fact generated. The state of the destination node is changed so that the new message is taken into account, if an application process was blocked waiting for such a message, it is resumed.

wormhole case

Treatment o f i n ternal transmission request. As for the circuit-switch case, we acquire the resources necessary to reach the second node (basically a link), we compute the date at which these resources will be ready to use, and we insert an event o f t ype routing in Q. Of course, the timings constants will generally not be the same as for the circuit-switched case.

Treatment of a routing event. If the end of the message has left the source node, free the last link used by the tail of the message. Then we execute the same operations as in the circuit-switched case: if we are not at the nal destination, compute the next node with the appropriate routing function, acquire the necessary resources and insert a event o f t ype routing in Q. I f w e are at the nal node, insert a event o f t ype transmission end phase.

Treatment of transmission end phase. If the message is entirely arrived on the nal node then the actions taken are similar as for an end of transmission in the circuit-switch case. Else do one step of transmission: the message progress according to the it size if the queue of the message has left the source node, free the last link at the tail of the message insert an event o f t ype end of transmission in Q at the date corresponding to the delay o f a c hievement o f t h e previous operations.

Parallelization of the simulation 4.1 Constraints

We h a ve seen that there was a simple sequential simulation algorithm. There several points before starting with parallelization:

It is rst quite obvious that we cannot parallelize the evaluation of one transition because they either consists in very simple action or in execution of the code of an application process which i s b y nature sequential. Then we h a ve t o i n vestigate how w e can proceed in parallel several events. The problem that arises is the problem of coherence. The simulation algorithm must ensure that the results of the state transitions are exactly as if they have been processed sequentially in chronological order.

The coherency constraint implies that all sites of the simulating machine have generally to be synchronized at each t i m e j u m p w h i c h in practice will prevent any actual parallelism. We will examine di erent methods in the following subsections to remove partially this constraint.

Using the latencies of the simulated machine

We will use some topological knowledge of the machine we a r e s i m ulating. After decomposing we can associate a localization to every event. Then we w i l l u s e the fact that there is a minimal latency time of propagation between the di erent components of the simulated machine. More formally, i f w e represent t h e components of the machine by a connected graph (the vertices will represent t h e computing nodes, and the routers of the machine), we will design the di erent components by s 1 s 2 : : : . Then we will have the following property t h a t i s a consequence of the hardware latency:

For each e d g e (s i s j), there exists a minimal latency l i j such t h a t e v ery event generated when evaluating a transition on s i and associated with the site s j has a time-stamp greater than t i + l i j where t i is the time-stamp of the current transition.

We can now generalize the latency to any couple of components, even if there are not directly connected by s a ying the corresponding latency is equal to the one of a path of minimal latency between the two components. graph (the closest path). Let h x design the time-stamp of an event x. A t e a c h stage of the simulation algorithm, we c a n c hoose for the next transition to compute any e v ent e 2 Q verifying h e < h e0 + l s s0 where e 0 is the event with the smallest timestamp and s, s 0 are the vertices associated to e and e 0 . T h e s i m ulation algorithm become non-deterministic and so has an inherent potential for parallelism.

In corresponding distributed algorithm, Q and S are in fact distributed among a certain number of processes. Each one is responsible for a site and then deal with all transitions associated with this particular site. On each process the following algorithm is executed:

1. Let be t the smallest time-stamp among the events owned locally. 2. For every other site q, w ait that the process associated with q reach t i m e t ; l q p where p is the local site. 3. Modify S by taking into account the occurrence of e. During this modi cation, events can be created that are dispatched to the appropriate site.

The approximate parallelism provided by this algorithm will depend essentially of two factors: the ratio of the typical interval between two e v ents on the same site against the typical latencies between sites.

In practice in our case, the only sites where the local state progress independently of the other nodes are the compute nodes every other sites (routers, links) are essentially driven by external events (that mean events not generated on the same site), that roughly mean that there is a synchronization at each event with its neighborhood. That means the latency here will be limited, an upper bound for the e ciency being the diameter of the graph if the communication costs in the simulation host are null, in practice there is no parallelism exploitable at this level between such site. Although it seem we cannot gain much parallelism here, the features described here can be useful when used in conjunction with the algorithm described below.

Master slaves organization

There is little hope to parallelize the simulation of the communication network (in fact we could parallelize it using predictive action but that would not be an e ective solution in our case), but we can try to conserve the parallelism inherent to the application by distributing the computations done by the di erent application processes. One node of the simulation node will take i n c harge several nodes of the simulated machine. There will be a master process that will simulate the communication hardware and will deliver in order (chronologically with regards to the virtual time) the messages that are exchanged on the network to the applications process (that will be called the slaves). Each slave inform the master of the virtual time reached by the nodes it simulates.

Cutting the computation phases

On the compute nodes, we h a ve a local evolution of process between two calls to the message-passing library. But at this point i f w e s t a y with our clean model of x3.1 then a computation phase is just considered like one transition and the problems of x4.1 will not be solved. But a computation phase is something that can be decomposed. If we do so then in the middle of a computation we c a n inform the other simulation sites what simulation point w e r e a c h s o t h a t t h e y c a n eventually start other computation phases that would proceed in parallel with the rest of the current computation. The problem is that there is no obvious decomposition, it would be too costly to decompose at the instruction level and that will cause problems to evaluate computation time. On the contrary, if we decompose the computation with a too heavy granularity, w e will loose any parallelism. The solution to this problem is to allow a n i n terrupt-driven decomposition, that means, when the master must wait for a slave t o r e a c h a certain duration before starting a computation phase on an other node, it interrupts the computation phase, the slave a n s w ers if it has reach o r n o t t h e critical point and if not sets a timer so that it can inform the master as soon as it reaches this critical point. Moreover when several virtual nodes are simulated on a single real node, we will see later that it is essential to be able to switch between the several processes (representing a virtual node) in the middle of computation phases. So from now w e will assume that computation phases can be dynamically cut into several parts.

Algorithm on an ideal simulation host

Let V (for Virtual) be the number of nodes of the simulated machine and R (for Real) the number of nodes of the simulating machine. We consider here that the simulating host has the following properties:

Computation phases can be cut into in nitely small parts without overhead. Communication fully overlap with computation. The average latency of small messages between a slave and the master is .

Algorithm of the master

Our simulation model has changed a bit since x3.1 with the introduction of interruptions in computation phases, but we h a ve still a set of events Q that would be completely managed by the master.

The execution pro le of each process will be compute phases with 1 M communication points by unit of time.

We n o w consider a particular slave. Let try to determine the conditions necessary to avoid idle states in the simulation. We consider a cycle beginning at a time where we receive a message from the master unblocking a node. Let t be the state of the slave as de ned in 4.5.2. The critical path to go to the next cycle will consists of several repetition of the following:

T h e m a s t e r u n blocks a node of a slave. The computation on this node progress until the next global blocking point, on average that means a M V computation (at some conditions, see below). The slave returns its status to the master. This steps are represented on the space-time diagram example of gure 1.

There will be on average R steps before returning to the initial slave, so that means a critical path of length R (Figure 1: Critical path representation Now, we m ust justify that just average considerations lead us to a valid result. For that at a beginning of a cycle, on a particular slave, let W a denote the amount of computation already done \by a n ticipation", that means if the node just unblocked is at time t 0 , W a = P i t i ; t 0 . L e t W be the total amount of work that can be done from t 0 , W = P i t 0 i ; t 0 where t 0 i is the next blocking date of node i. O n a verage W = M V

M V + 2) = M R V + 2 R
2R . An example of what represent W a and W is given in gure 2. In the computation of the critical path length, we said that the time from a blocking point to the next global blocking point w as M V , for that we assumes that at the time the master send the unblocking message, it knows also the point in time of the next blocking point. A su cient condition for that is that for all slaves, the last W a were greater than M. S o n o w w e h a ve t o l o o k a t w h a t happen across several cycles. If the W a are too small, the critical paths are longer but then, before leading to idle states, the W a will increase. When the W a are greater than M and as we m ust have R < M , the critical path between two cycles is smaller than M so the W a decrease. So in average the W a values will stabilize themselves somewhere below M. I f V 2R, the maximum values for W a is several times M which ensure that it is valid to reason with average values. Note that average values are taken among di erent nodes at one time and not along time. If all nodes do small computations at the same, then the e ciency will drop.

Last we h a ve to see if we can generalize our analysis of a special kind of application to more general cases. The point i s t o s e e h o w idle times in the virtual case in uence the performance of the simulation. Let now consider that M will represent in fact the interval between two computations starting points, so M will be decomposed into a computation part M c and a idle part M i . O f course we always consider average values. The algorithm does not change at all, simply there are some node that are idle instead of busy and then the new formulae for W id now W = V R (M 2 ; M i) s o w e need that M c > M i and preferably M c M i (W must several times greater them M). The condition on V and R becomes V R 2 M M 2 ;Mi . All the other reasoning remain valid and then the e ciency will be optimal at the same condition R < M .

Simulation on a realistic machine

We just study the algorithm on a ideal machine, the strong assumption was that we could share one CPU of the simulation host between di erent l o g ical processes representing the nodes of the application with an in nitely small granularity.

In reality what we can do is to switch b e t ween threads or processes with a granularity g depending of the system and the implementation (logical processes representing nodes can be managed by several unix processes or by several threads into a single unix process). So we could take again the previous study with g, the only important m o di cation is during the calculus of the critical path length, when we t a k e i n to account the time necessary to reach the next global point. That was M V , t h a t must be now replaced by m a x (M V g), so then we h a ve the supplementary condition Rg < M , R < M g . T o ensure the validity of this limit W a must now b e greater than M + gR, but his change is not very important for the stability o f W a as long as R < M g which implies M + gR < 2M.

Limitations due to the application

All the e ciency considerations we discussed until now didn't take i n to account the time necessary to transfer the data messages between the di erent s i m ulated nodes. We j u s t s p o k e about the messages necessary to the coherency of the simulation. It is quite obvious that if an application can't be run on the simulating host because of the bottleneck of the communication with a normal message-passing library like NXlib, MPICH or PVM (cf. x1.2), there is no hope to compensate that by adding the coherency constraints and ordering of the target machine simulation. So what we determined are the conditions at which the simulation could be done with the same order of speed than with a simple message-passing library on the simulating host.

Implementation presentation

For portability and simplicity reasons, our environment is built on top of PVM.

There will be three kind of PVM tasks: the \slaves" noted S that will manage the di erent virtual nodes, the \main simulation engine" noted M (like master), that will simulate the communications on the virtual hardware. Last there will be a certain number of application processes noted T (like thread), each representing a virtual node. A slave and its attached nodes will all be run on the same CPU.

These di erent e n tities will be interconnected (cf. gure 5) by several kinds of communication channels: The channels M$S a l l o w the slaves to cooperate with the master to allow progression of the simulation. The channels T$S a l l o w a slave to dispatch the CPU between the differents threads and gathering application messages information that is further sent to the master. The channels T$T a l l o w r a w data of the application to transit directly between application processes. Only information about such messages transit by the master.

In a future version, we will perhaps change a bit this implementation so as to run a slave and all its attached processes within one single PVM task. Anyway that is a technical detail to minimize switching time between the di erent processes on one CPU.

Trace generation

The simulation can be exploited by t wo means. On one hand the timings measured by the application are virtual times (identical to those that would have been measured on the target machine) and so that allows to analyze super cially the application. On the other hand, there is the possibility to generate a trace le during the simulation. This le can then be examined with existing tools to do a post-mortem analysis. Note that the trace-le obtained correspond to a neutral observation of the execution (what is almost impossible with a real machine!).

We c hoose the PICL vRT92, W or92] trace le format that allows us to use Paragraph HE91] to displays the result of the simulation.

The trace generation is done at the master site, which has all information about message circulating and computing processors activities.

Validation of the simulator

In this part, we will present several results obtained with the simulator. To d o these tests, we took several programs written for the iPSC860 and ran them both on the real iPSC860 and with the simulator.

The rst test (gure 4) is a \ping-pong" test. It is a simple test to verify that the parameters are correct for the target machine.

Then we t o o k t wo algorithms that comes from the SCALAPACK package that deals with numerical linear algebra operations on parallel computers. ABD + 91].

The rst one (gure 5) does a LU decomposition of a matrix, then solve several linear equations by using this decomposition. We put the execution time of these two phases for several matrix sizes.

The second program (gure 6) is doing a QR decomposition, then also solve a linear system. As for LU, we indicate each phase time.

This results shows that the simulator has a good accuracy. In our case we were simulating on some workstations with sparc processors. The di erence between the real and simulated execution time is essentially due to the non constant p o wer ratio between this two processors but nevertheless we can see that it does cause a small bias. Even at this stage of our work, we obtain some promising results. This tool seems to be useful in several cases: for the development of parallel applications without having an account on the target machine, for the neutral analysis of an application run, and to help the design and study of a parallel machine.

The tests that have been done with both simulation and native execution seems to show that a good accuracy can be obtained. Some work is in progress to allow the use of the simulator with di erent APIs.

The other interest of this work is the theoretical study of the parallelization e ciency. We a r e n o w a b l e t o c haracterize the type of simulation that can be done in parallel depending on the granularity of the application and the parameters of the simulation host.

 . The amount o f computation of one cycle is M. W e h a ve n o i d l e t i m e i f M M R V + 2 R .As practically we will have V R the remaining condition is M > 2R , R < M .

 Figure 2: W and W a at beginning of a cycle on one slave

Figure 3 :

 3 Figure 3: overview of the simulator organization

Figure

 Figure 4: ping-pong simulation for the iPSC860

F

 Figure 6: QR simulation with 16 nodes

).

	linpack whetstone dhrystone Alpha 100 100 100 Mips 20 28 19 Sparc 19 26 20 i860 37 38 24 RS6K 130 77 126
	Table 1: processors comparison, the numbers give a n p o wer estimation (unit not meaningful, Alpha is given as 100 for reference)
	Topology and routing: Topology and routing are indissociable so they are represented by only one parameter. Of course in some cases you can have s e v -eral choices of routing strategy for the same topology. The currently available topologies are: ring, mesh and hypercube, b u t p r o vision has been made so that it's very easy to add new ones. Classic routing strategies have been imple-

mented, XY routing for the mesh or e-cube routing for the hypercube. But more complicated routing like H o t P otato routing can also also be implemented easily.

The algorithm on the master is then:

1. Let e be the rst event i n Q. 2. Wait that every application process are inactive (w aiting for a message or some information of the master) or that we know it has reach a p o i n t l a t e r than the time-stamp of e (more precisely less than the time-stamp of e to which w e subtract the latencies described in x4.2). 3. Take i n to account the rst event o f e. That can result in starting a computation on a slave. 4. Go to step 1.

Algorithm of the slave

Let N = V R be the number of virtual nodes managed by a s l a ve. We can represent the state of the slave b y (t i) 1 i N , each t i representing the virtual time reached by one of the nodes managed. The vector t represents the advancement o f t h e simulation on one slave.

When a virtual node reach a c o m m unication point, it must wait for the master to inform that all slaves have reached this point. We will say that the node is blocked.

The algorithm is composed of the following actions:

Let S be the set of nodes not blocked, advance in their computation uniformly: that means run the node of S with the smallest t i . W e supposed we can switch with an in nitely small granularity b e t ween nodes of S, that means there will be a subset of the t i that will increases at the same time.

When a node becomes blocked, we inform the master that it should inform us when the corresponding t i has been reached globally.

Messages received from the master unblock a n o d e .

E ciency analysis

Now w e will study the e ciency of this algorithm. It will be done on a virtual application that we de ne as follows:

Compute phases have a verage duration of time M. All process are busy at any time.